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ABSTRACT

The Helically Symmetric Experiment (HSX) is a quasisymmetric stellarator with minimal parallel viscous damping in a helical direction. The
parallel flow (V) along the magnetic field is similarly weakly damped by viscosity. In this paper, the self-consistent steady-state parallel and
poloidal momentum balance equations are used to show that a large V|| on the order of the ion thermal velocity can increase the ion resonant
radial electric field (E,) beyond the value calculated using the typical approximation that V|| is zero. By altering the damping of V|, either by
degrading the quasisymmetry or varying the neutral density, the ion resonant E, can shift in a controllable fashion. It is shown explicitly that
there exist stable and unstable steady-state solutions in the two-dimensional space of V|| and E,. A stability analysis of each solution is per-
formed by calculating the eigenvalues and eigenvectors of the Jacobian. The unstable solution corresponds to a saddle point in which the
eigenvalues have opposite signs. The analysis leads to the conclusion that unstable solutions occur when the derivative of the total poloidal
damping with respect to E, is positive. A hysteresis in E, and V|| is observed when the radial current density is linearly increased to a maxi-
mum and then decreased back to zero. Jumps in the radial electric field and the parallel flow are observed as the radial current density drives
the evolution from one stable point to the next. This result is similar to experimental data observed on several devices.
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I. INTRODUCTION

The Helically Symmetric Experiment (HSX) belongs to a class of
toroidal confinement devices known as quasisymmetric stellarators.
All stellarators have the advantage as fusion reactors in possessing
steady-state capability, low recirculating power, and the ability to avoid
the disruptive termination of discharges. However, quasisymmetric
stellarators have the additional advantage of having excellent confine-
ment of fusion alpha particles and neoclassical transport comparable
to that in an axisymmetric tokamak."” They achieve this improvement
in confinement over a conventional stellarator by preserving a contin-
uous symmetry of the magnetic field strength |B|, rather than the vec-
tor B as in a tokamak.

In conventional stellarators, |B| varies in every direction on a flux
surface leading to a large viscous damping of plasma flows. Because of
the continuous symmetry in |B|, quasisymmetric stellarators have
reduced parallel viscous damping of plasma flows in the direction of
quasisymmetry. Reduced flow damping can aid in the sustainment of

large E x B velocity shear (where E is the electric field) and in turn
lead to the reduction of plasma turbulence and the generation of a
transport barrier.’ In particular, the very high toroidal rotation in
DIII-D is key to sustaining the very high confinement super H-mode
in that device.

Plasma flows and the radial electric field have been measured
experimentally in HSX at relatively low rotation speeds. With a biased
electrode at the plasma edge to spin the plasma, Gerhardt et al.’
observed with Mach probes that larger flows could be induced at
slower spin-up times when the quasisymmetry was preserved than
when it was degraded. Coronado and Talmadge® considered the case
when the viscous damping is linear with the flow and the plasma is in
the plateau or Pfirsch-Schliiter collisionality regimes. With a constant
bias on an electrode inserted into the plasma, the flow evolves as a sum
of two exponentials with two distinct timescales that correspond to
the weakest and the strongest momentum damping on a flux
surface. As applied to HSX, the weakest damping is in the direction of
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quasisymmetry, and the strongest damping is in a direction normal to
that. Gerhardt et al’ experimentally validated the two-timescale
model.

In other experiments on HSX, Briesemeister et al.” used charge
exchange recombination spectroscopy (CHERS) to measure plasma
flow up to 20 km/s that was oriented largely in the symmetry direction
without any additional momentum input to the plasma. Kumar et al.”
showed that E, as well as the mean ion parallel flow driven by viscosity
could be determined by measuring the total ion parallel flow at two
locations on a flux surface. Dobbins et al.” observed that the ion paral-
lel flow for the quasisymmetric configuration was smaller than pre-
dicted by the PENTA'™'" code. Because the viscous damping of the
parallel flow for this configuration is small, an additional damping
source due to collisions with neutrals was needed to bring the model
into agreement with the measurements.

The previous experiments on HSX were all in the regime such
that there was either no external momentum input to the plasma, or
for the biased electrode case, E, was much lower than the ion resonant
electric field. In Shaing and Crume’s'” model of L-H transition, there
is a bifurcation of the radial electric field due to the existence of a local
maximum in the viscosity and a subsequent suppression of turbulence
due to the shear in the E x B rotation. The peak in the viscosity occurs
at the ion resonant E, when the E x B drift cancels out the poloidal
motion of a particle moving along the magnetic field. For a tokamak,
this peak occurs when M, = —cE,/B,v,~1, where c is the speed of
light, B,, is the poloidal magnetic field strength, and v; is the ion ther-
mal speed. In this case, the viscosity maximum occurs when the net
drift is along the toroidal direction so that VB and curvature drifts
become unidirectional in the radial direction, as if there is no rotational
transform at all. For a quasisymmetric stellarator like HSX, the maxi-
mum viscosity occurs when the net drift is along the helical direction
of quasisymmetry. Shaing showed that in a conventional stellarator
with multiple components of the magnetic field spectrum given by the
toroidal mode number n and the poloidal mode number m, there
would be multiple local peaks in the viscosity given by
M, ~ |m — nq|/m, where q= 1/1is the safety factor and + is the rota-
tional transform.'® This expression, however, assumes that Vi~ 0,
which is reasonable for most stellarators because the plasma flow is
strongly damped. As we show in this paper, it is not a good assump-
tion for HSX.

For the most part, Shaing’s viscosity model has been validated by
experiments. Electrode biasing experiments on the TEXTOR tokamak
showed that as the measured E, in the plasma increased, the radial cur-
rent density increased until it hit a maximum of around M, ~ 1 (the
magnetic field spectrum in a tokamak is dominated by the m=1,
n=0 component) and then decreased.'* A similar result was observed
on the CCT tokamak."” For the IMS stellarator, the local peak in the
radial current was observed in the range of M, ~ 10 — 15 due to the
helical components of the magnetic field spectrum and in agreement
with the modeling.'® What has not been verified yet is the role of the
parallel flow in determining the peak in the plasma viscosity.

In this paper, we apply Ref. 13 to HSX but do not assume that
V|| =0 as in that paper. We apply the steady-state parallel and poloidal
momentum balance equations to solve self-consistently for E, and V),
as a function of the radial current drawn by a biased electrode in the
plasma. This allows us to calculate how the damping of the parallel
flow in different magnetic configurations of HSX affects the maximum
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in the plasma viscosity. Also, we use numerically calculated Hamada
basis vectors'’ for HSX magnetic configurations instead of the large
aspect ratio tokamak approximation'® that is assumed in the Shaing
paper. In addition to the steady-state solutions, the stability of those
solutions is analyzed to show that there are unstable solutions to the
momentum balance equations. That unstable solutions exist was first
pointed out in the original paper by Shaing and Crume'” but little dis-
cussed since then. Also, that work only considered the variation of E,,
whereas we consider the two-dimensional problem in which the varia-
bles are E; and V). One important outcome of the stability analysis is
that it provides a possible model for the bifurcation and hysteresis
observed in the TU-Heliac'’ and LHD’ due to the existence of an
unstable branch of the momentum balance equations.

