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Impurity transport study is a major element in HSX

program

Available tools: Laser Blow-Off system, CXRS and passive fast
spectrometers.

Experimental goals:

e Obtain power and density scaling of impurity confinement in
quasi-symmetric and symmetry degraded configurations.

e Compare D & v profiles in both configurations.

e |dentify regimes of core/edge impurity screening
(peaked/hollow profiles) : biased electrode, edge islands.

This talk: Preliminary results from Laser Blow-Off



Global confinement time is obtained using Laser Blow-Off

850 mJ Nd:YAG laser

Currently used for Aluminum injection

Photodiode detectors. 5 arrays consisting of 20 channels each
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Initial studies focus on scaling of impurity confinement
time with ECH power and electron density
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e Heating location varied to change absorbed power for same
injected power, keeping density fixed.
e HSX scaling similar to W7-X (7 « n8?) and W7-AS
(1 o< P798) results
tJ. F. Castillo, HSX




Near-term plans

e Get more data for power and density scaling

[+8.9,10)

e Measurements of specific charge states (A instead of

broadband

o Get D & v from STRAHL.
STRAHL & optimization model are
being improved (B. Geiger et al.)
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e Comparison with other experiments
(N. Tamura)
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Neoclassical Calculations

Effect of E, and V T; in a quasi-symmetric stellarator



In a mixed collisionality regime, E, effect gets weaker,

temperature screening is possible in stellarators'

E, coefficient (blue) is larger at

V T; coefficient low collisionality
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e Mixed collisionality analytical calculation agrees with SFINCS
results (left figure).

o At lower v*, even though V T; coefficient is negative, E, effect
is expected to dominate (right figure).

THelander et al., PRL [2017], A. Mollén, POP [2015]



Similar calculations are done for HSX configurations using

PENTAT. Experimental profiles, except T; = T.

Plasma profiles used Collisionality
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Both main and impurity ions are in LMFP throughout the plasma.

D. A. Spong [2005], J. Lore [2010]



Outward impurity flux is calculated in the core region for

both configurations, even though E, is negative.
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QHS - standard quasihelically symmetric configuration
Mirror - Symmetry degraded configuration.



Flux near the core is largly unaffected by E, direction

To check the effect of E,, repeated calculations with E, direction

reversed.
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Transport coefficients are calculated at r/a~ 0.14 for a

range of impurity collisionality

Plasma Parameters Collisionality Regimes
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e Experimental values no & Te areused, T; = T, = T¢ is
assumed, impurity density = 1% of ne is used.

e T; is varied to scan the collisionality regimes, keeping all other
parameters the same in the calculation.



Outward impurity flux is calculated for both configurations

Radial Flux of C*9
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e Impurity expulsion, except for a narrow range of collisionality

when E,=0 in QHS.



Outward directed convection velocity is due to temperature

screening (V T; effect)

Vn; Coefficient

Sign of E, has no effect except in the very low collisionality.
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e HSX neoclassical calculations for T; = T, case show outward
convection of impurities for ion-root electric field.

e Outward convection is due to temperature screening (V T;)

o E, effect is negligible in presence of relatively strong V T;,
even at low collisionality.

Both HSX and W7-X (mixed collisionality) results contradict
conventional thinking about temperature screening in stellarators.

Similar calculations in other devices will be useful.



