

Preliminary analysis of density dependence of carbon radiation in Wendelstein 7-X

V. R. Winters¹, S. Brezinsek², O. Schmitz¹, T. Barbui¹, S. Bozhenkov³, K. J. Brunner³, B. Buttenschön³, F. Effenberg¹, E. Flom¹, G. Fuchert³, J. H. Harris⁴, M. Hirsch³, U. Hoefel³, M. Jakubowski³, J. Knauer³, R. Koenig³, P. Kornejew³, M. Krychowiak³, E. Pasch³, E. Scott³, and the W7-X Team

- 1 University of Wisconsin Madison, Department of Engineering Physics, Madison, WI, USA
- 2 Forschungszentrum Jülich GmbH, IEK-4, Jülich, Germany
- 3 Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
- 4 Oak Ridge National Laboratory, Oak Ridge, TN, USA

Acknowledgement: This work was supported in part by the U.S. Department of Energy under grants DE-SC00013911 and DE-SC00014210 and by start up funds of the Department of Engineering Physics and of the College of Engineering at the University of Wisconsin - Madison, USA.

Coordinated Working Group Meeting, Berlin DE, 12.03.19

Outline

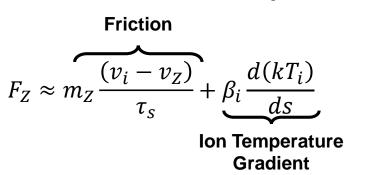
- ☐ Introduction: Understanding the carbon source and transport in the SOL
- □ Experimental Set-Up
- General behavior of carbon radiation with density
- Impact of carbon source on radiation behavior
- ☐ Discussion and Future work

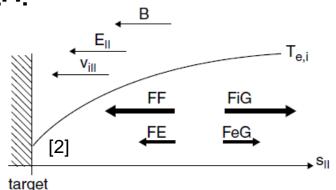
Plasma surface interaction combined with SOL impurity transport determine the intrinsic impurity source

☐ Carbon introduced into the plasma via chemical and physical erosion[1]:

$$\Phi_C \approx \left(Y_{chem} + Y_{phys}\right)\Phi_H = \left(\frac{Y_{low}(E, T_{surf})}{1 + \left(\frac{\Phi_H}{6.0E21}\right)^{.54}} + Y_{phys}\right)\Phi_H + Y_{imp}\Phi_{imp} \dots$$

☐ Two source regions: divertor (small area, receives large heat and particle flux) and first wall (large area, receives small heat and particle flux)


Plasma surface interaction combined with SOL impurity transport determine the intrinsic impurity source



□ Carbon introduced into the plasma via chemical and physical erosion^[1]:

$$\Phi_C \approx \left(Y_{chem} + Y_{phys}\right)\Phi_H = \left(\frac{Y_{low}(E, T_{surf})}{1 + \left(\frac{\Phi_H}{6.0E21}\right)^{.54}} + Y_{phys}\right)\Phi_H + Y_{imp}\Phi_{imp} \dots$$

- ☐ Two source regions: divertor (small area, receives large heat and particle flux) and first wall (large area, receives small heat and particle flux)
- □ Once eroded and ionized, a balance of the parallel friction and ion thermal forces determine the transport in the SOL^[2]:

- ☐ Plasma surface interaction and force balance can be interlinked
- ☐ Essential to monitor both carbon erosion and its transport in the SOL
- [1] Roth et al, *Nucl. Fusion* **44** (2004)

Puffing a known amount of methane from a downstream location helps separate source and transport behavior

