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Kinetic-ballooning-mode (KBM) turbulence is studied via gyrokinetic flux-tube
simulations in three magnetic equilibria that exhibit small average magnetic shear: the
Helically Symmetric eXperiment (HSX), the helical-axis Heliotron-J and a circular
tokamak geometry. For HSX, the onset of KBM being the dominant instability at low
wavenumber occurs at a critical value of normalized plasma pressure βKBM

crit that is an
order of magnitude smaller than the magnetohydrodynamic (MHD) ballooning limit βMHD

crit
when a strong ion temperature gradient (ITG) is present. However, βKBM

crit increases and
approaches the MHD ballooning limit as the ITG tends to zero. For these configurations,
βKBM

crit also increases as the magnitude of the average magnetic shear increases, regardless
of the sign of the normalized magnetic shear. Simulations of Heliotron-J and a circular
axisymmetric geometry display behaviour similar to HSX with respect to βKBM

crit . Despite
large KBM growth rates at long wavelengths in HSX, saturation of KBM turbulence
with β > βKBM

crit is achievable in HSX and results in lower heat transport relative to the
electrostatic limit by a factor of roughly five. Nonlinear simulations also show that KBM
transport dominates the dynamics when KBMs are destabilized linearly, even if KBM
growth rates are subdominant to ITG growth rates.
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1. Introduction

The stellarator as a fusion reactor concept is qualitatively different from the tokamak
due to the inherently three-dimensional nature of the magnetic field. This added flexibility
allows the stellarator approach to circumvent the need for toroidal plasma current
to provide the confining poloidal magnetic field, meaning stellarators are less prone
to potentially destructive plasma-current-driven instabilities (Gates et al. 2018). One
consequence of this improved magnetohydrodynamic (MHD) behaviour is the potential

† Email address for correspondence: imckinney@wisc.edu

https://doi.org/10.1017/S0022377821000581 Published online by Cambridge University Press

https://orcid.org/0000-0001-6213-7238
https://orcid.org/0000-0003-4934-400X
mailto:imckinney@wisc.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0022377821000581&domain=pdf
https://doi.org/10.1017/S0022377821000581


2 I.J. McKinney and others

for robust high-β operation, where β = 8πp/B2
0 is the normalized plasma pressure, p

is the electron pressure and B0 is the magnetic field strength, without the danger of
current-driven instabilities. Even in the absence of large-scale MHD instability, the system
may exhibit small-scale kinetic ballooning modes (KBMs), which could conceivably drive
large energy and particle fluxes and thus be problematic for high-β operation of stellarators
(Ishizawa et al. 2013; Aleynikova & Zocco 2017; Aleynikova et al. 2018). The purpose
of this work is to expand on previous analyses of KBM instability and turbulence by
probing the properties of these modes in stellarator equilibria with low average magnetic
shear ŝ = −(r/ ι−) d ι− /dr, where ι− is the rotational transform and r is a radial coordinate
labelling flux surfaces. Low average magnetic shear ŝ is a notable design feature of some
classes of neoclassical-transport-optimized stellarators such as the Helically Symmetric
eXperiment (HSX). A deeper understanding of KBM saturation in such configurations
will aid in the optimization of low-ŝ equilibria with respect to finite-β turbulent transport.

Neoclassical transport governs confinement in the classical stellarator. However, this
issue can be quelled by ensuring that bounce-averaged particle excursions from a given
flux surface during a banana orbit nearly vanish (Boozer 1983; Mynick 2006). There
are a number of ways to reduce stellarator neoclassical transport to tokamak-like levels,
such as quasi-symmetry (Nührenberg & Zille 1988; Rodríguez, Helander & Bhattacharjee
2020) or quasi-isodynamicity (Palumbo 1968; Mikhailov et al. 2002), both of which
are subsets of quasi-omnigeneity (Hall & McNamara 1975; Yu Isaev et al. 2003).
Magnetic configurations with sufficiently minimized neoclassical cross-field diffusion are
dominated by anomalous transport (Canik et al. 2007; Hirsch et al. 2008; Wolf et al. 2019).
Drift-wave turbulence is a primary candidate to explain anomalous transport in these
configurations. Drift waves exist in a variety of types such as ion-temperature-gradient
(ITG) modes (Rudakov & Sagdeev 1961; Horton, Choi & Tang 1981; Xanthopoulos
& Jenko 2007; Mynick, Pomphrey & Xanthopoulos 2010; Xanthopoulos et al. 2014;
McKinney et al. 2019), trapped-electron modes (Coppi 1965; Coppi, Rosenbluth &
Sadgeev 1967; Kadomtsev & Pogutse 1971; Faber et al. 2015) or KBMs (Connor, Hastie
& Taylor 1978; Tang 1978; Strauss 1979; Antonsen & Lane 1980; Kotschenreuther 1986;
Pueschel, Kammerer & Jenko 2008; Pueschel & Jenko 2010; Aleynikova et al. 2018).

The KBMs are electromagnetic modes, as they require fluctuations in the magnetic field.
Typically, the onset of KBM-driven turbulent transport is associated with breaching the
ideal MHD ballooning stability boundary (Snyder 1999; Snyder et al. 1999; Pueschel
et al. 2008; Pueschel & Jenko 2010). It has been shown that ion magnetic drifts can
introduce an additional physical effect not present in simple MHD modelling in the
small-perpendicular-wavelength limit (Kotschenreuther 1986; Aleynikova & Zocco 2017).
Specifically, coupling between a KBM and thermal ions provides additional free energy to
the mode. This resonant effect arises from non-adiabatic contributions to the ion density
fluctuations in a kinetic treatment of the governing equations (Hirose, Zhang & Elia 1995;
Hirose & Elia 1996). This effect can be qualitatively captured in a two-fluid treatment of
the system, suggesting that the mode is of a reactive type since the kinetic treatment is
unnecessary for qualitative purposes (Hirose & Elia 1996).