The remainder of this paper is organized as follows. In Sec. TI, dif-
ferent magnetic configurations available in HSX and the plasma
parameters that are used in the calculations are discussed. In Sec. ITJ, it
is shown using linear viscosity that in HSX, the parallel flow is domi-
nated by the slow damping rate characteristic of the damping in the
direction of quasisymmetry. The evolution of the radial electric field is
dominated by the fast damping rate at the plasma core but dominated
by the slow damping rate toward the edge. This is shown explicitly for
the case when the plasma flow is small and the momentum balance
equations can be solved analytically. This section provides the rationale
for solving self-consistently for the parallel flow rather than setting it
to zero when considering nonlinear viscosity. Section IV briefly
reviews Shaing’s model of nonlinear viscosity and a general expression
for the resonant electric field that includes the parallel flow is obtained.
In Sec. V, the steady-state solutions to the momentum balance equa-
tions are solved to show how V)| affects the resonant electric field. It is
shown explicitly how changing the damping of the parallel flow, either
by changing the magnetic topology in HSX or controlling the neutral
damping rate, can affect the resonant electric field. Section VI exam-
ines the stability of the steady-state solutions that were calculated in
Sec. V. The eigenvalues of the Jacobian of the coupled differential
equations indicate when the solutions are unstable, while the corre-
sponding eigenvectors provide insight into how the time-dependent
equations move toward or away from the fixed point. A physical expla-
nation why certain solutions are unstable is obtained from the
Jacobian. The existence of an unstable branch of the momentum bal-
ance equations can lead to the bifurcation and hysteresis observed
experimentally in other devices. Finally, Sec. VII contains a summary
and discussion of the results.

Il. MAGNETIC GEOMETRIES AND PLASMA
PARAMETERS

The HSX stellarator is a quasisymmetric stellarator with a four
field-period coil set consisting of 48 non-planar modular coils. The
magnetic field strength |B| is approximately constant in a helical direc-
tion on a given flux surface, and the magnetic configuration has the
property of quasihelical symmetry (QHS). The magnetic field spec-
trum on a flux surface is given by

B% = Z €n,m cos(n{ — m0), M

n.m

where m and n are the poloidal and the toroidal mode numbers, 6 and
{ are the poloidal and the toroidal angles, and €, ,, is the mode ampli-
tude for a given mode (n,m). As explained in Sec. I1I, the calculations
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presented here are in Hamada coordinates’’ and the magnetic field
spectrum is also calculated in this coordinate system. The dominant
mode for the QHS configuration is (4,1), as seen in Fig. 1 (left). A
unique property of the QHS configuration is that it has a high effective
transform ¢, = n — m# ~ 3, where + is the nominal transform and
varies from ff.OS at the magnetic axis to 1.12 at the edge. A high effec-
tive transform leads to small drifts of passing particles from a flux sur-
face, small banana widths for trapped particles, low neoclassical
transport, and small plasma currents.””

Surrounding each of the main modular coils is a planar coil that
can be energized in multiple configurations to change the magnetic
field spectrum, raise or lower the rotational transform, and alter the
magnetic well depth. With the auxiliary coils, it is possible to break the
quasihelical symmetry and increase the parallel viscous damping in
that direction. In addition to the QHS configuration, two additional
configurations will be discussed in this paper. The Mirror has a (4,0)
component in the spectrum in addition to the dominant (4,1) mode as
seen in Fig. 1 (middle). A second configuration called F14 has a (4,0)
mode that is smaller than that in Mirror as well as an (8,0) mode as
seen in Fig. 1 (right). The parallel viscous damping, as well as the neo-
classical transport, is higher in the Mirror configuration than in F14.
However, the advantage of the F14 configuration experimentally is
that on-axis ECRH heating and on-axis Thomson scattering measure-
ments can be made, whereas the magnetic axis shifts in the Mirror
configuration.”

Plasmas in HSX are heated with up to two 28 GHz gyrotrons
with a maximum power of 100 kW of electron cyclotron resonance
heating (ECRH). The on-axis magnetic field is 1.0 T. Core electron
temperatures up to 2.5keV have been measured with Thomson scat-
tering at a density of around 4.0 x 10'?cm>."" However, the plasma
parameters shown in Ref. 24 are used for the calculations reported in
this paper. In this case, a methane plasma was used to improve the car-
bon signal so that the CHERS system could measure the C*® ion tem-
perature, as well as the parallel flow and the radial electric field. For
these plasmas, the core electron temperature is around 1.5 keV and the

pubs.aip.org/aip/pop

ion temperature is approximately 60eV with a fairly flat profile.
Consequently, the electrons are in the low-collisionality regime, while
the ions are in the plateau regime.

There is a significant neutral density in HSX plasmas because of
the relatively low electron density. For this reason, we include damping
due to neutrals when solving the momentum balance equations. The
DEGAS” code is used to calculate the atomic and the molecular neu-
tral density in HSX. The output from the DEGAS code is scaled using
measurements from an array of H,, detectors in HSX. The neutral den-
sity profile used in this paper is shown in Fig. 3 of Ref. 9. Damping due
to atomic hydrogen is more important than molecular hydrogen,
which has a much smaller cross section for momentum scattering. The
atomic hydrogen density profile is about 1 x 10'®cm ™ in the core, ris-
ing to about 2 x 10" cm ™ at the edge.

Damping due to neutrals dominates over parallel viscous damp-
ing in the direction of quasisymmetry and in the parallel flow, as
shown in Sec. I11. It has been observed experimentally in the paper by
Gerhardt et al.” that the measured slow damping rate in HSX is faster
than the neoclassical model. In a manner similar to Ref. 5, we calculate
the total damping using the measured profiles but also simulate possi-
ble non-neoclassical damping mechanisms by increasing the neutral
density so that it becomes more like a proxy damping term. Also, in
comparing the results of the momentum balance equations for differ-
ent magnetic configurations, we assume that the plasma parameters
are the same as for the QHS configuration so that any differences are
due to the magnetic topology and not due to the parameters
themselves.

lll. USING LINEAR VISCOSITY TO DEMONSTRATE THE
IMPORTANCE OF PARALLEL FLOW IN HSX

A common assumption for conventional stellarators is that the
parallel flow is either zero or small because of the large viscous damp-
ing on a magnetic surface.'”'**° We will show that the evolution of
the parallel flow V|| in HSX is only weakly damped and dominated by
the slow damping rate in the direction of quasisymmetry throughout
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FIG. 1. The radial dependence of the seven leading terms of the magnetic field spectrum in Hamada coordinates for (left) the QHS configuration, (middle) the mirror configura-
tion, and (right) the F14 configuration.
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the plasma. For this reason, the parallel flow in HSX can be substantial
and cannot be ignored. In contrast, the evolution of the radial electric
field is a function of the radius in the plasma: strongly dominated by
the fast damping rate in the core of the plasma and an increasing con-
tribution of the slow damping rate toward the edge of the plasma.

In this section, we follow the methodology outlined in Ref. 6.
Two features, in particular, allow us to solve the time-dependent
momentum balance equations analytically to gain insight into the
damping of plasma flows in HSX. The first is the use of Hamada coor-
dinates in which the plasma flows and the magnetic field lines are
straight. In this coordinate system, the contravariant components of
the plasma flows and magnetic field, as well as the Jacobian, are con-
stant on a flux surface. The second feature is the use of linear viscosity
by which the viscosity is linearly proportional to the plasma flow. In
the limit of small flows, the nonlinear viscosity model discussed in Sec.
IV agrees with the linear viscosity model. However, when considering
the evolution of plasma flows with the nonlinear viscosity, the equa-
tions have to be solved numerically. The information that we obtain in
this section provides motivation for including the parallel flow in
Shaing’s model of nonlinear viscosity'~ rather than setting it to zero.

