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Motivation and goals of this study 
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Motivation to study impurity transport: 

• Impurities dilute fuel and radiate away energy 
from the plasma 

• Too much He ‘ash’  in core 

• Wall-sourced impurities accumulate 

• Predict and control impurity accumulation 

• Impurity transport is a serious constraint and 
needs to be better understood in 3-D fusion 
devices 

 

 Goals of this study: 

• Quantify impurity transport properties of the HSX 
stellarator 

• Compare these results to neoclassical calculations 
to determine whether transport is anomalous 

HSX Stellarator 
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Talk outline 

• Introduction 

• Experimental Set-up and Data Collection 

• Computational Modeling and Analysis 

• Experimental Findings 

• Summarize Key Results 



Neoclassical theory predicts impurity accumulation 
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Law of Particle Conservation 
 

𝜕𝑛𝐼,𝑧(𝑟)

𝜕𝑡
= −𝛻 ∙ Γ𝐼,𝑧 𝑟 + 𝑄𝐼,𝑧 𝑟  

 −𝐷𝛻𝑛𝐼,𝑧 + 𝑣𝑛𝐼,𝑧  

Positive impurity flux density Γ𝐼,𝑧 correlates to an outward flux 

• 𝑄𝐼,𝑧 – sources and sinks due to ionization, 
recombination and charge exchange 

• Positive 𝑣 indicates the convection direction is 
outward whereas a negative 𝒗 is inwards 

Neoclassical Particle Flux Density 

Γ𝐼
𝑛𝑐 = −𝐷11 ∙ 𝛻𝑛𝐼 + 𝐷11

𝑞𝐸𝑟
𝑇𝐼
− 𝐷12
𝛻𝑇𝐼
𝑇𝐼
∙ 𝑛𝐼 

    
Velocity is dependent on the electric field 

 

• Electron root confinement  – Stronger flux drift of 
electrons to ions leads to positive, outward-directed 𝐸𝑟 

• Ion root confinement – Inward-directed  𝐸𝑟 may cause 
impurity ion accumulation which should be avoided 

HSX is optimized for improved neoclassical transport. 
 

What happens with impurity transport? 
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Introduction to the HSX Stellarator 
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HSX Cutaway Rendering  Helically Symmetric eXperiment 

• Optimized Stellarator – Quasi-Helical Symmetry 

• 4 field periods, 12 modular coils per period 

• 48 auxiliary coils for configuration flexibility 
 

‘Typical’ plasma discharge 

• QHS, 1 Tesla, 44 kW injected power 

• Line-averaged electron density of 3 × 1018 m-3 (reproducibility) 

• Absorbed ECH power is ≈ 11.3 kW, deposited on-axis 

Electron Temperature Electron Density 
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Impurity injection by laser blow-off (LBO) 
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LBO technique is used at C-Mod, JET, TJ-II, W7-AS, W7-X and more 

• A laser illuminates a thin film of tracer material (aluminum) on a target 

• Resulting neutrals ballistically enter plasma and emit radiation 

• Quantity of neutrals is controllable 

• Photodiode detectors measure impurity radiation 

Schematic of HSX LBO System 

Photodiode Arrays 

HSX 
Aerial 
View 
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LBO experimental results – ‘Typical’ QHS plasma discharge  

• Aluminum neutrals penetrate into plasma before ionizing 

• Photodiode arrays covers the spectral range of 0.4 nm to 1100 nm 

• Signals provide line-integrated measurements of local emissivity 

• Channel 11 of array A12M is closest to center of core 

Photodiode Array lines-of-sight  

Good signal-to-noise ratio without strong density perturbation 

A12M ‘Core’ Channel 11  

Experimental A12M Array Signals 

Line-averaged Electron Density 

Discharge #39 

Castillo, J.F. et al., JINST 040P 0621 (2021).  
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STRAHL code is used for computational analysis 
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STRAHL is a 1D transport code that solves the radial 
continuity equation of all impurity charge states 

𝜕𝑛𝐼,𝑧
𝜕𝑡
=
1

𝑟

𝜕

𝜕𝑟
𝑟 𝐷
𝜕𝑛𝐼,𝑧
𝜕𝑟
− 𝑣𝑛𝐼,𝑧 + 𝑄𝐼,𝑧 

 

Inputs  

• Cylindrical plasma geometry 

• ADAS (Atomic Data and Analysis Structure) database  

• Experimental radial profiles of 𝑇𝑒, 𝑛𝑒, 𝑇𝐼  and 𝑛𝐻 

• Impurity neutral source rate function, scrape-off layer loss 
time τsol 

• Impurity transport coefficients – user provided 

 𝐷 = 3.0  m
2
s , 𝑣 = 0  m s  

Outputs 

• Total impurity emissivity 𝜺𝒕𝒐𝒕 
𝐖
𝐦𝟑   after LBO discharge 

• Sum of all aluminum charge states 

• Strong intensity occurs 1 ms after LBO discharge 
Dux, R., STRAHL User Manual, (2006).  
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Synthetic diagnostic output is compared to experimental signals 
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Brightness – Line-integrated plasma emissivity 

𝐵𝑥 = 𝜀𝑡𝑜𝑡(𝑥, 𝜆)ℛ𝜆 ⅆ𝜆 ⅆ𝑙 

𝜺𝒕𝒐𝒕 modeled by STRAHL, diode responsivity 𝓡𝝀 from data sheet 

1. Discretize detector sightline vectors 

• Each detector line-of-sight has a lab coordinate entry and exit point 
at the LCFS 