In the present work, the focus lies on the βKBM
crit value at which the KBM becomes

the most unstable microinstability; for a discussion of different threshold definitions, see
Pueschel et al. (2008). An analysis of various Wendelstein 7-X equilibria (Aleynikova
et al. 2018), an optimized quasi-omnigenous stellarator, with respect to KBMs suggests
both that, for sufficiently large β, peak KBM growth rates occur as ky → 0 for a number
of physically relevant parameter regimes and that the critical β at which KBMs become
unstable is of the order of βKBM

crit ≈ 1 %, depending on the specific equilibrium. It is
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also shown in the same analysis that, in low-average-magnetic-shear Wendelstein 7-X
configurations, KBMs can be destabilized before the ideal MHD limit βMHD

crit . As will
be shown here, this KBM threshold can be much lower than the MHD threshold βMHD

crit ,
with βKBM

crit ≈ 0.2 % in the HSX (a quasi-helically symmetric stellarator) over a range of
wavelengths, raising the possibility that such configurations exhibit poor KBM turbulence
and confinement properties. However, it is shown here that the saturated nonlinear heat
flux is greatly reduced relative to the electrostatic ITG case when β > βKBM

crit . This implies
that expectations based on linearly calculated βKBM

crit values, e.g. that nonlinear heat fluxes
tend to increase for β > βKBM

crit , do not accurately account for critical nonlinear dynamics.
With the goal of developing a better understanding of the relationship between the

magnetic geometry and βKBM
crit , the gyrokinetic turbulence code GENE is used here to

perform electromagnetic nonlinear gyrokinetic local flux-tube simulations (Jenko 2000)
(see http://www.genecode.org for code details and access). This paper is organized
as follows. Section 2 introduces both the simulation framework for the present work
and details regarding the three magnetic geometries. In § 3, linear and nonlinear
electromagnetic simulations of KBMs and analyses thereof are presented. Section 4 shows
the scaling of βKBM

crit with the average magnetic shear and the normalized ITG and the
similarities in linear KBM results between HSX, Heliotron-J and a circular tokamak.
Lastly, conclusions are given in § 5.

2. Simulation approach and magnetic geometries

The gyrokinetic code GENE (Jenko 2000) is used in this work to investigate KBM
and ITG turbulence via flux-tube simulations of low-average-magnetic-shear equilibria,
namely HSX, the helical-axis Heliotron-J (H-J) (Obiki et al. 2000) and a circular tokamak
geometry. GENE solves a system of coupled equations that consists of the Vlasov
equation, the Poisson equation and Ampère’s law while taking advantage of the increased
computational efficiency provided by gyro-averaging the orbits of charged particles in a
strong magnetic guide field (Brizard & Hahm 2007). For the full set of equations, see
Pueschel et al. (2011). GENE uses a five-dimensional phase space in which the coordinate
system consists of the x (radial), y (binormal), z (parallel to B0), v‖ (parallel velocity space)
and μ (perpendicular velocity space) directions. There is both a box size L and a resolution
N for each direction. For the nonlinear HSX calculation presented here, the resolutions,
box sizes and hyperdiffusion coefficients are the following: Nx = 128, Ny = 96, Nz = 512,
Nv‖ = 32, Nμ = 8, Ly = 251.3ρs (corresponding to kmin

y ρs = 0.025), Lx = 217.6ρs, Npol =
4, Dz = 8, and Dv‖ = 2, where ρs = csmi/(eB) is the ion sound gyroradius, Npol is the
number of poloidal turns, Dz is the the parallel real-space hyperdiffusion coefficient and
Dv‖ is the parallel velocity-space hyperdiffusion coefficient (Pueschel, Dannert & Jenko
2010). Numerical convergence studies were performed, including for Npol, to ensure that
results presented here are numerically converged. Due to the significant extent along the
field line of the KBMs studied in this work, Npol = 4 is required to achieve convergence
(Faber et al. 2018). If under-resolved in Npol, artificial reinforcement of the KBMs via
the parallel boundary condition is possible, yielding unphysical results. This is consistent
with previous work regarding trapped-electron modes in HSX and with recent studies of
a tokamak geometry (Faber et al. 2018; Ball, Brunner & Ajay 2020). Lastly, we do not
include either parallel magnetic field fluctuations or collisions.

The MHD equilibrium solver VMEC (Hirshman, van Rij & Merkel 1986) is used to
generate the HSX and H-J equilibria, which are subsequently processed using the GIST
code (Xanthopoulos et al. 2009). The coordinates are centred at the specified normalized
toroidal magnetic flux s0 = Ψ/Ψ (a) = (r/a)2, where Ψ (a) is the toroidal flux at the
plasma boundary and a is the effective minor radius. Details pertaining to the specifics of
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low-ŝ flux-tube geometries can be found in Faber et al. (2018) and McKinney et al. (2019)
(HSX) and in Ishizawa et al. (2017) (H-J). All three configurations have comparable values
of the average magnetic shear ŝ along any given field line. As will be shown in this work,
the average magnetic shear plays a critical role in determining βKBM

crit , beyond the threshold
prediction from MHD.