The specific Hamada coordinates used in this paper differ slightly
from that in Ref. 6 in that here we use the toroidal flux i as the radial
coordinate, while the poloidal coordinate 6 and the toroidal coordinate
{ vary between 0 and 27, as in Ref. 17. Reference 6 used the volume
enclosed by a flux surface V, as the radial coordinate while the two
angle variables varied between 0 and 1. The result is that here the
Jacobian is equal to (1/47%)dV /dy, while in Ref. 6 it is equal to 1.

The plasma consists of two species only, hydrogen ions and elec-
trons, as well as a population of neutral hydrogen atoms. We neglect
the heat flux and sum the momentum balance equations for the ions
and electrons while ignoring the electron mass and the electron viscos-
ity. The first order time-dependent momentum balance equations in
the parallel and poloidal directions are

B-V; -
miNi% =—(B-V ) — miN;vy,(B- V), (2)
Bp-V; -
miNi% = —(Bp-V -7) — miN; viy(Bp - V)
BB’
- \/EC <]plusma : VI//>, (3)
where m; is the ion mass, N; is the ion density, (-+) is the average over

a magnetic surface, V; is the flow velocity, 7 is the viscosity tensor, v;,
is the ion-neutral collision frequency, Bp = Bley (B’ is the contravar-
iant component of B in the 0 direction, ey is the covariant basis vec-
tor), /g is the Jacobian, Jysm, is the radial current flowing in the
plasma, and  is the toroidal flux. From the radial component of
Ampere’s law, we can relate the plasma current to the change in the
radial electric field and an external current such as a biased electrode

0 do
ot dy

where @ is the plasma potential, 42 is a flux surface constant, and
Jexternal 18 the external radial current Xensﬁy that, in this case, is the cur-
rent density drawn by an electrode at time t = t, and held fixed.

In this section, we use the analytic linear viscosity model for ions
in the plateau regime””** as shown explicitly in Ref. 5 under Egs. (14a)

<le Vlﬁ) =4n [<Iplusma . W> + <]external : Vl//>:|7 (4)
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and (14b) in that paper. Inserting Eq. (4) into Eq. (3), and then com-
bining with Eq. (2), there are two coupled ordinary differential equa-

tions for the variables A and % in the matrix form
dX
A—+BX=C 5
T + ) (5)

where X = { @ ;4] and 4 is a flux surface constant such that V|| = /B

is the flux surface-averaged parallel flow driven by viscosity (as opposed
to the Pfirsch-Schliiter component, which averages to zero over a flux
surface). In this paper, all the calculations are done in cgs units and then
converted to V)| in km/s and E, in kV/m with the following relation-

ships: V) () = 7+ By (g)/10° and B, (&) = — 2.2, /myBy - 3,

where the toroidal flux y = nr?B, and r is the minor radius.

For each magnetic configuration of HSX, the Hamada basis vec-
tors are calculated numerically as outlined in Ref. 17 instead of assum-
ing that the coordinate system is cylindrical or relying on a large aspect
ratio tokamak approximation as described in Ref. 18. Written in
Hamada coordinates and incorporating linear viscosity into the model,
the coefficients A and B are matrices consisting of flux surface con-
stants that do not depend on A or d ® and so do not evolve in time.
However, the term C in Eq. (5) depends on the time evolution of the
external radial current density. We assume that J e =0 prior to
time t = t, and is a constant at t > t.

The solution to Eq. (5), given in Egs. (67a) and (67b) of Ref. 6, is
the sum of two exponentials

do

o _ lslt=to
dm//_kl(l ) + k(1

— =) 4k, (6)

Jo= k(1 — l=0)) 4 (1 — eir(t=10)), (7)

where y,, 7, are the eigenvalues of Eq. (5) above and correspond to the
slow and fast damping rates given by Eq. (60) in Ref. 6. The values of
7, and 75 are both negative. The terms kj, ky, ky and ks are fixed in
time and are dependent on (Joyema - V), the magnetic field spec-
trum, the Hamada basis vectors, the neutral density, and the plasma
parameters. The constant ks is the initial steady-state value of
‘;% — ﬁj—w, where p is the ion pressure, while the initial value for 4
is zero.

From Egs. (6) and (7), it can be determined how much the slow
and fast timescales contribute to the parallel flow and the radial electric
field. Figure 2 on the left shows the time evolution of E, and V)| after
to= 1 ms when a biased electrode at r/a = 0.7 draws current and the
radial current density remains constant for 10 ms. This is for the QHS
configuration. Also shown in the figure are the individual contribu-
tions of the slow and fast timescales to the evolution. The time evolu-
tion of E, has a mixture of slow and fast timescales, while ' evolves
almost entirely by the slow timescale characteristic of damping in the
direction of quasisymmetry. Note that the fast decay rate has a very
small contribution to the parallel flow and is negative, meaning that it
subtracts from the contribution due to the slow timescale. On the right
of the figure, the fractional contribution of the steady-state value of
both the slow and fast timescales is plotted as a function of the normal-
ized minor radius. The radial electric field is strongly dependent on the
fast timescale in the core of the plasma, but the slow timescale domi-
nates beyond the half-radius. In contrast, the parallel flow is strongly
dependent on the slow decay rate throughout the plasma.
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FIG. 2. (left) The radial current density (divided by 10'°) at r/a = 0.7 tumns on at ty = 1 ms. Shown are the contributions of the slow (dashed) and fast (dotted) decay rates [see
Egs. (6) and (7)] to the evolution of E and V.. (right) The steady-state fractional contributions of the slow and fast decay rates to E; and V|| as a function of the normalized minor

radius.

Now that it is established that the parallel flow is almost
completely dominated by the slow decay rate, it can be demonstrated
that the magnitude of the steady-state value can be altered by varying
the magnetic configuration in HSX or by changing the neutral density.
Figure 3 shows the evolution of E, and V| for the standard QHS con-
figuration after a biased electrode is turned on and compared to two
other configurations discussed in Sec. II, the F14 and the Mirror con-
figurations. With the neutral damping held constant, the slow damp-
ing rate is increased for the F14 and Mirror configurations because of
the degradation of the quasihelical symmetry. As a result, a lower
steady-state V)| is achieved in these configurations compared to the
QHS configuration. It can also be seen that the fast damping rate that
dominates the evolution of E, early in time is similar for the three con-
figurations, but because the slow damping rate dominates the evolu-
tion later in time, the steady-state electric field is also affected by the
change in the parallel viscosity in the direction of quasisymmetry.

Figure 4 summarizes in a bar chart the relative values of the slow
and fast damping rates for the three configurations, with and without
neutral damping. For the experimental values of the neutral density in
HSX, the QHS configuration has the smallest slow damping rate, fol-
lowed by the F14 configuration and then the Mirror. The fast damping
rates for QHS and Mirror are comparable and the F14 configuration
slightly less. With neutral damping set to zero, the slow damping rate
in the QHS configuration drops by a factor of 7, while the slow damp-
ing rate in the Mirror configuration changes by only 30%. For the fast
damping rate, because the viscous damping is so high, the relative
decrease in the damping rate is negligible when the neutral damping is
set to zero.

