Competition between parallel viscosity and ion-neutral friction in damping the parallel flow in a quasisymmetric stellarator

Santhosh Kumar

HSX Plasma Laboratory, University of Wisconsin-Madison, USA

APS-DPP, Fort Lauderdale, Florida, October 21-25, 2019

Acknowledgments

T. J. Dobbins, J. N. Talmadge, K. M. Likin, F. S. B. Anderson, D. T. Anderson & HSX team

Conventional stellarators have high flow damping.

Symmetry in |B| leads to reduced viscous damping of plasma flows in quasisymmetric stellarators.

QHS magnetic geometry allows HSX plasmas to exhibit large flows.

Major/Minor radius: 1.2/0.15 m

Non-planar and planar coils generate QHS and 'Mirror' geometries.

- ightarrow Reduced parallel viscosity is calculated for QHS geometry.
- \rightarrow Flow damping time: $\tau_{OHS} \sim 85 ms$, $\tau_{Mirror} \sim 3 ms$.

Previous experiments have confirmed reduced parallel viscosity in QHS configuration.

Edge biasing experiment confirmed reduced flow damping with quasisymmetry a .

Carbon flow measurements confirmed that flows are predominantly in the symmetry direction $^{\it b}$

Mach probe measurements

^aGerhardt [2005]

CXRS measurements

^bBriesemeister [2010]

Previously measured ion parallel flows and E_r are inconsistent with neoclassical calculations. †

In the core, measured E_r is close to the ion-root, but measured $v_{||}$ is close to the electron-root

[†]Briesemeister, [2010]

Improvements have been made in measurements and modeling to resolve the inconsistency.

Outline of the talk:

• Improvements in measurements

• Improvements in neoclassical model

Flow and E_r measurements are done using charge exchange spectroscopy (CXRS).

- 4A, 30 keV, 3 ms hydrogen neutral beam
- CVI emission at 529.1 nm (n=8-7 transition) is measured using a Czerny-Turner spectrometer
- Carbon doping is used to get higher signal

Poloidal flow measurements near the core have large uncertainties due to relatively large width of the diagnostic neutral beam.

A new method has been developed to obtain E_r and v_{bs} from parallel flows only, using Pfirsch-Schlüter effect.

The parallel ion flow at any location in the plasma is given by,

$$ec{v}_{||i} = \underbrace{ec{v}_{bs}}_{ ext{flux function}} + \underbrace{ec{v}_{ps}}_{ ext{local}}$$

The Pfirsch-Schlüter flows (v_{ps}) arise due to incompressibility.

For ions,

$$\nabla \cdot \left(\vec{v}_{\perp i} + \vec{v}_{||i} \right) = 0$$

$$\vec{v}_{\perp i} = \frac{\vec{E}_r \times \vec{B}}{B^2} - \frac{\nabla P_i \times \vec{B}}{e n_i Z_i B^2} = -\left(\frac{d \phi}{d \psi} + \frac{1}{e n_i Z_i} \frac{d P_i}{d \psi} \right) \left(\frac{\nabla \psi \times \vec{B}}{B^2} \right)$$

A new method has been developed to obtain E_r and v_{bs} from parallel flows only, using Pfirsch-Schlüter effect.

The Pfirsch-Schlüter flow can be written as,

$$ec{v}_{ps} = \left(rac{d\phi}{d\psi} + rac{1}{en_iZ_i}rac{dP_i}{d\psi}
ight)hec{B}$$

where h is a geometrical factor, which is defined by

$$ec{B} \cdot
abla h = -2 \frac{(ec{B} \times
abla B) \cdot
abla \psi}{B^3}, < hB^2 >= 0$$

$$d\phi/d\psi$$
 can be written as,

$$\frac{d\phi}{d\phi} = \frac{v_{ps}}{hB} = \frac{v_{||i} - v_{bs}}{hB}$$

Therefore, the flux surface function $d\phi/d\psi$ can be obtained by measuring the parallel flow for at least 2 locations on a flux surface.

CXRS diagnostic on HSX is modified to measure Pfirsch-Schlüter flows.

Modified to view inboard/outboard side of the beam axis. 11 fibers, measurement spot size radius $\sim \! 1.5$ mm

The Pfirsch-Schlüter flows will be counter-streaming at these locations.

Measurements are made in 100 kW ECH plasma.

- Two 28 GHz gyrotrons, 50 kW each, are used to generate and heat the plasma.
- ullet On-axis field, $B_0\sim 1$ Tesla
- QHS geometry
- No external momentum injection.

Inboard/outboard flow asymmetry has been observed.

Parallel flow from measured 'toroidal' flow

$$\frac{d\phi}{d\psi} = \frac{v_{ps}}{hE}$$

h factor

Relative direction of Pfirsch-Schlüter flow w/respect to mean flow indicates positive E_r .