The magnetic equilibria used in this work are as follows. HSX is a four-field-period
stellarator, where the number of field periods is defined as the number of times
the magnetic geometry repeats per one toroidal transit, with aspect ratio A = R0/a ≈
10, where R0 is the major radius, mean magnetic field 〈B0〉 ≈ 1 T and low average
magnetic shear ŝ ≈ −0.05 at s0 = 0.5. The major radius R0 (minor radius a) of HSX is
approximately 1.2 m (0.12 m). The HSX flux tube used throughout this work is centred
at the outboard midplane, corresponding to α = 0, where α = θ − ι− ζ is a field-line
label and θ and ζ are the poloidal and toroidal angles in PEST coordinates, respectively,
where PEST coordinates are a straight field-line coordinate system (Grimm, Greene &
Johnson 1976). It should also be noted that HSX is not optimized for a specific β, and
therefore the HSX configuration used is given by the vacuum case with β = 0. This choice,
however, is independent of the β used in GENE. Investigation into the effect of including
self-consistent, finite equilibrium β values was performed, and it was found that changing
the equilibrium β does not significantly affect the results presented below. Figure 4, a plot
of growth rate and real frequency spectra of HSX using both a β = 0 equilibrium and a
self-consistent β = 0.48 % equilibrium, highlights that there is no significant difference
between the vacuum and finite-β cases. As a result, the ∇B and curvature κ drifts are
taken to be the same in this work, as is consistent with a β = 0 equilibrium. The H-J
configuration used in this work has an equilibrium β ≈ 0.03 %, four field periods, aspect
ratio A ≈ 7.3, mean magnetic field 〈B0〉 ≈ 1.35 T and average magnetic shear ŝ ≈ 0.028,
which is a factor of two smaller than that of HSX and of opposite sign, at s0 = 0.5. The
major radius R0 (minor radius a) of H-J is 1.18 m (0.162 m). As was the case for HSX,
the α = 0 flux tube is employed for H-J in this work. It should be reiterated that H-J is not
a quasi-symmetric stellarator. Lastly, an ŝ–α geometry, corresponding to a tokamak with
circular flux surfaces, is used to investigate KBM dynamics in an axisymmetric system
for comparison (Connor et al. 1978). A value of average magnetic shear ŝ = −0.052
is used throughout, as is a self-consistent (with β and the pressure gradients) αMHD =
ι−−2 (R0/Ln)[βe(1 + ηe) + βi(1 + ηi)], where Ln and η(i,e) are the density gradient scale
length and the ratio of the (ion, electron) temperature gradient to the density gradient,
respectively. It should be noted that since a negative value of ŝ is used, this tokamak
equilibrium is stable to ideal MHD ballooning, βMHD

crit → ∞ (Greene & Chance 1981;
Antonsen et al. 1996).

3. Electromagnetic ITG and KBM turbulence
3.1. Linear eigenmodes in low-ŝ configurations

Typically, as β increases, the normalized ITG growth rates γ in units of cs/a, where
cs is the sound speed, steadily decrease (Pu & Migliuolo 1985; Dong, Guzdar & Lee
1987; Kim, Horton & Dong 1993). This is known as finite-β ITG stabilization, or linear
electromagnetic stabilization. The mechanism by which this stabilization occurs is the
coupling between the ITG mode and the shear Alfvén wave. This efficiently transfers
energy out of the ITG mode, reducing its growth. Alterations of the ion Landau resonance
due to finite-equilibrium-β ∇B modifications from the bending of perturbed field lines can
also play a role in the stabilization (Jarmén, Anderson & Malinov 2015). This reduction
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in growth rate will tend to reduce the nonlinear heat flux, but additional physics can also
have an impact on the dynamics.

Another mechanism that affects ITG transport levels as β increases is nonlinear
electromagnetic stabilization (Pueschel et al. 2008; Pueschel & Jenko 2010; Whelan,
Pueschel & Terry 2018; Whelan et al. 2019). As β increases, one observes a reduction
in nonlinear heat flux that is greater than the reduction in linear growth rates or
quasilinear fluxes. As has been shown in Whelan et al. (2018, 2019), the difference
between the (quasi-)linear and nonlinear reduction stems from changes in the efficiency
of zonal-flow-mediated energy transfer to stable modes. This effect has been shown to be
active in a range of configurations, both of tokamak and of stellarator type. It has also
been demonstrated that the inclusion of a self-consistent Shafranov shift can eliminate
nonlinear electromagnetic stabilization for different, specific parameter regimes (Ishizawa
et al. 2019).

The physical mechanism underlying KBM destabilization is the following. As with
most microinstabilities, KBMs are destabilized when the driving force associated with
the pressure gradient is sufficiently strong in the bad curvature region to overcome the
stabilizing force from the magnetic field (Cheng 1982). More specific to KBMs, the
modifications to magnetic drifts by β-induced magnetic fluctuations result in destabilizing
effects when a kinetic treatment is applied to the governing equations. This is due to a
resonance between the KBM and thermal ions, giving the KBM an additional free energy
source.

For the cases studied here, the dominant eigenmode for β < βKBM
crit is ITG, whose growth

rate decreases with β. For β ≥ βKBM
crit , KBM has a larger growth rate than the ITG mode

with the growth rate increasing rapidly with β. This critical value βKBM
crit is generally of

the order of 1 % in standard tokamaks and is comparable to the ideal MHD ballooning β

limit for physically relevant gradient values (see Pueschel et al. 2008; Pueschel & Jenko
2010; Ishizawa et al. 2013). However, βKBM

crit is not always close to βMHD
crit and is, in general,

a complicated function of the magnetic geometry.
Before presenting analyses of nonlinear simulations, the behaviour and scaling of linear

instability will be elucidated, for both dominant and subdominant eigenmodes. Typically,
ITG and KBM growth rates decrease and increase, respectively, as β increases. Figure 1
highlights this behaviour in HSX at normalized binormal wavenumber kyρs = 0.6.
Henceforth, normalized wavenumbers are denoted kyρs → ky. The normalized gradients,
β and the temperature ratio used in these calculations and throughout this work are a/LTi =
3 and a/LTe = a/Ln = 1, β = 0.48 % and Ti/Te = 1, respectively, unless otherwise stated.
Note the factor-of-three reduction in the ITG growth rate as β increases before the KBM
becomes dominant. This significant reduction in ITG growth rate is not observed for all
values of ky, as evidenced by figure 2, where at ky = 0.1 there is no significant reduction
in γ before KBMs become dominant for either the Npol = 1 or the Npol = 4 case. This is
partially due to the fact that, in the ky = 0.1 case, the KBM becomes dominant at a small
critical normalized plasma pressure βKBM

crit ≈ 0.18 % versus βKBM
crit ≈ 2.2 % for the ky = 0.6

case. Also note that Npol = 4 is required to achieve convergence, as elongated eigenmodes
can artificially self-reinforce via the parallel boundary condition.