From Egs. (71) and (72) of Ref. 6, the total slow and fast damping
rates are the sum of the jon neutral damping rate v;, and the slow or
the fast viscous damping rates. For the QHS configuration,
Vip = 487 57!, the slow viscous damping rate is only 78 s~! so that the
total slow damping rate is 565 s~. It is apparent that the total damping

in the direction of quasisymmetry is dominated by collisions with neu-
trals, given the current plasma parameters. Thus, the parallel flow is
also strongly dominated by neutral damping. On the other hand, the
evolution of the radial electric field is dominated by the fast damping

0

2 r

20 r|— QHS
— F14
— Mirror

0 2 4 6 8 10
time (msec)

FIG. 3. The evolution of the radial electric field E. and the parallel flow V/ at

rla=0.7 as a function of time after the external radial current density (divided by

10'°) turns on at ty = 1 ms for the magnetic configurations in HSX: the quasihelically

symmetric configuration (red), F14 configuration (green), and the Mirror configura-
tion (black).
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FIG. 4. Comparison of the slow |y,| and fast |y;| damping rates in the QHS, F14, and Mirror configurations of HSX; with (left) and without (right) neutral damping.

rate in the core of the plasma and thus relatively insensitive to the neu-
tral density. However, further toward the edge, the evolution of E, is
increasingly dominated by the slow damping rate and hence is far
more dependent on the neutral density. At this point, we have ignored
anomalous sources of momentum damping such as that due to turbu-
lence which could impact the damping in the direction of quasisym-
metry. This will be discussed briefly in Sec. VII.

In Sec. IV, we will show that when nonlinear viscosity is consid-
ered, the parallel flow can have a strong impact on the ion resonant
electric field. Moreover, in a subsequent section, it will be shown that it
is possible to vary that impact by changing the parallel viscous damp-
ing as well as the neutral damping.

IV. NONLINEAR VISCOSITY AND THE IMPACT OF THE
PARALLEL FLOW ON THE ION RESONANT ELECTRIC
FIELD

Shaing extended his model of nonlinear viscosity as applied to
tokamaks'~ to include the multiplicity of Fourier harmonics that con-
stitute the magnetic field spectrum in conventional stellarators."” This
also extends the linear viscosity model discussed in Sec. I1I to include
large flow velocities and the nonlinearity in the parallel viscosity. For
conventional stellarators, it was shown that there could be a multiplic-
ity of maxima in the viscosity, but for quasisymmetric stellarators,
there is typically just one as in a tokamak. The model is valid in the
plateau-Pfirsch-Schliiter regime so that the drift kinetic equation can
be solved with a Krook collision operator. We will use the Hamada
coordinate system given in Sec. I1I as well as in Ref. 17, rather than the
coordinate system in Ref. 13.

The poloidal and toroidal viscosities are given as

(B, -V -m) = 4vthN,-miBZ {Im,nem,nzm(mve —nV*)

m,n

2 20 ¢
+Lm,n6m‘nm5p(mq nq )}, (8)

(B¢-V-m) :\/TﬁvthN,-miBZ {Imr,,emvy,z(nq)(meO +nVh)

2 .
+Lm,nem,n2(nq)§ (—mq’ + nq*)} ) )

where vy, is the ion thermal speed, €, , is the amplitude of a component
of the magnetic field spectrum as defined in Eq. (1), q is the safety factor,
p is the ion pressure, and V?, V¢ ¢°, ¢ are the contravariant compo-
nents of the flow velocities and heat flux in the 6 and ( directions,
respectively. In terms of the contravariant components of the magnetic
field, the magnetic field vector is B = Bley + Bleg = B, + B;. The
integrals I, , and L, , are defined as

I 1> 1 ! 2 vB!
mn 2 dxa e dy (1 =39*)" — Ry
{Lm,n} n.‘o re {X*5/2} J—l y( y) B .

(10

2 V| . . . .
where x = ¥, y = -1, v is the particle velocity and v is the component
V!h v

of that velocity parallel to the magnetic field.
The nonlinearity in the viscosity and the local maxima are in the
term Ry, , which is defined as

Run = l: o :ly (11)

(mwg — noy)? + V2

where v, is the Krook collision frequency and the terms wy and wy

are defined as
wy = (L B H)Bo + Vg, (12)

v+ 'V ¢
w; = (—” . ”>35+ Vi. (13)

Here, V| is the parallel mass flow velocity and V}{ and V5 are the con-
travariant components of the E x B drift velocity. From Egs. (23a)
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and (23b) from Ref. 6 and keeping the term for the Jacobian (that is,
not setting it to 1 as was done in that paper), the contravariant compo-
nents of the velocity are

c (d0 1 d
VO — v <@ n Wﬁ) 4B, (14)
V& = B, (15)
sothat VI = —£__d® and vt =,

(Ve5) 4

From the resonant term in the denominator of R,,,, an approxi-

mate expression for the ion resonant electric field can be obtained

when mwy — nw; =0 and using Eqgs. (12)-(15), so that for a given
component (n,m) of the magnetic field spectrum

m("n +Vu)Bo+ me d® (Vu +V\|)Bg —o. ()
B VBB dy B '

Given that in the straight-line coordinate system %? =1= %, then

do - 0)*
== q(i) M +Vi)ve (17)

Cw = — m
In Sec. V, the numerical evaluation of B’ and v/ in Eq. (17) will be

used as outlined in Ref. 17. However, to about a 20% accuracy, a large
aspect ratio tokamak approximation, also given in Ref. 17 for the coor-

dinate system wused here, is useful Given that BY =~ %,

o~ RBy /1. .
VE= g—l (4712),% = %, @ %ZBOM', and + = " (this By, which
is not a vector, is the poloidal component of the magnetic field in cylin-
drical coordinates), and R is the major radius of the device, then with

do
Er — 7%

m—n
CEs = q (V) + V) By, (18)
where E, is the ion resonant radial electric field. Using the typical
assumption for conventional stellarators that V| ~ 0 and for v ~
Vi, the expression given by Shaing is recovered that

CEres ., _m—nq
b

M, = (19)

Boven m
where M, is the poloidal Mach number. For a tokamak with m=1,
n=0, the viscosity peaks at a poloidal Mach number of 1, while for
HSX with m=1, n=4 and q ~ 1, the viscosity peaks at a poloidal
Mach number of about 3.

It can be observed from Egs. (17) or (18) that if V|| is on the order
of or greater than the ion thermal velocity, then the ion resonant elec-
tric field E,. will shift appreciably. Typical ion thermal velocities in
HSX are on the order of 60-100 km/s. It has been observed experimen-
tally in HSX that the parallel flow without any momentum input into
the plasma can be as high as 20km/s toward the plasma core and
decreasing toward the edge.”” Figure 5 shows a plot of the poloidal vis-
cosity, given in Eq. (8), for the QHS configuration of HSX at r/a=0.7
as a function of the radial electric field for the case when V) =0 as
well as for V=20 km/s. It is assumed here, as in Sec. 111, that the
heat flux is zero because of the relatively flat ion temperature profile
measured in HSX. For zero parallel flow, E,, occurs at 17.9 and
—18.0kV/m, while for V|| = 20 km/s, E,;=14.7 and —21.2kV/m, a

ARTICLE pubs.aip.org/aip/pop
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FIG. 5. Poloidal viscosity as a function of E; for V;; =0 (blue) and V| =20km/s
(red). Also shown is the contribution of neutral damping (black) to the total poloidal
damping.

change of less than 20%. However, with additional momentum input
into the plasma, such as with a biased electrode, it could be possible to
have a much larger shift in the ion resonant electric field. This will be
discussed in Sec. V. Also shown in the figure, for comparison, is the
neutral contribution to the total poloidal damping. Consistent with the
linear viscosity model, neutral damping has a minimal contribution to
poloidal damping at low E,. However, at an electric field higher than
E.s the poloidal viscosity drops, and neutral damping can be
significant.

