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MOTIVATION

• Optimization for turbulent transport

requires predictive capabilities.

• Zonal flows are often important to turbulence

saturation, and thus transport.

• Collisionless zonal flow damping – simple

linear calculation for an optimization loop.

• Can a linear zonal flow (ZF) damping calculation
predict the turbulence heat flux ?

–Not the residual alone, but perhaps damping/oscillation.

• ZF residual finite as kxρs → 0 in tokamaks,

vanishes in non-axisymmetry (Monreal 2016).

• Are real quasi-symmetric stellarators similar to
tokamaks (finite RZF as kxρs → 0) ?

–No, RZF → 0 as kxρs → 0 if any radial particle drift.

I. HSX and NCSX configurations

•HSX auxiliary coils → allows variation of radial drift
(neoclassical transport), important for ZF oscillation.

•QHS – Quasi-Helical Symmetry, configuration optimized
for reduced neoclassical transport and flow damping.

•F14 Mirror – Broken symmetry with [n,m] = 4,0 and 8,0
mirror term, effective ripple like a conventional stellarator.

|B| surfaces
QHS

0 π 2π
0

π

2π
F14 Mirror

0 π 2π
0

π

2π
NCSX

0 π 2π
0

π

2π

•NCSX – Quasi-axisymmetry, three period device with a
dominant [n,m] = 0,1 mode. Large bootstrap current
similar to a tokamak.

•Gyrokinetics: Gene (www.genecode.org) & Euterpe

–Gene local flux tube, with 1–8 poloidal turns.

–Gene full flux surface, real space poloidal discretization.

–Euterpe fully global domain.

•No unstable modes, no gradient drive,
no collisions, adiabatic electrons.

• Initialize a ky = 0, finite-kx zonal mode
and calculate time evolution.

II. Zonal flow damping in a stellarator

• Zonal Flow (ZF) – poloidally symmetric poten-
tial perturbation, drives flows by E × B drift.

•Flows shear turbulent eddies, reduce radial
correlation length, and regulate transport.

•Given initial impulse, long time residual may
relate to ability to support zonal flows.

• In a circular tokamak, Rosenbluth-Hinton
zonal flow residual RZF finite as kxρs → 0.:
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•Tokamak with q = 1.5 and ǫ ≈ a
R ≈ 0.13,

lim
t→∞

φ(t)

φ(0)
= 0.09

.• In Wendelstein 7-X, RZF → 0 at small kxρs.

•Differences for non-axisymmetry:
long-time damping and zonal flow oscillations.

•GAMs quickly damped for low-shear
stellarators, and not discussed here.

Tokamak W7-X

P. Monreal et al., Plasma Phys. Control. Fusion 58 (2016).

Long-time damping
ZF oscillation with increasing non-axisymmetry

Sugama and Watanabe 2006 Monreal et al. 2017

•Long-time damping related to radial drift, τc ∼ 1/|krv̄dr|.

•ZF oscillation present if Landau damping small enough,
and frequency ΩZF increases with radial drift.

•Optimized devices minimize neoclassical loss, reduce long-time
damping, reduce frequency of zonal flow oscillations.

III. Realistic HSX configurations match other stellarators

•Do non-ideal quasi-symmetric devices have finite RZF as kxρs → 0 ?

•HSX-equivalent tokamak, q → qeff =
1

|mι−n| = 1/3, ǫ → ǫh ≈ 0.14(r/a) ≈ 0.1

•Real HSX, RZF → 0 as kxρs → 0, RZF is smaller than Rosenbluth-Hinton estimate.

lim
t→∞

φ(t)
φ(0) = 0.64

•ZF oscillation parameters found by nonlinear least squares fit.

•Fit – ZF oscillation amplitude AZF, frequency ΩZF, and damping γZF,
ZF residual RZF, and algebraic damping.

ϕ′
k(t)/ϕ

′
k(0) = AZF cos(ΩZFt) exp(−γZFt) + RZF +

c

1 + dte

•Zonal flow oscillations present at low-kxρs. Frequency decreases with
reduced radial drifts from neoclassical optimization.
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•Two stellarator symmetric flux tubes for local Gene

calculations. QHS-b(ean) and QHS-t(riangle)
centered in good and bad curvature, respectively.

•Damping depends on flux surface averages
→ long flux tube (> 1 poloidal turn) required to
match different flux tubes and global Euterpe.

•No significant difference in RZF between
QHS/Mirror. Large difference in ΩZF.

•For short times comparable to turbulence correlation
time – no difference in QHS/Mirror.

•Heat flux larger in F14 Mir-
ror, despite matched RZF.
(Nonlinear simulation in flux
tube with 4 poloidal turns)
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Flux tubes b & t with poloidal turns
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IV. Zonal flow residual in NCSX

npol – number of poloidal turns, length of flux tube.
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RZF in NCSX
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• Stellarator flux tubes unique,
α = π/2 flux tube does not support
zonal flow for npol < 8.

•α = 0, π flux tubes capture ZF damp-
ing at npol = 2, for large kx.

•For long enough domain, matched
zonal flow damping for all flux tubes.

•Most sensitive to npol at small kx,
where may need global effects.

•NCSX similar to other stellarators,
not ideal tokamak: RZF → 0 as
kxρs → 0, and exhibit ZF oscillations.
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•Full flux surface RZF in agreement with flux tube calcu-
lations for npol = 8. Global simulations in progress.

•Agreement of flux tube and full surface suggests commu-
nication between flux tubes not important for residual.

• Zonal flow oscillations only present for very small kx,
amplitude much smaller than QHS.

Comparison of NCSX and QHS
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•Peak RZF and peak kx
smaller than QHS. Requires
further consideration.

V. Summary

• Zonal flow damping requires flux surface averages – sensitive to geometry
representation. RZF captured by local calculation only with extended flux tube.

• Poloidal turn requirements depend on geometry: some flux tubes do not
support zonal flows unless sampling enough of the surface.

• Realistic, as opposed to ideal, quasi-symmetric devices differ from tokamaks
with RZF → 0 as kxρs → 0 and finite ZF oscillation frequency.

• QHS, compared to Mirror, exhibits reduced oscillation frequency and decay
consistent with reduced radial particle drifts in optimized stellarators.

• Trends between configurations that are not captured by linear instability dynamics
cannot be explained by RZF behavior alone.
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