The scaling of βKBM
crit with ky is presented in figure 3 for both HSX (blue squares)

and NCSX (black triangles), a quasi-axisymmetric stellarator configuration optimized
for operation at β ≈ 4.2 % (Neilson, Zarnstorff & Lyon 2002) with ŝ ≈ −0.5 at s0 =
0.5. For HSX, βKBM

crit is small relative to the ideal MHD ballooning limit βMHD
crit , and

considerably smaller than the high-ŝ NCSX analogue where βKBM
crit is comparable to βMHD

crit .
The normalized gradients and temperature ratio used in the NCSX calculations are the
same as were used for HSX. The ideal ballooning limit βMHD

crit is also shown as a horizontal
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FIGURE 1. The growth rate and real frequency for the eigenmode with the largest growth rate at
ky = 0.6 over a range of β values for HSX with a/LTi = 3 and a/LTe = a/Ln = Ti/Te = 1. Note
the stabilization of ITG growth rates (shown as triangles) as β increases and approaches βKBM

crit ≈
2.2 %, where there is a clear discontinuity in real frequency, which highlights the change in
dominant mode branch from ITG to KBM (shown as diamonds).

FIGURE 2. Growth rate and real frequency for ky = 0.1 of the HSX configuration with a/LTi =
3 and a/LTe = a/Ln = Ti/Te = 1 for both Npol = 1 (blue diamonds) and Npol = 4 (black
triangles). Note the lack of ITG stabilization relative to the ky = 0.6 case and the significant
difference between the two cases, an indication that Npol = 1 is insufficient for convergence.
Also, βKBM

crit is much lower for this case.

dashed line for each configuration. The NCSX curve smoothly approaches the MHD limit
as ky decreases until ky < 0.1 where there is a slight uptick in βKBM

crit . The HSX curve is
well below the MHD limit in the transport-relevant ky < 0.25 range, and dips to values
≈ 0.1 % that are an order of magnitude smaller than βMHD

crit . This suggests that conditions
in HSX are more conducive to KBM excitation due to ion kinetic physics (see § 4) than
they are in NCSX. As will be shown, this is associated with the low average magnetic
shear in HSX.
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FIGURE 3. The βKBM
crit spectrum of NCSX (black triangles) and HSX (blue squares) with

a/LTi = 3 and a/LTe = a/Ln = Ti/Te = 1. Horizontal dashed lines correspond to βMHD
crit . Note

the low βKBM
crit relative to βMHD

crit for HSX compared to NCSX.

FIGURE 4. Growth rate and real frequency spectra for the HSX configuration (both with an
equilibrium β = 0 (black) and equilibrium β = 0.48 % (blue)) with a/LTi = 3, β = 0.48 % and
a/LTe = a/Ln = Ti/Te = 1. The KBMs (ITG modes) are denoted by diamonds (triangles). Note
the transition from ITG to KBM (at roughly ky ≈ 0.1) and back to ITG (at roughly ky ≈ 0.2),
highlighted by the discontinuity in real frequency. Also note the similarity in the two spectra
when using a finite-β magnetic equilibrium versus using the vacuum case.

Figure 4 shows the dominant growth rates γ and real frequencies ω as functions of ky
at a constant β = 0.48 %. It is worth noting that KBM is dominant over a certain range
of ky values, namely ky ∈ [0.1, 0.2], while ITG is dominant over the remainder of the
wavelength range. This means that nonlinear calculations of HSX at this value of β will
potentially exhibit concurrent ITG and KBM drive characteristics, a phenomenon that is
also observed in nonlinear simulations of tokamaks if β ≥ βKBM

crit (Pueschel et al. 2008;
Pueschel & Jenko 2010).
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(a)

(b)

FIGURE 5. The subdominant spectrum (a) for HSX with ky = 0.2 and β = 0.5 % consisting
of KBMs (diamonds) and ITG modes (triangles), and the associated electrostatic potential Φ
eigenmode structures (b) for various KBMs. Note the two distinct families of KBMs: one with
Φ symmetric about θp = 0 and one with off-centre peaking. For each mode of the latter family,
there is a sibling mode that is mirrored across the θp = 0 axis with identical γ and ω; hence they
are indistinguishable in (a). Also note that some of the centred KBMs (blue, green) have tearing
parity, i.e. are odd functions of ballooning angle.

Lastly, the subdominant mode spectrum of HSX at ky = 0.2 with β = 0.5 %, shown in
figure 5, indicates that there is not just a single KBM that is destabilized as β increases, but
rather there are two families of KBMs, one of which is a set of modes that are centred at the
outboard midplane (θp = 0) and another that consists of pairs of sibling modes that peak
away from the outboard midplane (θp 
= 0). It should be noted that some of the centred
KBMs exhibit tearing parity (blue and green curves in figure 5b), i.e. the Φ eigenfunctions
are odd in ballooning angle. The low background magnetic shear in the present scenario
enables destabilization of these modes, termed tearing-parity KBMs, which had previously
been conjectured not to exist based on a study involving high-shear equilibria (Pueschel
et al. 2019). It is worth noting that it is unlikely that the tearing-parity KBMs discussed
here are micro tearing modes because of the unique ITG dependence of the modes, the
fact that the modes propagate in the ion diamagnetic direction and the relatively small
electron thermal transport nonlinearly, three qualities that are not characteristic of micro

https://doi.org/10.1017/S0022377821000581 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821000581


KBM turbulence in low-magnetic-shear equilibria 9

tearing modes. For each mode that peaks away from the outboard midplane, a sibling
mode exists with the same growth rate and frequency with an eigenmode structure that is
near-perfectly mirrored with respect to θp = 0. The physics implication of this is that HSX
is qualitatively different from typical high-ŝ tokamak cases, where only a single KBM is
destabilized. Eigenvalue calculations with different gradients, a/LTi = 4 for example (with
a/Ln and a/LTe kept fixed), also exhibit the two branches of KBMs. However, the exact
location of minimal βKBM

crit shifts in ky space relative to the a/LTi = 3 case. The region of ky
space in which the outboard-midplane-peaked KBMs are dominant shifts to smaller ky as
ωTi increases. It should also be noted that the two branches of KBMs are robustly present
when ensuring numerical convergence. This also complicates analysis of the nonlinear
energy dynamics, as there may be a number of unstable KBMs involved in nonlinear
energy transfer.