V. USING THE STEADY-STATE SOLUTIONS TO THE
MOMENTUM BALANCE EQUATIONS TO FIND THE
RESONANT ELECTRIC FIELD

As discussed in Sec. III, the parallel flow is weakly damped in
HSX, compared to other stellarators, because HSX possesses a quasi-
helically symmetric field. In Sec. IV, it was shown that if the parallel
flow is on the order of or greater than the ion thermal velocity, then
the ion resonant electric field can be shifted. In this section, the cou-
pled steady-state momentum balance equations are solved self-
consistently for the parallel flow and the radial electric field when
driven by an external momentum source such as a biased electrode.
Changing the damping due to neutrals or altering the parallel viscosity
can control the parallel flow and thereby the resonant electric field. In
this section, we also show the existence of multiple solutions to the
momentum balance equations. In Sec. VI, we will demonstrate that
not all of the equilibrium solutions are stable.

The steady-state equations to be solved for Z—:}j and / are obtained
from Egs. (2)-(4) from Sec. IIL. If at time t=t, a biased electrode is
turned on so that (Jexemar - V) is a constant, initially (Jpiasma - Vi)
will start out as zero and over the characteristic damping times of the
plasma will increase so that in steady-state (Jpiagma - V) = —(Jexternal
V). That is, a return current inside the plasma builds up until it
equals the external current and through Eq. (4), the radial electric field
stops changing. The two steady-state equations to be solved are

(B-V-7t) + mN;viy(B-V;) =0, (20)
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a BB’
<BP -V 'ﬁ> + miNi Vin<BP . Vz) - \/gc <Iexternal . V¢>7 (21)

where the viscosity terms are given in Egs. (8) and (9) and noting that
B=B,+ B,

A vector A can be written in terms of the covariant and contra-
variant basis vectors, respectively, as A = A‘l’e.,, + Aley + Ageg
= Ay Vi + AgVO + AV{, where B/ =B -Vy=V/=0 and
e;- Vil = 5. Thus, (B- V) = (Bp)V’ + (B;)V* and V’ and V* can
be taken outside of the flux-surface average denoted by the brackets
since they are already constants on a surface in Hamada coordinates.
However, from Ref. 17, (By) is proportional to the toroidal current
within a flux surface, and for this paper, the plasma is assumed to be
current-free. The term (B;) can then be written in terms of the contra-
variant components of the magnetic field (B;) = (B-e)
= B(’<e(; er) + B:<e; -¢€¢). In a similar manner, (Bp - V) = B (V)
= B! V9<e9 “ey) + BY V§<eg - eg). The two expressions for neutral
damping in Egs. (20) and (21) are therefore

miN; vin(B - Vi) = miN; viy (B" V(e - eg) + BV (e -e;)), (22a)
M;N; Vin(Bp - Vi) = m;N; vy, (B" V(eo - eg) +B"V*(ey - e), (22b)

where the contravariant components of the flow velocity are from Egs.
(14) and (15).

The viscosity and neutral damping terms, shown in Fig. 5 and
corresponding to the individual terms on the left side of Eq. (21), are
summed and plotted in Fig. 6. In steady-state, this is equal to the right-

hand side of Eq. (21), ‘/glfBU (Jexternal - V). For a fixed value of the
external current density, illustrated by the horizontal lines in the figure,
multiple solutions to Eq. (21) may exist. Both Egs. (20) and (21) are

needed to solve for a particular solution in terms of % and 4, but in

general, there are three categories of solutions. The solution that

40

N
o

)
S

Total Poloidal Damping
o

1

40

IN
o

E, (kv/m)

FIG. 6. The sum of the poloidal viscous and neutral damping as a function of the
radial electric field with V; = 0. In between the dashed lines, there is only one solu-
tion to Eq. (21). Between the dashed and dotted lines, there are two solutions. At
the resonant electric field, which corresponds to the maximum in viscosity, there is
only one solution. A third solution can also exist and is discussed in the following
section.
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corresponds to an increase in the viscosity is defined as solution 1. The
solution that occurs in the region of decreasing viscosity is solution 2.
Finally, there may be another solution that occurs far past the peak in

viscosity when the total damping is once again increasing with respect
to the radial electric field. This is the case with neutral damping or pos-

sibly other mechanisms in which the damping increases with the elec-
tric field. This is defined as solution 3. For the purpose of this section,
we are interested in finding the resonant electric field, which coincides
with the viscosity maximum. This is the intersection of solutions 1 and
2.1In Sec. V1, we will consider solution 3 in more detail.

From Egs. (20) and (21), E, and V| are calculated as a function of
the external surface averaged radial current density (Joverma - V).
This is plotted in Fig. 7 for the parallel viscosity appropriate to the
QHS configuration and with neutral damping consistent with the
experimental measurements. As the external current density increases,
the parallel flow increases as does the radial electric field until the point
where there is only one solution, which corresponds to the resonant
electric field at the viscosity maximum. At this point, V) is —167 km/s
for a negative current density and 150km/s when the current density
is positive. For these values of the parallel flow, the resonant electric
field corresponds to E,.=44.8 and —42.1kV/m. This is over a factor
of 2 greater than the value with zero parallel flow, which is about
+18kV/m from Fig. 5. The validity of very high parallel flows in this
case is discussed more in Sec. VII.

From Eq. (17), it can be seen that the resonant electric field
depends on the parallel flow, and from Fig. 3, it can be observed that
increasing the damping of the parallel flow with viscosity can decrease
the steady-state parallel flow. Therefore, one would expect that in the
Mirror configuration, in which the quasihelical symmetry is degraded,
the resonant electric field might be lower than it is for the QHS config-
uration of Fig. 7. Figure 8 shows E, and V| as a function of the external
radial current density using the same scale as Fig. 7 for comparison. At
the viscosity maxima, V|| = —75.6 and 71.2km/s and E,e=25.9 and

40} ‘ ' | | ! ]

— Solution1
— Solution2

-1 0 -1
<J -VU>
ext

FIG. 7. E; (top) and V|, (bottom) as a function of the radial current density
(Jexternal - V) (divided by 10"") for the QHS configuration and with the experimen-
tal neutral density. Shown are solutions 1 (red), which are in the region before the
peak in viscosity, and solutions 2 (blue), which are in the region where the viscosity
is decreasing. The resonant electric fields are determined from the intersection of
the 2 solutions and correspond to the extrema of the radial current density.
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FIG. 8. E; (top) and V|, (bottom) as a function of the radial current density
externat - V) (divided by 10™) for the Mirror configuration and with the experi-
mental neutral density. Shown are solutions 1 (red), which are in the region before
the peak in viscosity, and solutions 2 (blue), which are in the region where the vis-
cosity is decreasing.

—25.5kV/m, respectively. Note that for the Mirror configuration, the
steady-state parallel flow at the resonant electric field is about half that
in the QHS configuration and the resonant electric field drops by
about 40%. As discussed in Sec. II, Mirror has an n =4, m = 0 term in
the magnetic field spectrum in addition to the main n=4, m =1 qua-
sihelical term. However, this additional term does not lead to an addi-
tional peak in the poloidal viscosity because of the m =0 symmetry.
Hence, the single peak observed in the Mirror configuration is still due
to the n =4, m =1 term. If one were to ignore the parallel flow, then it
would be expected that the QHS and Mirror configurations would
have the same resonant electric field as given in Eq. (19). These results
indicate that the two configurations would have very different resonant
electric fields because the damping of the parallel flow is different for
the two configurations.