The bootstrap flow (v_{bs}) and $\frac{d\phi}{d\psi}$ are calculated from the measured inboard/outboard flow asymmetry.

 $d\phi/d\psi$ and v_{bs} on both sides of the same flux surface are the same.

$$\left[\frac{d\phi}{d\psi}\right]_{\mathit{IN}} = \left[\frac{d\phi}{d\psi}\right]_{\mathit{OUT}}$$

$$\left[\frac{v_{||i(IN)} - v_{bs}}{(hB)_{(IN)}}\right] = \left[\frac{v_{||i(OUT)} - v_{bs}}{(hB)_{(OUT)}}\right]$$

Discrepancy with neoclassical calculations for the QHS geometry still exists.

 E_r agrees with neoclassical ion root, but v_{bs} is closer to the electron root.

Neutral density is significant throughout the plasma in HSX.

- DEGAS uses Monte-Carlo method to calculate neutral distribution.
- 3D HSX geometry is used in calculations.
- HSX H_{α} arrays are incorporated.
- \rightarrow Frank-Condon neutrals have long mfp at HSX parameters.
- $\rightarrow \langle n_n \rangle$ profiles are relatively unchanged during a discharge.
- ightarrow H_2 does not significantly contribute to momentum transfer, but H does.

Neoclassical calculations are done using the PENTA code.

Parallel momentum and heat flux balance equations†:

$$\langle {f B} \cdot (
abla \cdot \Theta_{{m a}})
angle = \langle BF_{||{m a}2}
angle$$

 $\langle \mathbf{B} \cdot (\nabla \cdot \Pi_a) \rangle - n_a e_a \langle B E_{||} \rangle = \langle B F_{||a1} \rangle$

• $BF_{||a1}$: Friction between individual species

• $\mathbf{B} \cdot (\nabla \cdot \Pi_a)$: Parallel neoclassical viscosity term

- $n_a e_a \langle BE_{||} \rangle$: Parallel electric field term.
- Momentum conservation using Sugama-Nishimura approach ‡

(1)

(2)

[†]D. A. Spong [2005], J. Lore [2010] [‡]H. Sugama & S. Nishimura [2002]

For this work, neutral friction is included in PENTA parallel momentum and heat flux balance equations.

$$\langle \mathbf{B} \cdot (\nabla \cdot \Pi_a) \rangle - n_a e_a \langle BE_{||} \rangle + \frac{\delta_{i,a} F_{i1}^n}{1} = \langle BF_{||a1} \rangle \tag{3}$$

$$\langle \mathbf{B} \cdot (\nabla \cdot \Theta_a) \rangle + \delta_{i,a} F_{i2}^n = \langle BF_{||a2} \rangle \tag{4}$$

Ion-neutral friction term †:

$$\begin{bmatrix} F_{i1}^n \\ F_{i2}^n \end{bmatrix} = -n_i m_i \nu_{in} \begin{bmatrix} 1 & 0 \\ 0 & \frac{E}{T_i} \end{bmatrix} \begin{bmatrix} \langle u_{||a}B \rangle / \langle B^2 \rangle \\ \frac{2}{5p_a} \langle q_{||a}B \rangle / \langle B^2 \rangle \end{bmatrix}$$
 (5)

 $\delta_{i,a}$ is equal to one for ions and zero for electrons.

Collision with impurity ions (carbon) is included in the calculation.

[†]P. Monier-Garbet [1997]

Neutrals significantly reduce ion flow. Change in radial ion flux is marginal.

Ambipolar radial electric field calculation is relatively unchanged, but Flow at ambipolar E_r could be significantly different.

Inconsistency between experiment and measurements is largely resolved by including neutral friction.

Damping due to neutral drag significantly lowered ion-root flow, but E_r is relatively unchanged.

In the Mirror geometry, effect of neutral friction is less due to higher neoclassical viscosity.

Summary

- Improved measurements of E_r and v_{bs} are obtained using Pfirsch-Schlüter flow measurements.
- PENTA code has been modified to include collisions with background neutrals.
- Neutral damping of ion flow is found to be significant in QHS geometry. E_r is relatively unchanged.
- Neutral friction has lower impact in Mirror geometry than QHS because of higher neoclassical viscosity.

Bootstrap current is mostly unchanged with neutral friction.

 Reduction in ion flow is compensated by increase in electron flow due to reduced ion drag.

$$\rightarrow$$
 Friction $\propto (v_{||i} - v_{||e})$

 Consistent with previous results that bootstrap current calculated by PENTA agrees with experiment.

[†]J. Schmitt [2014]

Two orders of magnitude decrease in neutral density brings $v_{||}$ closer to neoclassical value