3.2. Nonlinear characteristics of the ITG–KBM system
Previous studies of KBM instability and turbulence have found critical β values of
the order of one or a few per cent for experimentally relevant gradient values and
magnetic geometries (Pueschel et al. 2008; Pueschel & Jenko 2010; Ishizawa et al.
2013). These analyses also show that for β < βKBM

crit , the resulting turbulence is solely
ITG or trapped-electron mode and for β > βKBM

crit , signatures of multiple modes are
present and observable in the simulations concurrently. Contrary to these cases, when
β > βKBM

crit , nonlinear simulations of the present HSX case do not achieve saturation when
the minimum binormal wavenumber kmin

y of the system is unstable to KBMs. In such
simulations, streamer modes span the length of the periodic radial domain, regardless of
how large the radial box is, and self-reinforce via the radial periodic boundary condition
of the flux tube. However, if one chooses kmin

y so that it is stable to KBMs, saturation
can be achieved in electromagnetic flux-tube simulations, where a significant reduction
in transport is observed relative to the near-electrostatic (β = 0.05 %) case. The time
traces of heat flux (both ion electrostatic and electron electromagnetic) and particle flux
for kmin

y = 0.025 are shown in figure 6. Despite the KBM being an electromagnetic mode,
below the threshold it does not drive significant electromagnetic flutter heat transport given
the choice of small electron temperature gradient a/LTe = 1. While the condition that the
smallest finite ky must be KBM-stable is empirical, one possible underlying cause is the
ability of the system to terminate an inverse cascade by means of ITG (stable) eigenmodes.
The precise nature of the phenomenon is left for future study.

The heat flux spectrum given in figure 7 shows that the ion electrostatic heat flux Qes
i (ky)

peaks in the ky range that is dominated by KBMs, consistent with the fact that β is roughly
three times as large as βKBM

crit for ky = 0.1. Figure 7 also shows that KBM transport is the
dominant physics mechanism nonlinearly as long as KBMs are destabilized linearly, even
if KBM growth rates are subdominant, where linear destabilization is shown in figure 4.
As discussed above, kmin

y is sufficiently small that no KBM instability occurs at that mode;
this is consistent with findings in high-ŝ scenarios where nonlinear saturation is possible
for β values up to βKBM

crit as ky → 0 (Pueschel & Jenko 2010). The nonlinear electrostatic
potential Φ spectrum is depicted in figure 8, showing that the simulation is not dominated
by a zonal flow, as the ky = 0.1 non-zonal component of Φ is a factor of nearly two larger
than the zonal component and the sum of the non-zonal contributions is significantly larger
than the zonal contribution. This is an indication that zonal flows may play at most a
minor role in saturation. This view is refined, however, based on nonlinear energy transfer
analysis.
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FIGURE 6. Heat (both ion electrostatic (black) and electron electromagnetic (blue)) and particle
flux (red) time traces for HSX with kmin

y = 0.025 and β = 0.48 %. There is a significant (factor
of ≈ 5) reduction in Qes

i relative to the near-electrostatic (β ≈ 0.05 %) case (McKinney et al.
2019). There is negligible, slightly negative magnetic flutter transport, a result of the low electron
temperature gradient a/LTe = 1.

FIGURE 7. Heat flux spectra for HSX with kmin
y = 0.025 and β = 0.48 % (black) associated

with the time trace shown in figure 6 and with kmin
y = 0.025 and β = 0.24 % (blue) for

comparison. Note that the peaks of the spectra are almost fully contained in the binormal
wavelength range over which KBM is destabilized, which is denoted by the shaded region. This
shows that KBM transport dominates nonlinearly when KBMs are linearly destabilized, even if
KBM growth rates are subdominant to ITG growth rates.

Nonlinear frequencies are shown in figure 9. Interestingly, there is no discontinuity in the
nonlinear frequency spectrum of the HSX configuration, a feature that was present linearly
at the ITG–KBM transition points in figure 4. Both dominant and subdominant linear
KBM frequencies are overlaid in figure 9 to facilitate comparison with the nonlinear data.
Clearly, throughout the range where linear data are shown, nonlinear frequency signatures
match the values associated with the dominant outboard-centred KBMs. An exact
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FIGURE 8. The nonlinear Φ spectrum for HSX with kmin
y = 0.025 and β = 0.48 %. The

spectrum is truncated at kyρs = 0.5 since |Φ|2 amplitudes are negligible above this threshold.
Note that the zonal component is much weaker than the integrated non-zonal amplitudes.

FIGURE 9. The nonlinear frequency spectrum for HSX with kmin
y = 0.025 and β = 0.48 %.

The colour scale has arbitrary units and is linear and normalized at each ky separately.
Linear frequencies of the most unstable (gold crosses), maximal-frequency (green triangles),
minimal-frequency (red squares) and most unstable outboard-centred (black–white dashed
diamonds) KBMs are also included for comparison. Note the agreement between the dominant
linear outboard-centred KBM frequencies and the nonlinear signal.

frequency match is not expected to occur, as turbulence may result in a ky-dependent
nonlinear frequency shift and broadening. This constitutes evidence that KBMs do indeed
play an important role in the nonlinear turbulent state.

