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Impurity Transport Experiments at HSX 

11/9/2020 Impurity Transport Experiments at the HSX Stellarator with Laser Blow-Off Injections 2 

Helically Symmetric eXperiment 

• Optimized Stellarator – Quasi-Helical Symmetry 

• 4 field periods, 12 modular coils per period 

• 48 auxiliary coils for configuration flexibility 
 

‘Typical’ plasma discharge QHS, 1 Tesla 

• QHS, 1 Tesla, 50 kW injected power 

• Absorbed ECH power is ≈ 11.3 kW, deposited on-axis 

 

 

 

P. Willis, 2020 

Electron Temperature Electron Density 

HSX Cutaway  Motivation to study impurity transport: 

• Impurities dilute fuel and radiate away 
energy from the plasma 

• Too much He ‘ash’  in core 

• Wall-sourced impurities accumulate 

• Predict and control impurity accumulation 

• Impurity transport is a serious 
constraint and needs to be better 
understood in 3-D fusion devices 

 

 Goals of this study: 

• Quantify impurity transport in the HSX 
stellarator 

• Compare these results to neoclassical 
calculations to determine whether transport 
is anomalous 
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Impurity Injection by Laser Blow-Off (LBO) 
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Impurity injection by laser blow-off (LBO) 

• A laser illuminates a thin film of tracer material on a 
target area 

• Resulting neutrals ballistically enter plasma and emit 
radiation 

• Quantity of neutrals is controllable 

• Photodiode detectors measure impurity radiation 

Schematic of HSX LBO System 

HSX Aerial View 

Laser Blow-Off Process 

Lines-of-Sight for Photodiode A34 

Lines-of-Sight for Photodiode A12M 
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Good Signal to Noise Measurement  
Without Strong Density Perturbation 
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‘Typical’ QHS plasma discharge 

• Impurity injections are performed with 2 μm aluminum layer over a 10 nm 
chromium layer 

• Aluminum neutrals penetrate into plasma before ionizing 

• Photodiode arrays measure the total radiation signal 

• Signals provide line-integrated measurements of local emissivity 

• Channel 4 of array A34 and channel 11 of A12 m are closest to center of core 

A34 ‘Core’ Channel 4  

A12M ‘Core’ Channel 11 

Shot #39 

Shot #39 

Line-averaged Electron Density 
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Simulating Experimental Signals 
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Brightness – line-integrated plasma emissivity 

𝐵𝑖 =  𝜀tot 𝑑𝑙  where  𝜀tot =  𝜀Al n+

12

n=0

 

𝜀tot – total emissivity modeled by STRAHL, 𝑑𝑙 – line-element along the channel LOS, n – aluminum charge states 

LBO photodiodes are unfiltered – captures signals in the spectral range of 0.4 nm to 1100 nm  

Therefore the responsivity is not constant but a function of wavelength 𝜆,  responsivity function 𝓡𝝀. 

𝐵𝑖 = 𝜀tot(𝑥, 𝜆)ℛ𝜆 𝑑𝑙 𝑑𝜆 

 

AXUV Photodiode Electrical Signal 
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𝐺1 – TIA gain, 𝐺2 – voltage amplifier gain, 𝜂 – etendue of the diode channel line-of-sight (LOS) 

𝓡𝟎 – ideal diode responsivity as a constant value 

L. Delgado-Aparicio, 2014 



J. Fernando Castillo 

Using the STRAHL Code 
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STRAHL Inputs  

• Cylindrical plasma geometry 

• ADAS (Atomic Data and Analysis Structure) database  

• Experimental radial profiles of 𝑇𝑒, 𝑛𝑒, 𝑇𝐼 and 𝑛𝐻 

• Impurity diffusion coefficient 𝐷 = 2 m
2
s  and convective 

velocity 𝑣 = 0 m s  are constant across r/a 

 

 

STRAHL (R. Dux,  2006) is a 1D transport code that solves 
the coupled continuity equation of all impurity charge 
states 
 

𝜕𝑛𝐼,𝑧
𝜕𝑡
=
1

𝑟

𝜕

𝜕𝑟
𝑟 𝐷
𝜕𝑛𝐼,𝑧
𝜕𝑟
− 𝑣𝑛𝐼,𝑧 + 𝑄𝐼,𝑧 

‘Typical’ QHS Background Plasma Parameters 
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How STRAHL Results are Analyzed 
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• Dominant ionization stages occur 
at core region 

• Higher charge states 

Al 6+, Al 7+, Al 8+ 

• Dominant ionization stages occur 
away from edge region 

• Lower charge states 

Al 1+, Al 2+, Al 3+ 

STRAHL Outputs 

Total Impurity Emissivity 

Total Emissivity refers to the sum of all 
aluminum charge states 

• Initial intensity starts at 0.10 ms  

•After 0.80 ms, large increase in core region 

Al Charge States at 0.10 ms Al Charge States at 0.80 ms 
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Impurity Confinement Time Can Be Measured after 1 ms 
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• Line-of-sight (LOS) integrated charge states  of emissivity 

