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Impurity Transport Studies in Stellarators

* Non-ambipolar fluxes lead to charge separation & E,. field
— Impurity accumulation & excessive radiative losses

* Impurity influx characterized by Diffusive and Convective components

* Many efforts to try to infer impurity transport profiles by forward modeling
of spectrometry data

* Here we present a strategy for inferring D and V profiles at HSX using  Diffusion Convection
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CHERS Diagnostic at HSX

* NBlinjection at 28 keV, 4A particle current
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pyFIDASIM can Calculate Neutral Beam Emission and Background Neutral Densities

* PyFIDASIM is a 3D Monte Carlo Code which follows neutrals as they traverse the plasma

* Contains information on 3D geometry of diagnostic lines of sight
— Calculates charge exchange radiation along diagnostics

* Defining a source function for neutrals at the LCFS allows for calculation of background neutrals

3D Neutral Density Calculated by pyfidasim
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Pystrahl for Stellarator Configurations

e Pystrahl (python translation of STRAHL code) solves the impurity
transport equation on a 1D radial grid Neutral Carbon Deposition Profile

* Inputs: T,, ng, ng, impurity source, D, v; Output: n; (7, t) le-8
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Objective Function & Global Minimization

 Active Signal can be easily inverted to get shape of C®* profile
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Fitting Results Indicates Anomalous Transport

* Objective function minimized using global optimizer “Basinhopping”
* Considering only neoclassical transport (calculated via PENTA code)
does not explain active and passive CX measurements
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Fitting Results Indicates Anomalous Transport

* Objective function minimized using global optimizer “Basinhopping”
* Considering only neoclassical transport (calculated via PENTA code)
does not explain active and passive CX measurements
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Fitting Results Indicates Anomalous Transport

* Objective function minimized using global optimizer “Basinhopping”
* Considering only neoclassical transport (calculated via PENTA code)
does not explain active and passive CX measurements

e Addition of fitted anomalous component significantly improves fit £ =~ Meo-Only.
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Fitting Results Indicates Anomalous Transport

* Objective function minimized using global optimizer “Basinhopping”
* Considering only neoclassical transport (calculated via PENTA code)
does not explain active and passive CX measurements

e Addition of fitted anomalous component significantly improves fit § ~[ oo only
* Shape of diffusion profile matches that of electron heat diffusivity Z
calculated using power balance calculation hA
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Summary & Outlook

Summary
* Radially resolved impurity diffusion profiles reconstructed for the first time at HSX

* Pystrahl package optimized for application in stellarator geometries

* Fitted diffusion profiles support hypothesis that particle transport in HSX dominated by anomalous
contributions

« Diffusion shape follows that of heat diffusivity which is hypothesized to be driven by electrostatic
turbulent fluctuations

Outlook

* Potential for future analysis of “mirror configuration” where quasi-symmetry is broken and higher
levels of neoclassical transport are expected

* Analysis can be refined by using Bayesian approaches such as Markov Chain Monte Carlo

Related paper under review for publication:
Swee, C. (2021). Impurity Transport Studies at the HSX Stellarator Using Active and Passive CVI Spectroscopy. Manuscript submitted for publication
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Extra Stuff — Temperature Sensitivity (1)

e Corona equilibrium is in absence of charge exchange and transport (balance of ionization &
recombination)

* Charge distribution highly sensitive to electron temp at experimental values
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Extra Stuff — Temperature Sensitivity (2)

* Minimization carried out for various temperature offsets
* Higher temperature offsets seem to reproduce data better
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Extra Stuff — Initial MCMC Results

* Similar workflow fed into Markov Chain Monte Carlo scheme to infer diffusion profiles

* Median sample distribution agrees well with basinhopping conclusion though absolute value of
diffusion profile ~1 order of magnitude lower

* Further refinement of approach needed...

MCMC Inferred Diffusion Profile
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