Impurity transport in HSX: Recent experimental results and neoclassical calculations

Santhosh Kumar

HSX Plasma Laboratory, University of Wisconsin-Madison, USA

19th CWGM, Berlin, Germany. March 12-14, 2019

Acknowledgments

J. F. Castillo, K. M. Likin, F. S. B. Anderson, A. Bader, J. N. Talmadge, D. T. Anderson (UW-Madison)

N. Tamura (NIFS)

Impurity transport study is a major element in HSX program

Available tools: Laser Blow-Off system, CXRS and passive fast spectrometers.

Experimental goals:

- Obtain power and density scaling of impurity confinement in quasi-symmetric and symmetry degraded configurations.
- Compare D & v profiles in both configurations.
- Identify regimes of core/edge impurity screening (peaked/hollow profiles): biased electrode, edge islands.

This talk: Preliminary results from Laser Blow-Off

Global confinement time is obtained using Laser Blow-Off

- 850 mJ Nd:YAG laser
- Currently used for Aluminum injection
- Photodiode detectors. 5 arrays consisting of 20 channels each
- Broadband emission measurements

One of the photodiode arrays

Initial studies focus on scaling of impurity confinement time with ECH power and electron density †

- Heating location varied to change absorbed power for same injected power, keeping density fixed.
- HSX scaling similar to W7-X $(au \propto n_e^{0.2})$ and W7-AS $(au \propto P^{-0.8})$ results

[†]J. F. Castillo, HSX

Near-term plans

- Get more data for power and density scaling
- Measurements of specific charge states (AI^{+8,9,10}) instead of broadband

- Get D & v from STRAHL.
 STRAHL & optimization model are being improved (B. Geiger et al.)
- Comparison with other experiments (N. Tamura)

Effect of E_r and ∇T_i in a quasi-symmetric stellarator

Neoclassical Calculations

In a mixed collisionality regime, E_r effect gets weaker, temperature screening is possible in stellarators[†]

 E_r coefficient (blue) is larger at low collisionality

- Mixed collisionality analytical calculation agrees with SFINCS results (left figure).
- At lower ν^* , even though ∇T_i coefficient is negative, E_r effect is expected to dominate (right figure).

[†]Helander et al., PRL [2017], A. Mollén, POP [2015]

Similar calculations are done for HSX configurations using PENTA † . Experimental profiles, except $T_i = T_e$

 $n_{C^{+6}} = 1\%$ of n_e Both main and impurity ions are in LMFP throughout the plasma.

[†]D. A. Spong [2005], J. Lore [2010]

Outward impurity flux is calculated in the core region for both configurations, even though E_r is negative.

QHS - standard quasihelically symmetric configuration Mirror - Symmetry degraded configuration.

Flux near the core is largly unaffected by E_r direction

To check the effect of E_r , repeated calculations with E_r direction reversed.

Transport coefficients are calculated at $r/a \sim 0.14$ for a range of impurity collisionality

- Experimental values $n_e \& T_e$ are used, $T_i = T_z = T_e$ is assumed, impurity density = 1% of n_e is used.
- T_i is varied to scan the collisionality regimes, keeping all other parameters the same in the calculation.

Outward impurity flux is calculated for both configurations

• Impurity expulsion, except for a narrow range of collisionality when E_r =0 in QHS.

Outward directed convection velocity is due to temperature screening (∇T_i) effect

Sign of E_r has no effect except in the very low collisionality.

Summary

- HSX neoclassical calculations for T_i = T_e case show outward convection of impurities for ion-root electric field.
- Outward convection is due to temperature screening (∇T_i)
- E_r effect is negligible in presence of relatively strong ∇T_i , even at low collisionality.

Both HSX and W7-X (mixed collisionality) results contradict conventional thinking about temperature screening in stellarators.

Similar calculations in other devices will be useful.