• Black line is total sum of all LOS integrated signals:  𝝉 = 1.47 ms 

• After 1 ms, slope of total emissivity is the same as highest charge states: 

    Al 6+, Al 7+ and Al 8+ 

A common technique to deduce impurity confinement time is by measuring decay time of the 
highest observable charge state (R. Burhenn, 2009) 

 

Log of Emissivity 
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Dependence of Impurity Confinement on  
Power exhibit a 𝜏~P-1 Scaling 
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Absorbed Power Scan 

Heating location varied – off-axis heating 
changes power 

• Exponentially fitting after 1 ms used to infer 𝜏𝑖𝑚𝑝  

Analysis suggest 𝝉𝒊𝒎𝒑 ∝  𝑷𝐄𝐂𝐑𝐇
−𝟏.𝟏 

Electron Density Scan 

Two line-average electron densities 

• 3 × 1012 cm−3,  𝜏𝑖𝑚𝑝~ 1.5 ms ,  𝑃𝑎𝑏𝑠~ 11.3 kW 

• 1 × 1012 cm−3,  𝜏𝑖𝑚𝑝~ 1.2 ms ,  𝑃𝑎𝑏𝑠~ 10.1 kW 

With only 2 data sets 𝝉𝐢𝐦𝐩 ∝  𝒏𝐞
𝟎.𝟐 
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PENTA  Predicts Much Slower Decay than shown in Experiment 
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PENTA is a numerical tool that calculates the neoclassically-

predicted impurity transport  

PENTA Inputs 

• Typical HSX background parameters 

PENTA Outputs 
• D and 𝑣 profiles are used as inputs to STRAHL Code 

PENTA Al 8+ Diffusivity PENTA Al 8+ Convective Velocity 

Log of Aluminum Density 

The black line represents the STRAHL result 
when using the PENTA profile as an input 

Neoclassically-predicted decay of 310 ms 
is much longer than experimental decay 
times of ~1.5 ms  

STRAHL Outputs 
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Sensitivity of Diffusivity is Much More Impactful than Velocity 
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Comparing Diffusion Coefficients 

• 𝑣 = 0 m s   is constant 

• All charge states decay at the same rate 

Modeled 𝜏 𝑫 = 𝟐 𝒎
𝟐
𝒔  ≈ 1.47 ms 

is closest to experimental 𝜏 ≈ 1.5 ms 

Comparing Convective Velocities 

• 𝐷 = 2  m
2
s   is constant 

• 𝜏(𝑣 = -5) is only 0.3 ms larger than 𝜏(𝑣 = +5) 

Decay time shows weak linear dependence 
on convective velocity 
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Application of a Synthetic Diagnostic  

11/9/2020 Impurity Transport Experiments at the HSX Stellarator with Laser Blow-Off Injections 12 

Step 1: Measure each detector’s sightline entry and exit points at the LCFS (last closed flux surface) with 
respect to the position of the chip (Cartesian coordinates). 

Step 2: Discretize the vector between these 2 points into a set of Cartesian values for each channel LOS. 

Step 3: Transform each Cartesian point from lab coordinates to 𝜌 coordinates using VMEC. 

 

 
Lines-of-Sight for Array A34 
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Calculated Simulated Array Signals 
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Step 4: The line-integrated emission, 𝐵𝑖 =  𝜀tot(𝑥) 𝑑𝑙, for the detector LOS is interpolated from 
the modeled emissivity profile. 

Simulated A34 Array Signal Modeled Emissivity 
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Simulated Core Signal Decay Times are Close to Experimental 
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Simulated Core Signal Decay Times are Close to Experimental 
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Comparing Experimental Results with Simulated Signals 
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Simulated A34 Array Signal Experimental A34 Array Signal 

Next Step:  Implement optimization algorithm with impurity diffusivity acting as a free parameter to 
minimize difference between simulated and experimental signals 

 𝑆sim − 𝑆exp
2

channel
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Conclusions 
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• Laser blow-off experiments at HSX have produced good signal to noise measurements 
without strong density perturbations. 

• Analysis of modeled STRAHL emissivity shows that at HSX parameters impurity 
confinement time can effectively be measured 1 ms after laser pulse. 

• Studies of the dependence of the impurity confinement on the absorbed ECH power exhibit 
a 𝜏~P-1 scaling, similar to the ISS04 scaling, suggesting a substantial impact of turbulence on 
the impurity confinement in HSX. 

• Neoclassically-predicted calculations from the PENTA code show much longer decay times 
compared to experimental measurements.  

• Neoclassical diffusion alone is insufficient to explain these results and suggest a substantial 
impact of turbulence on the impurity confinement in HSX.  
 

 

 

 