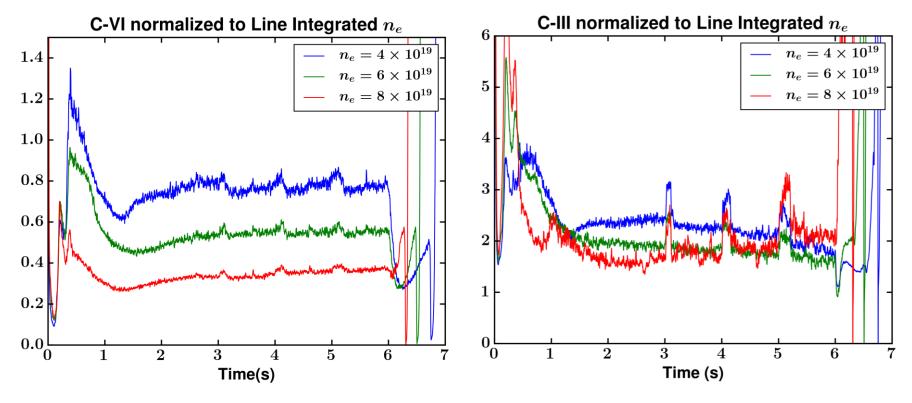
in Module 5 via

divertor fueling

system

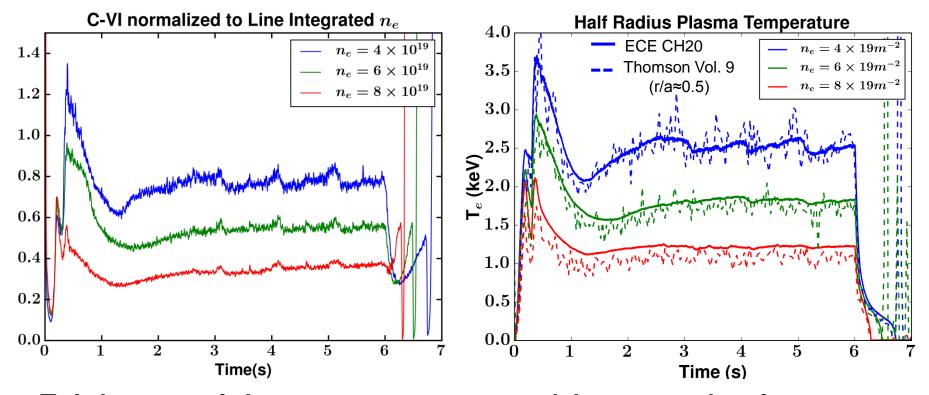
Spectroscopic observation system (C lines, He-beam) in magnetically connected lower divertor in Module 3

in Modivers


- ☐ A scan of line integrated density was performed (4-8E19m⁻²)
- □ At each density level, 3 methane puffs of different sizes were used to determine source and transport characteristics
- ☐ Hypothesis: As density is increased, SOL retention of carbon increases due to increased friction force

filterscope observation

Overview HEXOS observation shows relative decrease of C-VI line emission with density, while C-III remains constant



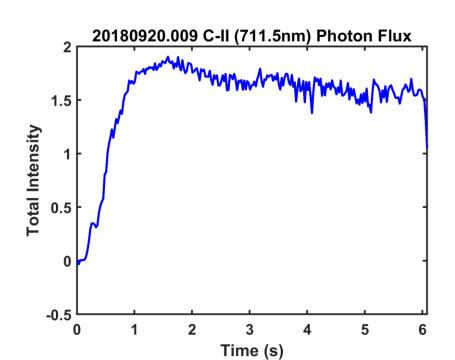
- □ Overall line emission of C-VI (3.37nm) is decreased, while C-III (117.5nm) emission remains relatively unchanged
- **☐** Lowered C-VI emission could be:
 - ☐ Emission effect (due to lowered temperature)
 - Source effect (lowered erosion)
 - ☐ Transport effect

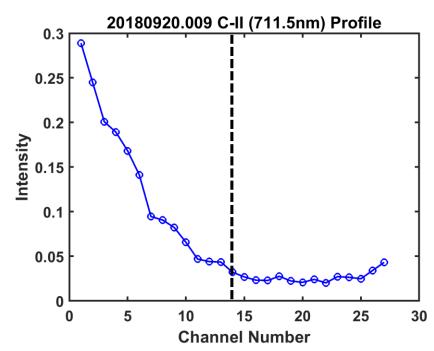
Half radius ECE measurement shows a decrease of $T_{\rm e}$ on the same order of magnitude as C-VI decrease