Analysis of the nonlinear energy transfer to a given (kx,ky) point in Fourier space
due to interaction with (k′

x,k
′
y) and (kx − k′

x, ky − k′
y) also suggests that modes in the

KBM-dominated ky range play an important role in the energy transfer dynamics of
the turbulence and therefore in the dynamics that leads to saturation. Figure 10 shows
nonlinear energy transfer at a given (kx = 0.06, ky = 0.1), denoted by the tip of the black
arrow, to and from various (k′

x, k′
y). Regions of blue correspond to locations which cause

energy input into (kx = 0.06, ky = 0.1) while red regions correspond to locations which
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FIGURE 10. Nonlinear energy transfer functions indicate locations which give (blue) and
receive (red) energy to and from (kx = 0.06, ky = 0.1), denoted by the tip of the black arrow.
There is significant zonal transfer from (kx = 0.06, ky = 0.1) to the blue clouds near k′

y = 0 and
k′

y = 0.1. Significant non-zonal energy transfer is also observed at k′
y = −0.025 and k′

y = 0.125.

draw energy from (kx = 0.06, ky = 0.1). The dominant method by which (kx = 0.06,
ky = 0.1) receives energy is zonal energy transfer, indicated by the blue clouds at both
k′

y = 0 and k′
y = 0.1. There is also significant non-zonal energy transfer via (k′

x = 0.12,
k′

y = −0.025). It is important to note both that the largest energy sinks are due to non-zonal
transfer and that the largest energy sinks are even larger than the largest energy inputs from
zonal transfer. Lastly, the zonal energy transfer can occur due to both the zonal flow and
the zonal field, i.e. the zonal component of the fluctuating magnetic field.

This result appears to contradict the earlier finding in figure 8 that the zonal-flow
amplitudes are low. However, when coupling is sufficiently resonant, zonal flows can very
efficiently mediate energy transfer even if they are only excited to low amplitudes.

Further analysis of nonlinear energy transfer yields insight into the wavelength ranges
which dominate energy transfer between the turbulence and the zonal (ky = 0) modes.
Figure 11 shows normalized nonlinear energy transfer corresponding to ky = 0 modes
summed over both kx and k′

x versus k′
y. The peak of the data occurs at k′

y = 0.125, well
within the KBM-dominated ky range. A significant portion of the energy transfer to and
from zonal modes is facilitated by modes in the KBM-dominated ky range, constituting
additional evidence that KBMs are important nonlinearly. One can also construct a
quantity to gauge the relative importance of a given ky in the overall nonlinear energy
transfer dynamics, as highlighted by figure 12, a plot of averaged nonlinear energy transfer
functions versus ky. This quantity is the sum (over kx 
= 0) of the root mean squares (of
each k′

x–k′
y plane) of the nonlinear energy transfer functions corresponding to a given

(kx,ky). Both the zonal modes and KBMs contribute to the overall nonlinear energy transfer
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FIGURE 11. The sum (over kx 
= 0) of the root mean squares (over coupled k′
x) of time-averaged

nonlinear energy transfer functions for zonal (ky = 0) modes as a function of k′
y. The data are

normalized to the value of the point at k′
y = 0.125. Note that the peak is in the KBM-dominated

k′
y range, evidence that KBMs play an important role in zonal dynamics.

FIGURE 12. The sum (over kx 
= 0) of the root mean squares (over coupled k′
x, k′

y) of
time-averaged nonlinear energy transfer functions, which are normalized by the value of the
same quantity at ky = 0.1.

dynamics, with KBMs contributing roughly twice as much if one integrates over the entire
KBM-dominated ky range.

Lastly, figure 13 shows both the electrostatic ion heat and particle fluxes as β increases.
Simulations with kmin

y = 0.025 for β = 0.75 % and 1 % grow without bounds and therefore
do not have associated data points. This is consistent with the requirement that kmin

y be
stable to KBMs for saturation to occur, as βKBM

crit ≈ 0.6 % for ky = 0.025, as shown in
figure 3. Note the decrease in heat flux as β increases until β is sufficiently close to
βKBM

crit (kmin
y ), a result that is consistent with ITG nonlinear finite-β stabilization. The uptick

in Qes
i as β increases from 0.48 % to 0.55 % is an expression of the KBMs, which, unlike

the ITG modes, become more virulent as β is increased.
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FIGURE 13. Normalized ion heat flux Qes
i (black diamonds) and particle flux Γ es (red squares)

as a function of β. Observe the significant reduction of transport for β � 0.2 % relative to
β ≈ 0.05 % until β approaches the βKBM

crit ≈ 0.6 % threshold for ky = 0.025. Above β = 0.6 %,
simulations no longer achieve a saturated state. The vertical dashed black line indicates βKBM

crit =
0.6 % at ky = 0.025 and the vertical dotted black line indicates βKBM

crit = 0.18 % at ky = 0.1. The
electron electromagnetic heat flux is negligible (normalized Qem

e ≈ −0.2 for β = 0.48 %) and
therefore not included in this analysis.

4. Impact of average magnetic shear and ITG

Further investigation demonstrates that ŝ and a/LTi are particularly important in setting
the value of βKBM

crit relative to the ideal ballooning threshold. This section addresses how
the linear KBM characteristics presented in § 3 change as both the average magnetic shear
ŝ and the fractional component of the total pressure gradient a/Lp driven by the ITG a/LTi
change. Linear results pertaining to H-J and a circular geometry with low ŝ are also shown.

Figure 14 presents βKBM
crit as a function of ŝ and demonstrates that the KBM threshold

increases with |ŝ|, regardless of sign. This is consistent with the observations that, in
general, drift waves are commonly stabilized by increased |ŝ| (Pearlstein & Berk 1969;
Ross & Mahajan 1978). Modification of the average magnetic shear of the flux tube is
done self-consistently in the sense that the derivative of ι− is adjusted to yield the desired
ŝ and then geometric elements are recalculated accordingly. Furthermore, eigenvalue
calculations of HSX with artificially high ŝ yield a subdominant mode spectrum that
corresponds to the usual tokamak, single-unstable-KBM scenario, as well as to the
NCSX configuration discussed in § 3.1. The physics implication of this result is that with
increased shear, modes are less extended along the magnetic field line and therefore cannot
access free energy in gradients via the bad curvature regions further along the field line,
as evidenced by figure 15, a plot of two characteristic Φ eigenmodes for the ŝ = −0.05
case (black) and the ŝ = 0.5 case (blue). Conversely, KBMs are therefore more easily
destabilized with more free energy to access when |ŝ| is low like in HSX.