From the discussion regarding Fig. 4, the damping of the parallel
flow in the QHS configuration is dominated by damping due to neu-
trals since the viscous damping is so small. Hence, another method of
increasing the damping of the parallel flow is to increase the neutral
density. Figure 9 shows E, and V)| as a function of the external radial
current density for the QHS configuration but with ten times the neu-
tral density that is observed experimentally. At the viscosity maxima,
V||=—16.5 and 14.7 km/s, while E,;=21.1 and —21.5, respectively.
Because of the very large neutral damping, the steady-state parallel
flow is down by a factor of about 10 compared to Fig. 7 and the resul-
tant resonant electric field is getting close to the V=0 value of
*18kV/m.

Figure 10 shows a plot of the resonant electric field E,., as a func-
tion of the parallel flow V|| for multiple magnetic configurations and
different neutral densities. Shown at V| =0 is the reference case for
HSX when the parallel flow is ignored; E, = = 18kV/m. For the
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FIG. 9. E, (top) and V), (bottom) as a function of the radial current density
Jexternar - V) (divided by 10”) for the QHS configuration but with 10 times the
experimental neutral density. Shown are solutions 1 (red), which are in the region
before the peak in viscosity, and solutions 2 (blue), which are in the region where
the viscosity is decreasing.

experimental neutral density, the steady-state parallel flow is large and
E,es increases. For the same neutral density, changing the magnetic
configuration to the Mirror lowers the parallel flow and the resonant
electric field. As expected from Fig. 3, the F14 configuration has a
steady-state parallel flow and E,., intermediate to the QHS and Mirror
configurations. Increasing the neutral density by a factor of 10 in the
QHS configuration brings the resonant electric field almost back to the

® Mirror, 1x Neutrals
QHS, .4x Neutrals
QHS, 10x Neutrals

® QHS, 1x Neutrals

— Equation 17
--- Linear Fit
W Mirror, No Neutrals
g ® F14, 1x Neutral
S B QHS, 1x Neutral, V”:O
< ot .
(%]
o
w- -20
-40 1
-60
-80

I I L L L L

-100 : ] ‘
-500 -400 -300 -200 -100 O 100 200 300 400
V, (km/s)

FIG. 10. The resonant electric field as a function of the parallel velocity at the reso-
nance for different magnetic configurations and neutral densities. The QHS configu-
ration is shown in black, Mirror in green, and F14 configuration in brown. Circles
represent the experimental neutral density, other shapes represent different neutral
densities. Also plotted are a linear regression of the HSX cases (blue dotted line)
and the analytical solution for the resonant electric field as a function of the parallel
flow, Eq. (17) (red).
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V|| =0 case. The analytic expression given in Eq. (17) is shown to be a
good fit to the numerical data.

VI. THE STABILITY OF EQUILIBRIUM SOLUTIONS AND
HYSTERESIS IN THE PLASMA FLOW

In Sec. V, it was observed that there could be at least two steady-
state solutions to the momentum balance equations. For neutral densi-
ties that correspond to the experimental value, there is a third solution
that exists at electric fields far beyond the peak in the poloidal viscosity.
In this section, we consider the case that the third solution is close to
the other two solutions and analyze the stability of all three solutions
as well as transitions between the solutions. The focus in this section is
when the neutral density is ten times the experimental values as dis-
cussed with regard to Fig. 9. The motivation for this particular value of
the neutral density is that it corresponds roughly to an “ad hoc” adjust-
ment of the slow damping rate in earlier experiments to bring the
experimental data in line with the model discussed in Sec. I11.” This is
discussed further in Sec. VII.

Figure 11 shows E, and V|| as a function of the radial current den-
sity, (Jexternat - V), with the two solution spaces denoted by the colors
red and blue as before, depending on whether the electric field is lower
or higher than the resonant electric field. A third solution space, shown
in green, is in the region where the total poloidal damping is again
increasing with E,. For this section, we are focusing only on the posi-
tive current density. One interesting aspect of the figure is that in the
third solution space, the radial electric field is steadily increasing, while
the parallel flow is decreasing to zero. Drawing on the physical model
discussed in Shaing and Callen,” the radial electric field drives an E x
B flow that is perpendicular to the field line. Parallel viscosity then
drives a parallel flow so that the net flow is in the direction of minimal
gradient in [B|. For HSX, this is in the direction of quasihelical

0 :
— 20" ’ |
£
?5 -40 '
W 60t

— Solution 1 E

% 15[ |— solution 2 ;
E — Solution 3 E
= 10+
>= 5 L 2

O ‘ \‘—. 4

0 0.5 1 1.5
<J VU>
ext

FIG. 11. E; (top) and V (bottom) as a function of the radial current density
U externat - V) (divided by 10™) for the QHS configuration but with 10 times the
experimental neutral density. Shown are solutions 1 (red) in the region before the
peak in viscosity, solutions 2 (blue) in the region where the viscosity is decreasing,
and solutions 3 (green) in the region where the poloidal damping is once again
increasing due to neutral damping.

pubs.aip.org/aip/pop

symmetry. As the parallel viscosity becomes negligible at high values of
E,, the parallel flow also becomes negligible.

Also shown in Fig. 11 are three specific steady-state solutions to
the coupled momentum balance equations that correspond to a value
of (Jexternal - V) = 8.0 x 10, The three solutions corresponding
respectively to the red, blue, and green regions are E, = —14.7kV/m
V=92 km/s, E, = —27.4kV/m V=42 km/s, and E, = —37.7kV/m
V| =0.2 km/s. The same color coding will be used later in this section
when analyzing the stability of these solutions.

To analyze the stability of the three solutions, the expression for
(Jplasma - V) in Eq. (4) is substituted into Eq. (3) while keeping the
time derivatives on the left-hand side of the equation

d(Bp- Vi) /gB'B' 90’
miN; ot 4mc Ot (Vi)
- B°B’
= 7<BP ° v 'ﬁ> - miNi Vin<BP : Vi> +\/§f Iexternal ’ vl,b,
(23)
where @ = j—$. Since B, = Bley,
OBp-V) ave ove
o = B’{ey - e9) o + B (ep - e) En (24)
and from Egs. (14) and (15),
J(Bp - V,' Cc 8CD/
% = B()<e() . e()> -
t N
+ 0% [ g0 g, + B"B* (ep - (25)
o (eo - eo) (€0 - eg)|-
However, for the term in the square brackets on the right,
(e - eg)B” + (eq - ef)B* = (By). (26)

As before, (By) for a currentless stellarator is zero, so the term multi-
plying 2 vanishes and Eq. (23) can then be written as

ov
ot

mNic(B%) \/gB'B’
VEBB 4mc

(Vi - V)

- B°B’
= _<BP -V ﬁ) - miNi Vin <BP : Vt> + \/gf ]external : Vlr//
(27)
Similarly, Eq. (2) can be written as

[m;N;(B?)] % =—(B-V-7t) —mN;vi(B- V).  (28)

A qualitative assessment of the stability properties of the steady-
state solutions (or fixed points) of the momentum balance equations
can be provided by plotting the phase portrait™ consisting of the vec-
tor field of points that correspond to aait” and %
on a two-dimensional grid and then converted to the E,, V)| plane.
This is shown in Fig. 12. The red, blue, and green points correspond to
the steady-state solutions shown in Fig. 11. The arrows surrounding
the red and green points point to the steady-state solution, indicating

stability. However, for the second solution in blue, the vectors point

at each point, @' and A
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FIG. 12. A vector plot of the radial electric field and the parallel flow for a given
radial current density. The magnitudes of the vectors correspond to the time deriva-
tives. Locations for the steady-state solutions 1, 2, and 3 are marked with red, blue,
and green dots, respectively.

toward the solution vertically but away from the solution horizontally.
This implies that the second solution is unstable.

