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Outline

 Introduction: Understanding the carbon source and transport in the 

SOL

 Experimental Set-Up

 General behavior of carbon radiation with density

 Impact of carbon source on radiation behavior

 Discussion and Future work
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Plasma surface interaction combined with SOL impurity 

transport determine the intrinsic impurity source 

 Carbon introduced into the plasma via chemical and physical erosion[1]:

 Two source regions: divertor (small area, receives large heat and particle

flux) and first wall (large area, receives small heat and particle flux)

 Once eroded and ionized, a balance of the parallel friction and ion thermal 

forces determine the transport in the SOL[2]:

Φ𝐶 ≈ 𝑌𝑐ℎ𝑒𝑚 + 𝑌𝑝ℎ𝑦𝑠 Φ𝐻 =
𝑌𝑙𝑜𝑤 𝐸, 𝑇𝑠𝑢𝑟𝑓

1 +
Φ𝐻

6.0Ε21

.54 + 𝑌𝑝ℎ𝑦𝑠 Φ𝐻 + 𝑌𝑖𝑚𝑝Φ𝑖𝑚𝑝…

𝐹𝑍 ≈ 𝑚𝑍

𝑣𝑖 − 𝑣𝑍
𝜏𝑠

+ 𝛽𝑖
𝑑 𝑘𝑇𝑖
𝑑𝑠

Friction

Ion Temperature 

Gradient

[2]

 Plasma surface interaction and force balance can be interlinked

 Essential to monitor both carbon erosion and its transport in the SOL

[1] Roth et al, Nucl. Fusion 44 (2004)

[2] Stangeby, Plasma Boundary of Magnetic Fusion Devices, IOP Publishing Ltd. (2000)
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Puffing a known amount of methane from a downstream

location helps separate source and transport behavior
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Upper divertor puff 

in Module 5 via 

divertor fueling 

system

Spectroscopic 

observation system 

(C lines, He-beam) 

in magnetically 

connected lower 

divertor in Module 3

P=4.5MW

1E19

puff

2.5E19

puff

5E19

puff

 A scan of line integrated density was 

performed (4-8E19m-2) 

 At each density level, 3 methane puffs 

of different sizes were used to 

determine source and transport 

characteristics

 Hypothesis: As density is increased, 

SOL retention of carbon increases 

due to increased friction force

Upstream (midplane)

filterscope observation
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Overview HEXOS observation shows relative decrease of C-

VI line emission with density, while C-III remains constant

 Overall line emission of C-VI (3.37nm) is decreased, while C-III 

(117.5nm) emission remains relatively unchanged

 Lowered C-VI emission could be:

 Emission effect (due to lowered temperature)

 Source effect (lowered erosion)

 Transport effect 
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Half radius ECE measurement shows a decrease of Te on 

the same order of magnitude as C-VI decrease

 A decrease of electron temperature around the same order of 

magnitude as the decrease in C-VI

 Likely emission effect

 Ionization rates need to be checked

 Still important to check source effect/transport effect from methane 

puffing

ECE CH20

Thomson Vol. 9 

(r/a≈0.5)



Assessment of carbon source requires full photon

source + local plasma parameters

 Assessment of carbon source from photon flux requires full photon 

flux source

 Typical set-up captures full source as distribution in space

 Set-up has no spatial resolution on divertor surface, but full photon 

source can be found with enough channels

 LoS parallel to the divertor is used also by He-beam – local

measurement of ne, Te 8

Divertor Surface

Typical set-up Available calibrated set-up

Divertor Surface



QSS He-beam system has enough channels to fully 

capture C-II photon source
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 C-II photon intensity 

distribution shows emission 

above background up to 

channel 14

 Use first 14 channels to 

deduce total photon source

 Use photon flux and He-beam 

profiles to compute an 

„effective S/XB“ 

𝑷𝒉𝒐𝒕𝒐𝒏 𝑭𝒍𝒖𝒙 ∗
𝑺

𝑿𝑩
≈ 𝑷𝒂𝒓𝒕𝒊𝒄𝒍𝒆 𝑭𝒍𝒖𝒙



QSS He-beam system has enough channels to fully 

capture C-II photon source
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 C-II photon intensity 

distribution shows emission 

above background up to 

channel 14

 Use first 14 channels to 

deduce total photon source

 Use photon flux and He-beam 

profiles to compute an 

„effective S/XB“ 

𝑷𝒉𝒐𝒕𝒐𝒏 𝑭𝒍𝒖𝒙 ∗
𝑺

𝑿𝑩
≈ 𝑷𝒂𝒓𝒕𝒊𝒄𝒍𝒆 𝑭𝒍𝒖𝒙

Caveats

 Emission before Channel 1 (<0.9cm above target) is not 

captured

 Assumption: Plasma parameters across LoS not changing 

significantly from where He-beam is measuring plasma 

parameters

For better assessment of the source, a perpendicular line of 

sight viewing the target will be used in the future



He-beam profiles including high Rydberg states

show change in Te profiles as density is scanned
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 Ne profiles including high Rydberg states still show an increase of 

SOL density as the line integrated density is scanned

 Reduction of Te near the divertor surface as the density is scanned–

possible changes of background carbon source

Data Provided by: T. Barbui



Using effective S/XB, one sees no significant change

in the carbon source flux with density

 No significant change in carbon source flux as density is increased

 Overall decrease of C-VI likely not dominated by changing source

 Decrease of carbon particle flux during methane puff comes from large 

temperature decrease as measured by He-beam
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The percentage increase of normalized C-VI during

methane puff is the same at all 3 density levels

 Normalize raw C-VI signal to ne/1E21

 Further normalize to C-VI value before methane puff level in each discharge

 At each density level, this percentage increase during the puff is the same

 Likely similar transport processes at each density level
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Conclusions and Future Work

 An experiment to explore the carbon sourcing and transport in the SOL at 

different densities was performed

 Even without puffing, C-VI radiation was decreased as the density was 

increased

 Preliminary carbon particle flux analysis shows a slight decrease in the

source as the density is increased

 Dominant effect modifying overall C-VI radiation could be emission

changes from lowering Te

 During methane puffs, the percentage increase of C-VI radiation is the same 

for all 3 density levels

 Likely means transport processes were similar at all 3 density levels

 Future Work

 CXRS profiles to determine the absolute carbon amount reaching the

confined region

 Better source calculation using perpendicular line of sight

 Modeling of carbon migration from divertor puffing (FZJ)
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