This result is consistent with previous work investigating KBM behaviour in
low-magnetic-shear tokamaks (Hirose et al. 1995; Hirose & Elia 1996; Zonca et al.
1999). In Hirose & Elia (1996), despite low negative ŝ, which implies stability with
respect to ideal MHD ballooning modes, one observes KBMs at relatively small critical
βKBM

crit ≈ 0.5 % with ŝ = −0.2 and ky = 0.1 when a sufficiently strong ITG is present. It
has been suggested that the cause of this destabilization of KBMs at small β is an effect
of ion magnetic drift resonance (Hirose et al. 1995; Hirose & Elia 1996; Chen et al. 2018).
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FIGURE 14. The βKBM
crit as a function of ŝ for the HSX configuration with ky = 0.1. The vertical

dashed red line highlights the self-consistent nominal ŝ for HSX at s0 = 0.5. Note that βKBM
crit

increases as the magnitude of the average magnetic shear increases, regardless of sign.

FIGURE 15. Characteristic Φ eigenmode structures for KBMs for the HSX geometries with
ŝ = −0.05 (black) and ŝ = 0.5 (blue) which highlight the extended nature of the eigenmodes
when the magnitude of the average magnetic shear is low. The mode structure magnitudes are
normalized to their values at the outboard midplane.

Thermal ions couple to and exchange energy with the drift wave via the geodesic curvature
of the magnetic geometry. There are also recent reports of KBMs in experiments which
exhibit low negative magnetic shear (Chen et al. 2016, 2018), where it is suggested that the
same ion-magnetic-drift effect is responsible for the destabilization at small β.

A preliminary, lowest-order analysis of the ion-magnetic-drift resonance condition,
derived using a two-fluid model that accounts for kinetic effects, given in Hirose & Elia
(1996):

(ω − 5/3 ωDi)
2 − 10/9 ω2

Di = 0, (4.1)

where ωDi = 2cTi/(eB3)(∇B × B) · k⊥, suggests that the KBM frequencies observed in
the present work exhibit good agreement with that required for exact resonance. Note the
different sign used in the parentheses in (4.1) due to the difference in sign convention
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FIGURE 16. The βKBM
crit spectrum for HSX with a stronger density gradient contribution

compared with figure 3: a/Ln = 2.5, a/LTi = 0 and a/LTe = 1. Since two particle species are
used, the sum of the gradients is 2.5 + 2.5 + 1 = 6, which is equal to the sum of the gradients
in figure 3. Note that the KBM limit is now closer to βMHD

crit as ky → 0.

used for ω here relative to Hirose & Elia (1996). Taking Te/Ti = 1, 2cTi/(eB) → csρs and
∇B → B/a, the ion-magnetic-drift frequency can be written as ωDi/(cs/a) ≈ k⊥ρs. After
computing an eigenmode average for k⊥ρs which accounts for geometry, given by

〈k⊥ρs〉 =

∫
|Φ|2((kxρs)

2gxx + 2kxkyρ
2
s gxy + (kyρs)

2gyy)1/2 dθp∫
|Φ|2 dθp

, (4.2)

where gxx, gxy and gyy are magnetic geometry elements, ωDi/(cs/a) ≈ 〈k⊥ρs〉 yields a
normalized ion-magnetic-drift frequency ωDi = 0.266 for (kx = 0, ky = 0.2). Using this
value for ωDi, one can evaluate (4.1) to determine the resonant mode frequency. The
resonant frequency is ω ≈ 0.724 for (kx = 0, ky = 0.2). The resonant frequency calculated
here is in agreement with the dominant KBM real frequency in figure 4 at ky = 0.2, where
ωr ≈ 0.72. This constitutes quantitative evidence that the ion-magnetic-drift resonance
is likely playing an important role in the dynamics. A more thorough analysis of the
ion-magnetic-drift resonance phenomenon will be left to future work.

In support of the concept that ion dynamics is of particular importance to KBM
behaviour in HSX geometry, figure 16 shows βKBM

crit as a function of ky, similar to figure 3,
but with different gradients. Keeping the sum of the gradients as well as a/LTe constant,
setting a/LTi = 0 and increasing a/LTn accordingly, one observes both a roughly five-fold
increase in βKBM

crit at ky = 0.1 and that βKBM
crit no longer dips as far below βMHD

crit . Below
ky = 0.025, βKBM

crit is difficult to ascertain, as a mode that drifts in the electron diamagnetic
direction with even Φ parity and odd A‖ parity dominates over the relevant β range and
eigenvalue calculations are impractical at such small values of ky. This result constitutes
further evidence that ion dynamics is of particular importance to KBM behaviour in HSX.

Regarding scalings of KBM turbulence and confinement at high β, linear computations
alone are often insufficient to predict nonlinear trends, particularly at low ŝ, as discussed
in, for example, Hegna, Terry & Faber (2018) and McKinney et al. (2019). While more
research on this topic in the context of KBMs is required, the low heat fluxes in figure 6
show both that the strong linear KBM drive at low magnetic shear does not produce
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FIGURE 17. Growth rate γ as a function of β for H-J at ky = 0.1 with the following
normalized (to major radius) gradients: R0/LTi = 13, R0/LTe = 17 and R0/Ln = 9.3. The ITG
modes (triangles) dominate below βKBM

crit and KBMs (diamonds) dominate above βKBM
crit . Note

that βKBM
crit = 0.14 %, shown in red, is comparable to that for HSX for the same binormal

wavenumber.

corresponding fluxes and that electromagnetic stabilization of the heat flux relative to the
electrostatic case can be shown. More explicitly, dominant linear growth rates alone are
poor predictors of nonlinear heat fluxes at finite β.

Analyses similar to the ones conducted above for HSX were also carried out for both
H-J and a circular axisymmetric geometry. The H-J case, a configuration with similarly
low average magnetic shear (ŝ ≈ 0.028), also exhibits a small βKBM

crit ≈ 0.14 % at ky = 0.1,
as evidenced by figure 17. This value of βKBM

crit verifies calculations carried out using the
GKV code of the same H-J equilibrium using the same gradient values (Maeyama et al.
2013; Ishizawa et al. 2017). Also note that there is a slight increase in the ITG growth rates
as β → βKBM

crit , i.e. no linear electromagnetic stabilization occurs. One particular benefit of
including H-J in this analysis is to highlight the fact that the linear and nonlinear KBM
dynamics observed numerically in HSX are not simply the product of an aspect of the
magnetic geometry that is unique to HSX, but rather are indicative of KBM behaviour in
a broader class of magnetic equilibria which exhibit small average magnetic shear.