- □ A decrease of electron temperature around the same order of magnitude as the decrease in C-VI
 - ☐ Likely emission effect
 - □ Ionization rates need to be checked
- Still important to check source effect/transport effect from methane puffing

Assessment of carbon source requires full photon source + local plasma parameters

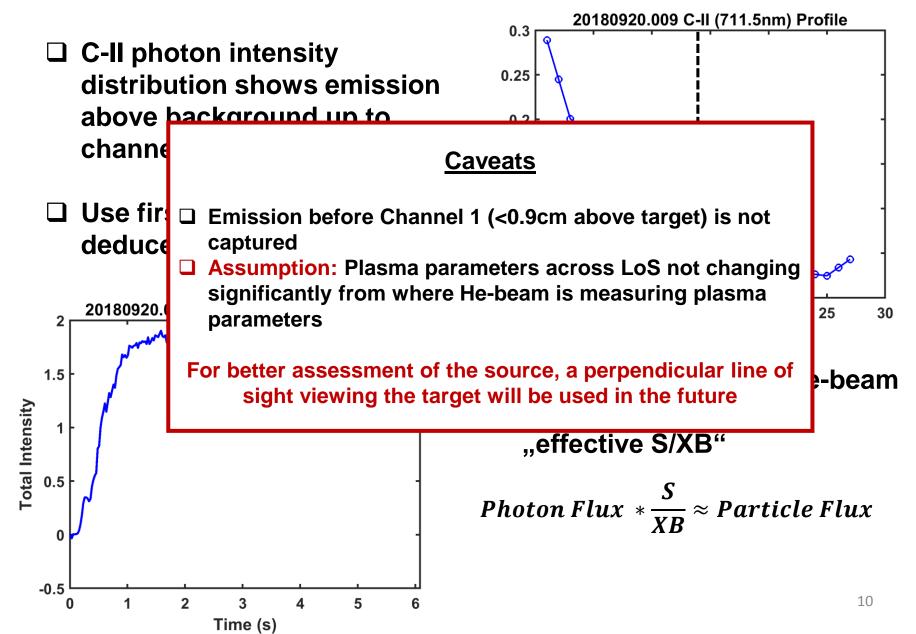
Typical set-up


Available calibrated set-up


- Assessment of carbon source from photon flux requires full photon flux source
- □ Typical set-up captures full source as distribution in space
- ☐ Set-up has no spatial resolution on divertor surface, but full photon source can be found with enough channels
- □ LoS parallel to the divertor is used also by He-beam local measurement of n_e, T_e

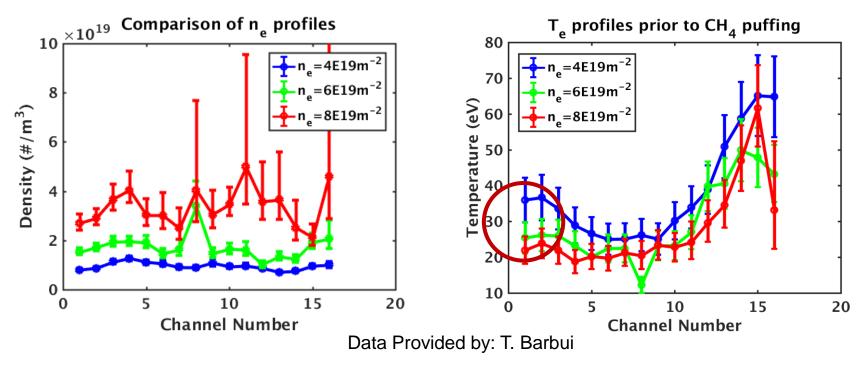
QSS He-beam system has enough channels to fully capture C-II photon source

- ☐ C-II photon intensity distribution shows emission above background up to channel 14
- ☐ Use first 14 channels to deduce total photon source