A quantitative analysis of the stability of fixed points of the
momentum balance equations is provided by calculating the eigenval-
ues and eigenvectors of the nonlinear system.”" Stability is assessed by
considering whether a small perturbation from the equilibrium point
grows or decays in time. Considering perturbations around the equilib-
rium points A* and @',

At) = A+ AAL), (29a)
() = D" + AD' (1), (29b)

and expanding in a Taylor series about the fixed point, then

dlp  OJp
d {Ai] _|oi o Al 30)
de [ A ] oy oy AD |

L 0V | g

where the higher order terms in the series have been neglected. /p and
Jj| are the right-hand sides of the poloidal and the parallel momentum
balance Egs. (27) and (28) divided by the coefficients multiplying aa_q:’
and %, respectively. The 2 x 2 matrix in Eq. (30) is the Jacobian J eval-
uated at each of the fixed points, 2* and @, The solution to the equa-
tion above is in the form e’'v, where J«v = yv, y is the eigenvalue and
v is the eigenvector. The eigenvalues are solved by calculating the
determinant, det(J« — yI) =0, where I is the identity matrix. A positive
eigenvalue is an exponential growth away from the fixed point, indicat-
ing instability, while a negative eigenvalue is a decay back to the fixed
point, indicating stability. Given the eigenvalues, the eigenfunctions v
can then be constructed.

The calculated eigenvalues for the three solutions shown in
Fig. 12 are given in Table I. All the eigenvalues are real, and the
eigenvalues for solutions 1 and 3 are both negative, demonstrating
that they are both stable solutions to the momentum balance equa-
tions. However, solution 2 has one negative eigenvalue and one pos-
itive eigenvalue, which makes that fixed point an unstable saddle
point.
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TABLE 1. Calculated eigenvalues for the three solutions that are the fixed points of
the momentum balance equations.

Solution 1 2 3
Y1 —4890 —4890 —4890
V2 —30200 +10000 —4390

Figure 13 shows the eigenvectors for the three fixed points shown
in Fig. 12. Eigenvectors that correspond to stable eigenvalues are
shown by green dashed lines; eigenvectors that correspond to an unsta-
ble eigenvalue are represented by a red dashed line. The steady-state
solutions to the momentum balance equations are the red, blue, and
dark green points for the top, middle, and bottom figures, respectively.
The eigenvector arrows that point toward the fixed points show stabil-
ity, and the arrows for the one unstable eigenvector point away from
the fixed point. The black solid lines are the solutions to the time-
dependent equations given in (27) and (28) with initial conditions that
correspond to points on the boundary. The arrows show the direction
of the solution toward or away from the fixed points.

As with other figures, the eigenvectors and time-dependent equa-
tions are first solved in @ and 4 space and then converted to E, and
V). For the first fixed point, shown on the top of Fig. 13, all of the tra-
jectories fall back to the stable equilibrium point shown in red. Note
that from Table I, solution 1 has two eigenvalues with || > |7,|. The
larger amplitude eigenvalue y, corresponds to the eigenvector with a
positive slope, while the smaller eigenvalue corresponds to the eigen-
vector with a negative slope. Since the general solution is of the form
'y, for positive time t> 0, the larger negative eigenvalue dies off
quickly and the trajectories approach the fixed point parallel to the
eigenvector with the smaller eigenvalue. Similarly for time t <0, the
trajectories move away from the fixed point parallel to the eigenvector
with the larger eigenvalue.

The eigenvectors and trajectories for solution 2, which is an
unstable saddle point, are shown in the middle of Fig. 13. The eigen-
vector corresponding to the positive eigenvalue is shown in red. For
this case, all the trajectories diverge away from the fixed point parallel
to the unstable eigenvector for time t > 0. Similarly, for time t < 0, the
trajectories become parallel to the stable eigenvector. Note that the
eigenvectors agree with the vector plot of Fig. 12: the trajectory is
toward the fixed point roughly parallel to the V) axis and away from
the fixed point roughly parallel to the E, axis. The last fixed point, solu-
tion 3, has two eigenvalues of roughly the same magnitude. This is the
case where the viscous damping is negligible and only damping due to
neutrals exists. When two eigenvalues are equal, then any vector on
the plane can be composed of the sum of the two eigenvectors and in
turn can be shown to be an eigenvector with that same eigenvalue.”' In
that case, all trajectories are straight lines, and the fixed point is known
as a star node. For solution 3, the eigenvalues are not exactly equal and
close to the fixed point it can be seen that the trajectories bend toward
the eigenvector with the smaller eigenvalue (the green dashed line with
a positive slope).

By examining the Jacobian in Eq. (30), the physical mechanism
behind the unstable equilibrium point for solution 2 can be under-
stood. The unstable eigenvalue occurs when the term % becomes pos-
itive, where J, is the right-hand side of Eq. (27) divided by the
coefficient multiplying %% Alternatively, since E, ~ —@', the unstable
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FIG. 13. Eigenvectors (dashed line) and trajectories (black solid line) of the time-
dependent momentum balance equations near the three solutions (top corresponds
to first or red solution, middle is the second or blue solution, and bottom is the third
or dark green solution) shown in Fig. 11. Eigenvectors in green correspond to nega-
tive eigenvalues and denote stability, while eigenvectors in red correspond to posi-
tive eigenvalues and denote instability.

eigenvalue occurs when the derivative of ], with the respect to the
radial electric field is negative. Figure 14 shows a plot of J, vs E, for a
fixed value of A that corresponds to the second solution shown by the
blue point. The first and the third solutions, shown by the green and
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FIG. 14. J, vs the radial electric field E; for a fixed value of A that corresponds to
the blue unstable equilibrium point. J, is the right-hand side of Eq. (26), the poloidal
momentum balance equation, divided by the coefficient multiplying %‘;'. The loca-
tions of the two stable green and red points are approximate because they have dif-
ferent A values.

red points, respectively, are in approximate locations because they
have different /1 values as seen in Figs. 11 and 12.

The two stable red and green points are in regions where
j—g > 0. From Eq. (27), ], is proportional to the drive term
Jexternat - Vi, which in this case is a constant, minus the two damping
terms due to viscosity and ion-neutral friction. A small perturbation
of either of the two stable points to the right, to less negative E,, low-
ers the damping and increases the value of J,. That in turn increases
the net drive on the system and pushes the electric field to a larger
negative value back to the fixed point. Alternatively, a small perturba-
tion to the left, to higher negative E,, increases the damping and low-
ers the net drive. That pushes the electric field to a lower negative
value back to the fixed point. For the unstable point in blue, the oppo-
site happens. A perturbation to the right, to decreasing negative E,,
increases the damping (see Fig. 6, for example, to the left of the maxi-
mum in viscosity for negative electric fields) and forces J, to decrease.
That lowers the net drive so that E, is forced to an even smaller nega-
tive value. The system won'’t find another equilibrium until it con-
verges onto the red point. Similarly, a perturbation to the left, to
increasing negative E,, lowers the damping and forces J, to increase.
This in turn increases the net drive forcing the electric field to even
larger negative values. In this case, the system won’t find another
equilibrium point until it converges onto the green point. From this
discussion, it can be concluded that the condition for instability %"r <
0 occurs when the derivative of the total poloidal damping with
respect to the electric field is positive.

