Colil Shape Gradients for Island Width Minimization in Stellarators
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Introduction and Motivation Island Width Objective Function

Magnetic Islands are Inherent to Stellarator Equilibria Magnetic Field with Closed Flux Surfaces is Perturbed

« 3D equilibria are non-integrable in sy LT » Consider a magnetic field By that is comprised of a series of closed flux surfaces
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* Magnetic islands can be optimized for in many ways + fwisan island width objective function that has a global minimum when the
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» Not directly related to island width
* Used for CTH
* Resonant Fourier Harmonic
* Is directly related to island width
» Requires quadratic flux
minimizing surfaces
* Used for NCSX

» Using Stokes’ theorem the helical flux can be written as the difference in the
magnetic action of the periodic field lines
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+ Variations of the helical flux assume the locations of the periodic field lines stay

+ Total reconnected helical flux fixed ]
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« NCSX islands are extremely sensitive thus making coil tolerances stringent and coil

motivating minimization of the island width sensitivity + Variations of the magnetic field are assumed to be linear and are given as

variation of it coil
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WISTELL-A Island Width Minimization Results

* The WISTELL-A configuration is a QHS stellarator [3]
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» FOCUS optimized single-filament coils reconstruct boundary
well, but resonant field error induces sizeable 8/7 islands

» Subsequent coil optimizations are performed that
target the 8/7 island’s squared helical flux, f,,,

+ Coil shape gradient for helical flux used to minimize f,,,

Free-boundry after Iical
flux optimization

* Original coils shown in red and helical flux optimized coils
shown in blue. Small differences in coil geometry indicate high island sensitivity
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Future Work and Conclusions

Helical Flux Variations that do not Assume Periodic Field Lines
Stay Fixed
» Adjoint formulation for helical flux variations is derived that does not assume
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» By taking variations of £ we find two coupled ODEs for the adjoint variables
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» Using these adjoint variables, variations of £ are independent of the magnetic
field line location and if r is a magnetic field line then §£ = 6F
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Validating Variations are Linear
» The coil tolerance functional assumes variations are linear. If linear variations do
not predict the actual variations accurately enough, higher order variations will
need to be included in the coil tolerance functional

» To understand quadratic functional variations, consider the functional ] that has
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 First and second order variations of the functional are given as
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» To check if variations are linear, a subset of coil variations, with magnitudes
below some tolerance, will be tested to see if the linear helical flux variations are
sufficiently close to the actual helical flux variations

Colil Tolerance Maximization
» The coil tolerance can be maximized after an accurate coil tolerance is calculated
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 Variations of coil tolerance may be difficult to calculate especially if the
assumptions that variations are linear and periodic field lines stay fixed are poor

Conclusions
» The helical flux squared is an effective island width objective function

* The assumption that periodic magnetic field lines stay fixed under magnetic field
variations is good enough to minimize the WISTELL-A 8/7 island

» Acoil tolerance functional is derived, but includes two caveats
* Periodic magnetic field lines stay fixed
» Both functional variations are linear
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