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Q Introduction: Understanding the carbon source and transport in the
SOL

O Experimental Set-Up
O General behavior of carbon radiation with density
O Impact of carbon source on radiation behavior

J Discussion and Future work



Plasma surface interaction combined with SOL impurity

transport determine the intrinsic impurity source

O Carbon introduced into the plasma via chemical and physical erosiont:

Y ow(E, T
low( 5 su‘r‘f.24 + Yonys | Pu + Vip Pimyp -
1+ ( 3 )

6.0E21

b, = (Ychem + thys)cDH —

O Two source regions: divertor (small area, receives large heat and particle
flux) and first wall (large area, receives small heat and particle flux)

[1] Roth et al, Nucl. Fusion 44 (2004)
[2] Stangeby, Plasma Boundary of Magnetic Fusion Devices, IOP Publishing Ltd. (2000)




Plasma surface interaction combined with SOL impurity

transport determine the intrinsic impurity source

O Carbon introduced into the plasma via chemical and physical erosion(:
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O Two source regions: divertor (small area, receives large heat and particle
flux) and first wall (large area, receives small heat and particle flux)

U Once eroded and ionized, a balance of the parallel friction and ion thermal
forces determine the transport in the SOL!2I;
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O Plasma surface interaction and force balance can be interlinked

O Essential to monitor both carbon erosion and its transport in the SOL

[1] Roth et al, Nucl. Fusion 44 (2004)
[2] Stangeby, Plasma Boundary of Magnetic Fusion Devices, IOP Publishing Ltd. (2000)




Upper divertor puff

Puffing a known amount of methane from a downstream
in Module 5 via
divertor fueling

location helps separate source and transport behavior
mnnmnmm) or

”/llllmm))))

Spectroscopic
observation system
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connected lower
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D
AAAAAA

Upstream (midplane)
filterscope observation
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O A scan of line integrated density was
performed (4-8E19m-2)
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O At each density level, 3 methane puffs
of different sizes were used to
determine source and transport

characteristics

O Hypothesis: As density is increased,
SOL retention of carbon increases

due to increased friction force




Overview HEXOS observation shows relative decrease of C-

VI line emission with density, while C-Ill remains constant

C-VI normalized to Line Integrated n. C-lll normalized to Line Integrated n.
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O Overall line emission of C-VI (3.37nm) is decreased, while C-llI
(117.5nm) emission remains relatively unchanged

O Lowered C-VI emission could be:
U Emission effect (due to lowered temperature)
0 Source effect (lowered erosion)
O Transport effect



Half radius ECE measurement shows a decrease of T, on

the same order of magnitude as C-VI decrease

C-VI normalized to Line Integrated n. Half Radius Plasma Temperature
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U A decrease of electron temperature around the same order of
magnitude as the decrease in C-VI
O Likely emission effect
O lonization rates need to be checked

O Still important to check source effect/transport effect from methane
puffing



Assessment of carbon source requires full photon
source + local plasma parameters

Divertor Surface Divertor Surface
Typical set-up Available calibrated set-up
L Assessment of carbon source from photon flux requires full photon
flux source

O Typical set-up captures full source as distribution in space

O Set-up has no spatial resolution on divertor surface, but full photon
source can be found with enough channels

O LoS parallel to the divertor is used also by He-beam - local
measurement of n,, T, :



QSS He-beam system has enough channels to fully

capture C-Ill photon source

Total Intensity
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C-1l photon intensity
distribution shows emission
above background up to
channel 14
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O Use photon flux and He-beam
profiles to compute an
,,effective SIXB*

S
Photon Flux * XB ~ Particle Flux




QSS He-beam system has enough channels to fully

capture C-Ill photon source

Total Intensity

O C-ll photon intensity
distribution shows emission
above hackaround in to 02
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Caveats

O Emission before Channel 1 (<0.9cm above target) is not

captured
0 Assumption: Plasma parameters across LoS not changing po*”
significantly from where He-beam is measuring plasma

parameters

25 30

For better assessment of the source, a perpendicular line of \_beam
sight viewing the target will be used in the future i

effective SIXB*

S
Photon Flux * XB ~ Particle Flux
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He-beam profiles including high Rydberg states

show change in T, profiles as density is scanned

1019 Comparison of n, profiles T, profiles prior to CH, puffing
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d N, profiles including high Rydberg states still show an increase of
SOL density as the line integrated density is scanned

O Reduction of T, near the divertor surface as the density is scanned-
possible changes of background carbon source
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Using effective S/XB, one sees no significant change

In the carbon source flux with densit

C-VI normalized to Line Integrated n. _Carbon Source Flux
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L No significant change in carbon source flux as density is increased
L Overall decrease of C-VI likely not dominated by changing source

0 Decrease of carbon particle flux during methane puff comes from large
temperature decrease as measured by He-beam

12



The percentage increase of normalized C-VI during

methane puff is the same at all 3 density levels

3.0 C-VI signals 20180920.009

_C-VlI normalized to pre-puffed level
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d Normalize raw C-VI signal to n /1E21

U Further normalize to C-VI value before methane puff level in each discharge

L At each density level, this percentage increase during the puff is the same

O Likely similar transport processes at each density level
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Conclusions and Future Work @I

O An experiment to explore the carbon sourcing and transport in the SOL at
different densities was performed

O Even without puffing, C-VI radiation was decreased as the density was
increased

O Preliminary carbon particle flux analysis shows a slight decrease in the
source as the density is increased

U Dominant effect modifying overall C-VI radiation could be emission
changes from lowering T,

O During methane puffs, the percentage increase of C-VI radiation is the same
for all 3 density levels

U Likely means transport processes were similar at all 3 density levels

O Future Work

0 CXRS profiles to determine the absolute carbon amount reaching the
confined region

 Better source calculation using perpendicular line of sight

0 Modeling of carbon migration from divertor puffing (FZJ)
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