2. Convert lab coordinate vector values 𝑥 to 𝜌 using VMEC equilibrium 

3.  𝜀tot at a given radius and time is interpolated from STRAHL result 

4. Calculate  𝜀𝑡𝑜𝑡(𝑥, 𝜆)ℛ𝜆 ⅆ𝜆 ⅆ𝑙 

• All individual Al wavelengths between 0.4 and 1100 nm considered 

Experimental Photodiode Signals 

Simulated Photodiode Signals 

Simulated signals are obtained using a synthetic diagnostic 
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Optimization algorithm provides best fit for data 
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Objective – Generate 𝐷 values consistent with data 

• Optimization algorithm, with 𝐷 acting as a free 
parameter, is used in conjunction with STRAHL-
modeled synthetic diagnostic 

• Minimize difference between modeled simulated 
signals and experimental measurements 

 

Least-squares Data Fitting Method 

min
𝑥
  𝑤𝑗 𝑓1,1(𝑥)

2+𝑓1,2(𝑥)
2+⋯𝑓𝑗,𝑖(𝑥)

2

𝑖𝑗

 

• Residual for channel j at data point i 

𝑓𝑗,𝑖 𝑥 = 𝑆exp − 𝑆sim 

• 𝑤𝑗 is  weight applied to each channel 

 

Fitted Experimental Data, Channel 11 
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Off-Axis heating varies absorbed power 
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Many impurity transport experiments determine how impurity confinement time varies with power 

• Varying the location where power is deposited in plasma changes the absorbed power  

• Absorbed power decreases as heating location is moved away from on-axis core heating 

• Electron line-average density kept constant at 3 × 1018 m-3 in order to determine reproducibility 

• 6 discharges for each heating locations –  𝑟/𝑎 ≈ 0 (on-axis), 𝑟/𝑎 ≈ 0.2,  𝑟/𝑎 ≈ 0.3,  𝑟/𝑎 ≈ 0.4 

Comparing Signals from 2 Heating Locations Comparing Te Profiles 
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Diffusivity is 2 orders of magnitude more than neoclassical predictions 
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Experimentally-Inferred Diffusivity 

Neoclassical diffusion alone is insufficient to explain these results  

Neoclassically-Predicted Diffusivity 
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Uncertainty studies show inferred diffusivity is well-constrained 
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Uncertainty Analysis – investigate how STRAHL 
input variables affect inferred diffusivity 

• Electron temperature 𝑇𝑒  and density 𝑛𝑒 profiles 

• Neutral hydrogen density 𝑛𝐻 profile 

• Scrape-off layer loss time 𝜏𝑠𝑜𝑙 

• 𝜎𝐷 = Standard deviation of D values for 6 
discharges 

 

Total Propagation of Uncertainty 

𝛿𝑡𝑜𝑡 = 𝛿𝑇𝑒
2 + 𝛿𝑛𝑒

2 + 𝛿𝑛𝐻
2 + 𝛿𝜏𝑠𝑜𝑙

2 + 𝜎𝐷
2 

 

 

Contour Plot of Decay Times 

Sensitivity Study – Impurity convective velocity component 𝑣  

• Plot shows calculated decay times of each 𝐷 and 𝑣 combination 

• −10 < 𝑣𝑛𝑐 < +10 is 1 order of magnitude smaller and larger 
than neoclassical PENTA predictions 

• 𝐷 must be constrained between 3-4 m2/s for ‘typical’ parameters 
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STRAHL modeling shows impurity 
confinement time can be measured after 1 ms 
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Al Charge States at 1.0 ms 

On-Axis Signal after LBO 

Log of Charge State Emissivities LOS integrated charge states of emissivity 

• Black line is total sum of all LOS 

integrated signals 

• After 1 ms (red), slope of total emissivity 

is the same as highest charge states 

A common technique to deduce impurity 

confinement time is by measuring decay 

time of the highest observable charge state 

Al charge state emissivities  

• 1.0 ms after LBO discharge 

• Dominant charge states 
occur at core region 

• Higher charge states 

Al 7+, Al 8+, Al 9+ 

Diode measurement single discharge 

• Dashed line represents LBO laser pulse 

• Data is fitted to exponential curve e−𝑡 𝜏𝑒𝑥𝑝  

after 1 ms has elapsed 

Average decay time for 6 discharges is: 

𝜏𝑒𝑥𝑝 ≈ 1.52 ± 0.11 ms 
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Dependence of impurity confinement on  
power exhibit a 𝜏~P-1 scaling 
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Impurity Confinement Times 

This suggests a substantial impact of turbulence on the impurity transport. 

Impurity transport experiments commonly 
determine how confinement time scales with 
power 

• Power scaling dependence where 𝛼 = 1.0 

𝜏𝑖𝑚𝑝~𝑃𝑎𝑏𝑠
−𝛼  

• ISS04 unified scaling law approximates 
𝛼 = 0.61 for energy confinement 

 

• Nearly all ISS04 discharges are dominated by 
anomalous transport 

 

Yamada, H. et al., Nucl. Fusion. 45 00295515 (2005).  
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Summary 
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Key Results 

• The LBO system provided good signal-to-noise ratio without strong density perturbation. 

• Signals measured were reproducible with similar decay results for each set of experiments. 

• The synthetic diagnostic obtained simulated signals that closely match experimental core signals. 

• Analysis of modeled STRAHL emissivity shows that at HSX parameters, impurity confinement time can 
effectively measured 1 ms after laser pulse. 

• The impurity diffusivity, being 2 orders of magnitude more than neoclassically-predicted values, is 
experimental proof the neoclassical diffusion alone is insufficient to explain these results.  

• Studies of the dependence of the impurity confinement on the absorbed ECH power exhibit a 𝜏~P−1 
scaling, similar to the ISS04 scaling, suggesting a substantial impact of turbulence on the impurity 
confinement in HSX. 
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