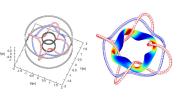
UW-Madison table-top stellarator experiment - parameters

and design


T. Gallenberger¹, B. Geiger¹, M. Gerard¹, R. Albosta¹, M. Granetzny¹, T.G. Kruger¹, J. Schmitt², B. Faber¹

- 1) UW- Madison, Wisconsin, USA
- 2) Auburn University, Alabama, USA

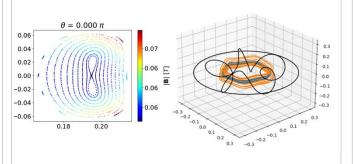
Motivation

 Design a table-top stellarator feasible for lab courses and Helicon wave experiments

Based on coil equations from Yamaguchi [1]

$$R(\phi) = R_0 \epsilon_r \cos(N\phi + \alpha_r \sin(N\phi)) + R_0$$

$$Z(\phi) = R_0 \epsilon_z \sin(N\phi + \alpha_z \sin(N\phi))$$


- R_0 is the major radius, $\epsilon_{r,z}$ are the ratio of radial and vertical minor radii to major radius, N is the periodicity, $\alpha_{r,z}$ control the radial and vertical pitch
- The original design uses 2 4-period helical coils and 4 vertical field coils
- However, coils are very close to the plasma in the high-field regions → very difficult to build
- → Identify an alternative design that is easier to realize

■ New coil geometry

- Identified using a new field line following code written in python
 - Calculate the magnetic field of arbitrary coils using the Biot-Savart law
 - Follow field lines using the leapfrog method:

$$x_{n+1} = x_n + |\vec{B}(x_n + .5|\vec{B}(x_n)|)|$$

- One planar coil in combination with one helical coil provides good confinement
- · 5 periods instead of 4 works without additional vertical field coils

Grid search to satisfy engineering constraints

Constraints

- A minimum of 2 cm is required between the coils and the vacuum vessel (cylindrical glass vessel)
- Placement of the planar coil outside of the helical coil
- Reasonable plasma volume

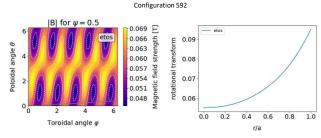
Parameter scan

- Coil system described by 6 free parameters: $(R_0, R_1, \epsilon_z, \alpha_{r,z})$ and the ratio of currents in coils 1 and 2.
- Scan the parameter space using 15 different values for each parameter (11 M configurations)
- · 682 configurations with closed flux surfaces identified

	R_0	R_1	ϵ_z	α_z	α_r	Current ratio
		$f(R_{0,min})$.1	.1	-2
Maximum	.25	$f(R_{0,max})$.9	.8	.8	-7

VMEC Results

Inputs

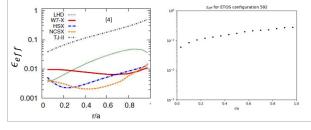

- Fourier decomposition of last closed flux surface
- MGRID with radial, vertical and poloidal mesh size < .1mm
- Pressure (here vacuum approximation)

Output

 |B|, rotational transform, normalized curvature and Fourier amplitude plots

318 successful VMEC output files obtained:

- Several configurations exhibit reasonable values of the rotational transform
- |B| plot shows the magnetic field structure



■ Neo-Classical Transport evaluation

• Consideration of ϵ_{eff} as a metric for neoclassical transport



- Newly developed stellarator optimization code [2] used to calculate ϵ_{eff}
- Obtained ϵ_{eff} values are comparable to TJ-II, an existing mid-scale stellarator [3]

CAD model

- Use of Solid Works to model the device
 - Helical coil with diameter of 4 cm
 - Glass vessel with diameter of 10 cm
- 3D printed coil supports
- Vendor of the glass vessel identified

■ Summary and Outlook

Summary

- New stellarator design consisting of only one helical and one planar coil
- Design optimized for buildability using a cylindrical glass vessel
 - Rotational transform and neoclassical transport estimates sufficient for a table-top experiment

Outlook

- Collaborate with the UW Mechanical Engineering Department for 3D printed coil supports
- Use existing infrastructure from a previous experiment "Helicotor"

Acknowledgements: Work supported by department startup funding

Contact: tbgallenberg@wisc.edu

[1] H. Yamaguchi Nucl. Fusion 59 (2019)

[2] B. Faber, et al, PP11.00089 (2021)

[3] V. Tribaldos Physics of Plasmas 8, 1229 (2001)

[4] P. Helander et. al. Plasma Phys. Control. Fusion 54 (2012)