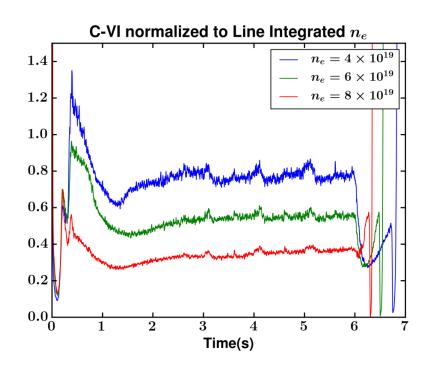


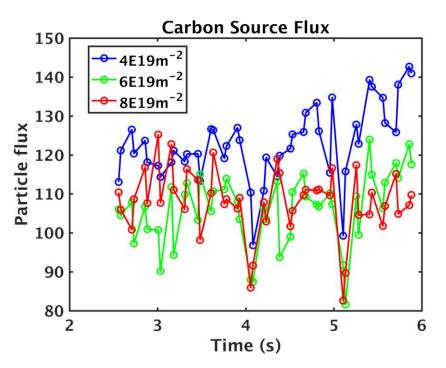
□ Use photon flux and He-beam profiles to compute an "effective S/XB"

Photon Flux *
$$\frac{S}{XB} \approx Particle Flux$$


QSS He-beam system has enough channels to fully capture C-II photon source

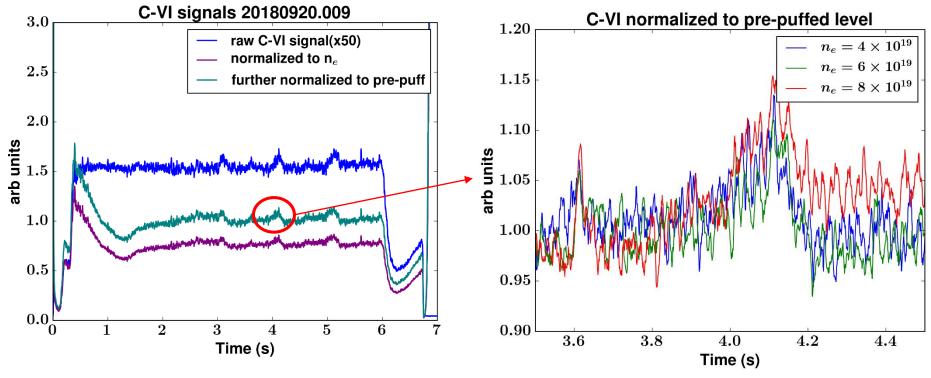
He-beam profiles including high Rydberg states show change in T_e profiles as density is scanned





- N_e profiles including high Rydberg states still show an increase of SOL density as the line integrated density is scanned
- □ Reduction of T_e near the divertor surface as the density is scanned possible changes of background carbon source

Using effective S/XB, one sees no significant change in the carbon source flux with density



- No significant change in carbon source flux as density is increased
- ☐ Overall decrease of C-VI likely not dominated by changing source
- □ Decrease of carbon particle flux during methane puff comes from large temperature decrease as measured by He-beam

The percentage increase of normalized C-VI during methane puff is the same at all 3 density levels

- Normalize raw C-VI signal to n_e/1E21
- ☐ Further normalize to C-VI value before methane puff level in each discharge
- □ At each density level, this percentage increase during the puff is the <u>same</u>
 □ Likely similar transport processes at each density level

Conclusions and Future Work

An experiment to explore the carbon sourcing and transport in the SOL at different densities was performed
Even without puffing, C-VI radiation was decreased as the density was increased
□ Preliminary carbon particle flux analysis shows a slight decrease in the source as the density is increased
□ Dominant effect modifying overall C-VI radiation could be emission changes from lowering T _e
During methane puffs, the percentage increase of C-VI radiation is the sam for all 3 density levels
☐ Likely means transport processes were similar at all 3 density levels
Future Work
☐ CXRS profiles to determine the absolute carbon amount reaching the confined region
☐ Better source calculation using perpendicular line of sight
Modeling of carbon migration from divertor puffing (FZJ)