A shifted-circle tokamak geometry with a low negative average magnetic shear ŝ ≈
−0.05 also exhibits βKBM

crit spectra and eigenvalue characteristics similar to those for
HSX, as shown in figure 18. Note the similarities in the βKBM

crit spectrum between HSX
and the circular tokamak with low negative average magnetic shear. Both curves are
non-monotonic and have a minimum at ky = 0.1 with a very small critical βKBM

crit ≈ 0.1 %,
as shown in figure 18(a). It is also worth noting that the low-ky behaviour of βKBM

crit in s–α is
insensitive to the use of a self-consistent equilibrium relative to the high-ky behaviour. The
subdominant mode landscape for the circular tokamak is also qualitatively consistent with
the HSX results, as two distinct clouds of modes are present, an ITG and a KBM branch,
as shown in figure 18. However, one key difference between the subdominant mode spectra
for HSX and the circular tokamak is the presence of only a single ballooning-parity and
tearing-parity KBM branch for the circular tokamak case. The single KBM branch in the
axisymmetric case resembles the branch of KBMs centred at the outboard midplane for
HSX.
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(a)

(b)

FIGURE 18. The βKBM
crit spectrum (a) and the subdominant mode spectrum at ky = 0.2 and

β = 0.8 % (b) for an ŝ = −0.052 circular tokamak (s–α) geometry. (a) There are two curves:
one for the case when αMHD = 0 (red squares), where the equilibrium and GENE β are not
self-consistent; and a second for the case when αMHD is such that both the equilibrium and
GENE β are the same (black triangles). (b) The two distinct subdominant ITG (crosses) and
KBM (diamonds) clouds are also present in the circular tokamak case. However, there is only a
single KBM branch in this case versus the two that were present in HSX.

In summary, both H-J and a circular axisymmetric geometry with ŝ ≈ −0.05 exhibit
KBM behaviour similar to that in HSX, providing strong evidence that the relatively weak
averaged magnetic shear is an important factor in determining the KBM dynamics.

5. Conclusions

Gyrokinetic electromagnetic simulations of HSX, H-J and a circular tokamak have been
presented, showing that KBMs can be excited at a critical βKBM

crit that is considerably
smaller than the critical β for ideal MHD ballooning. This difference is associated with the
relatively low average magnetic shear of these configurations. While one might expect this
to bode poorly for the performance of low-average-shear magnetic equilibria, nonlinear
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simulations of HSX show that saturation is achievable with βKBM
crit < β < βMHD

crit and that
a significant reduction in transport is observed relative to the β ≈ 0 case. However,
saturation only occurs when the minimum binormal wavenumber kmin

y ρs of the system
is stable to KBMs. One possible explanation of this result is that the nonlinear transfer of
energy from the strongly driven KBMs in the binormal wavenumber range 0.1 < kyρs <

0.2 to stable modes with kyρs < 0.1 in Fourier space is possible and allows for saturation
when the condition that kmin

y ρs is stable to KBMs is met.
The KBM subdominant mode spectrum of HSX is qualitatively different from what one

would observe in an ŝ ∼ 1 tokamak, as HSX exhibits two families of unstable KBMs,
whereas there is generally only a single unstable KBM in the high-ŝ tokamak case. With
low ŝ, KBMs are more extended along the field line, allowing such modes to access free
energy in the gradients via the bad curvature regions away from the outboard midplane
of a given field line. As a consequence, KBMs can peak at finite ballooning angle, and
even tearing-parity KBMs (TKBMs in the nomenclature of Pueschel et al. (2019)) are
found. With respect to ŝ, βKBM

crit increases monotonically, regardless of the sign of the
average magnetic shear. This is consistent with the fact that stronger magnetic shear tends
to stabilize drift waves.

A number of nonlinear analyses have also been conducted here which highlight the
importance of KBMs in the nonlinear dynamics. Heat flux spectra shown in figure 7
highlight that KBM transport dominates the dynamics when KBMs are destabilized
linearly, even if KBM growth rates are subdominant to ITG growth rates. A comparison of
dominant linear KBM real frequencies and nonlinear frequencies shows good agreement
in the KBM-dominated ky range. This constitutes evidence that KBMs are significantly
contributing to the nonlinear state. Additionally, an analysis of nonlinear energy transfer
shows that KBMs play an integral role in the energy transfer dynamics, even more so than
zonal modes, further highlighting the fact that the nonlinear state indeed shows signs of
both ITG and KBM drive. An investigation of how the electrostatic ion heat flux changes
as a function of β shows a decrease in heat flux as β increases until β is sufficiently close to
βKBM

crit (ky = kmin
y ), showing both the improved nonlinear behaviour relative to linear βKBM

crit

predictions and the steep increase in fluxes at large values of β � βKBM
crit .

The linear characteristics of the low-average-magnetic-shear equilibria presented in this
work raise questions regarding the utility of such configurations at the β values required
for an efficient fusion reactor concept. However, as the nonlinear calculations presented
here show, nonlinear dynamics can overcome poor linear KBM properties such as the
increase in total heat flux generally associated with β > βKBM

crit , and nonlinear fluxes in
HSX even decrease as β increases above βKBM

crit (ky = 0.1), as shown in figure 13, until
β ≈ 0.6 %. It is important to keep such KBM saturation physics in mind during efforts
to optimize stellarator equilibria at reactor-relevant β values. Lastly, the fact that in
the present simulations achieving saturation depends critically on βKBM

crit (ky = kmin
y ), it is

possible that the value of ρ� = ρs/a – and thus the KBM threshold at n = 1 – of a
low-magnetic-shear confinement device may affect the achievable plasma β. However,
future investigation will need to determine whether this effect survives in more realistic
simulation frameworks, in particular when retaining global profile effects.
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