The previous analysis was done with a fixed value of the current
density. To examine how Egs. (27) and (28) transition between solu-
tions, it is worthwhile to consider the case when the external current
density is time dependent. The waveform is a simple triangle wave so
that the radial current density Jyema - VY linearly increases with time
to a maximum of 1.4 x 10" and then linearly decreases back to zero.
The maximum current density is chosen specifically so that the only
solution is in solution 3.
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The evolution in time of E, and V|| is shown in Fig. 15. Also in
the figure are the same steady-state solutions that are shown in Fig. 11.
As the radial current density increases, both quantities increase and
follow the same curves as solution 1 so that the solutions are always
stable. Once the radial current density increases past the point where
solution 1 ends, there is a jump to solution 3. During this fast transi-
tion, there is a jump in the radial electric field from —20kV/m to
greater than —60kV/m, similar to what may be observed during an
L-H transition. During this fast transition, the radial current density is
roughly constant, and the parallel flow abruptly drops from 15 km/s to
zero. After the radial current density reaches the maximum value of
1.4 x 10", the peak of the triangle waveform, it decreases while the
evolution of E, and V) continues on solution 3. Below a value of
0.72 x 10, the radial electric field and the parallel flow take another
jump back to solution 1. Again, during this fast transition, the radial
current density is roughly constant while E, drops from —30 to
—13kV/m and V|| jumps from near zero up to 7 km/s. As the radial
current density continues to decrease, both continue along solution 1
back to the initial values. Throughout the ramp-up and ramp-down of
the radial current density, the solutions never evolve on the path of
solution 2, which is unstable. Note that for the hysteresis shown in the
plasma flow, the radial current density for the transition from solution
1 to solution 3 is at a higher value than for the back transition from
solution 3 to solution 1.

Vil. SUMMARY AND DISCUSSION

In this paper, we highlight the role of the parallel flow in deter-
mining the resonant electric field in HSX as well as the influence of V|
on the equilibrium and stability of the momentum balance equations.
The essential role of the parallel flow is a result of the quasihelical sym-
metry of the magnetic field, which has minimal parallel viscous damp-
ing in the direction of quasisymmetry. The time-dependent
momentum balance equations in Hamada coordinates with linear
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viscosity and neutral damping allow for an analytic solution that sepa-
rates the flow into slow and fast damping times. The evolution of the
parallel flow is strongly dominated by the slow damping rate charac-
teristic of the damping in the direction of quasisymmetry. The radial
electric field evolution is dominated by the fast damping time at the
plasma core and an increasing contribution of the slow damping rate
toward the plasma edge. For the QHS configuration, the contribution
of viscosity to the slow rate is so small that neutral damping dominates
across the plasma radius. For the Mirror and F14 configurations, neu-
tral damping does not have quite as much influence on the slow rate as
in the QHS configuration. Neutral damping has little impact on the
fast damping time for all configurations.

Based on Shaing’s model of nonlinear viscosity, an analytic
expression is obtained that relates the parallel flow to the ion resonant
electric field E,. This expression indicates that parallel flows on the
order of or greater than the ion thermal velocity can have a significant
impact on E,... While multiple tokamaks and stellarators have dem-
onstrated experimentally that E, is determined by the leading terms
in the Fourier spectrum of the magnetic field, to date, there has been
no experimental data that shows how E,.; depends on the parallel
flow. From the steady-state momentum balance equations, E,., for
the QHS configuration is shown to be over a factor of 2 greater than
the value when V| = 0. Increasing the viscous damping in the direc-
tion of the quasisymmetry (and thereby degrading that symmetry),
such as occurs in the Mirror configuration, lowers the parallel flow
and in turn lowers the ion resonant electric field. Similarly, increasing
the neutral damping also reduces V|| and E . A plot of E, as a func-
tion of V|| for three magnetic configurations in HSX and different lev-
els of neutral damping shows good agreement with the analytic
expression. The results suggest the possibility of measuring different
resonant electric fields for different configurations in HSX, even
though they share the same large (n,m) = (4,1) mode in the magnetic
field spectrum, because the additional m =0 terms in the spectrum
for the Mirror and F14 configurations do not alter the poloidal
viscosity.

The only damping mechanisms considered in this paper are par-
allel viscosity and ion-neutral damping. When the damping is small,
the parallel flow can be much larger than the ion thermal velocity. At
large flow speeds, the convective term V - VV in the momentum bal-
ance equations may need to be considered; it has not been included in
this work. The possibility of shock fronts occurring in the plasma has
also not been considered. Alternatively, there may be damping mecha-
nisms other than the two considered here, such as turbulent Reynolds
stress’"” or perpendicular viscosity’**” that may limit the flow in the
QHS configuration of HSX. Indeed, experiments at B=0.5 T indicated
that the measured slow decay rate and the radial conductivity were
roughly an order of magnitude higher than the model calculations.’
Artificially increasing the neutral density by an order of magnitude
brought the measurements and modeling into better agreement. This
result suggests that there may be sources of anomalous flow damping
in HSX.

The stability of three steady-state solutions to the momentum
balance equations at a fixed radial current density is analyzed for the
QHS configuration with ten times the experimental neutral density.
This increased neutral density serves as an “ad hoc” model for the
enhanced flow damping that may exist in HSX. A phase portrait is
generated by plotting on a two-dimensional E,, V| grid the time
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derivatives of those quantities as a vector field. The portrait indicates
that the first and the third solutions are stable, but that the second
solution appears to be unstable. A quantitative analysis is performed
based on the Jacobian of the time-dependent equations. Two nega-
tive eigenvalues are found for the first and the third of the three solu-
tions, indicating that they are in fact stable. The second solution has
one negative and one positive eigenvalue, indicating that it is an
unstable saddle point. The eigenvectors of the Jacobian yield insight
into how the time-dependent equations move toward or away from
the fixed point. Finally, examining the components of the Jacobian
gives insight into the physical mechanism of how an equilibrium
solution can be unstable. An unstable solution exists when the deriv-
ative of the total poloidal damping with respect to the radial electric
field is positive.

A hysteresis in both E, and V| occurs when the radial current
density is linearly increased to a maximum and then decreased back to
zero. Jumps in the radial electric field and parallel flow are observed as
the radial current density drives the evolution from one stable point to
the next. The transition from solution 1 to solution 3 is at a higher
value for the radial current density than for the back transition from
solution 3 to solution 1. This is similar to the data obtained on the TU-
Heliac shown in Fig. 7(a) of Ref. 19.

Finally, it should be noted that neoclassical codes such as PENTA
do not consider the effect of the parallel flow on the ion resonant elec-
tric field. An example can be seen in Fig. 3.12 in Ref. 36, where V)| is
calculated as a function of E, for similar parameters in HSX as
assumed here. Parallel flows as high as 150 km/s can be seen in that fig-
ure, much higher than the ion thermal velocity. Yet, the location of the
ion resonant electric field is based solely on the magnetic field spec-
trum. Using the ambipolarity constraint to solve for E,, the parallel
flow as a function of r/a is shown in Ref. 11, where V) above the ion
thermal velocity can be seen for ion root plasmas. Experimental evi-
dence that the ion resonant electric field is dependent on the parallel
flow might lead to a reconsideration of how the parallel flows and
ambipolar electric fields are calculated in codes such as PENTA.
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