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Finding coil sets with desirable physics and engineering properties is a crucial step in
the design of modern stellarator devices. Existing stellarator coil optimization codes
ultimately produce zero-thickness filament coils. However, stellarator coils have finite
depth and thickness, which can make the single-filament model a poor approximation,
particularly when coil build dimensions are relatively large compared to the coil–plasma
distance. In this paper, we present a new method for designing coils with finite builds and
present a mechanism to optimize the orientation of the winding pack. We approximate
finite-build coils with a multi-filament model. A numerical implementation has been
developed, and applications to the Helically Symmetric eXperiment stellarator and a new
UW-Madison quasihelically symmetric configuration are shown.
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1. Introduction

Stellarators have many desirable properties for future fusion power plants, including
the ability to produce steady-state plasmas that are free of disruptions and highly stable.
However, unlike tokamak devices that rely on both planar coils and large plasma current
to provide rotational transform, optimized stellarators generally possess three-dimensional
non-planar coils in order to generate adequate confinement. Difficulties constructing coils
led to significant delays in the W7-X experiment (Riße et al. 2009) and the cancellation of
the NCSX experiment at PPPL (Neilson et al. 2010).

One challenge of designing coils for modern stellarators is finding a coil set that balances
the often competing goals of accurately producing a desired magnetic configuration,
and satisfying various engineering constraints. These engineering constraints include
designing coils that can be reasonably built, as well as ensuring that adequate space exists
between coils for support structures, auxiliary systems and diagnostics. This paper focuses
on one specific degree of freedom in coil design, the orientation of the coil winding pack.
By optimizing the winding pack orientation, it is possible to reduce boundary errors while
including engineering objective functions.

To better motivate the engineering constraints, we note some important design
considerations relevant to stellarator coils. In general, engineering constraints include
minimizing or eliminating sharp bends and ‘twisting’ in the conductors to avoid
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2 L. Singh and others

complications in coil fabrication and performance. Bending introduces an effect referred
to as keystoning, where the conductor thins in the plane parallel to the coil and expands in
the perpendicular direction. Twisting causes a warping effect that distorts the conductor.
Both effects introduce difficulties when laying the conducting material into an efficient
winding pack. Voids and sharp points within the coil due to bending and twisting can
provide failure points under load, and therefore should be avoided to maintain structural
integrity.

Modern stellarator experiments have addressed coil design in a two-stage optimization
process. First, a plasma boundary is optimized for physics properties (Nührenberg and
Zille 1988; Grieger et al. 1992; Zarnstorff et al. 2001; Ku et al. 2008; Drevlak et al. 2013,
2018; Bader et al. 2019; Henneberg et al. 2019). The result of this optimization is typically
a target configuration that is identified by a boundary surface. The second stage of the
design is producing a coil set that best matches the desired boundary surface (Merkel 1987;
Drevlak 1998; Strickler et al. 2002; Landreman 2017; Zhu et al. 2017; Paul et al. 2018; Zhu
et al. 2018). Typically, this is done by specifying filamentary coils as an approximation to
coils with a finite-build structure. This paper describes an additional step to the design,
namely extending the precomputed filamentary coils to coils with finite builds, represented
by multiple filaments (‘multi-filaments’) in a rectangular array. An additional optimization
procedure is undertaken which seeks to orient the array of filaments to best reproduce the
target boundary.

Before the optimization of the multi-filament orientation is considered, some
explanation of how the filamentary coils are determined is necessary. The magnetic field
produced by currents in the external coil set, termed the vacuum field Bv, must balance the
magnetic field Bp produced by currents present in the plasma so that the normal component
of the total magnetic field B = Bv + Bp on the plasma boundary is zero. The vacuum field
is typically computed using the Biot–Savart law, and Bp is held constant throughout the
optimization. The boundary is typically specified in terms of Fourier harmonics Rmn and
Zmn over poloidal angle θ and toroidal angle ζ as,

R(θ, ζ ) =
∑
m,n

Rmn cos(mθ − nζ ), (1.1)

Z(θ, ζ ) =
∑
m,n

Zmn sin(mθ − nζ ), (1.2)

where stellarator symmetry, i.e. R(θ, ζ ) = R(−θ, −ζ ); Z(θ, ζ ) = −Z(−θ, −ζ ), is
enforced for convenience. Some coil-design tools can optimize coils for both physics
requirements and engineering constraints (Drevlak 1998; Strickler et al. 2002), but to date,
all existing optimization codes ultimately produce zero-thickness filaments. Optimized
stellarators, such as Helically Symmetric eXperiment (HSX), have been built with
finite-sized coils. These previous efforts often only used simple engineering constraints,
such as coil clearances, to determine coil shapes. For the design of HSX, the NESCOIL
code (Merkel 1987) solved for the current potential lines on a set of nested topologically
toroidal surfaces. A linear fit was computed across shells (with increased weight on the
innermost shell) to derive one axis of the winding pack. Manual adjustments were made
as needed to eliminate coil intersections.

The description of the second coil optimization, that of the multi-filament coils, is
specified in the rest of this paper. The details of the algorithm to generate optimized
multi-filament coils are presented in § 2. A new tool, optimization of multi-filament coils
(OMIC), is introduced in § 3. Sections 4 and 5 present example applications and discuss
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Optimization of finite-build stellarator coils 3

comparisons of optimized and unoptimized multi-filament coils. Finally, conclusions and
future work are discussed in § 6.

2. Filament optimization
2.1. The single-filament model

The multi-filament coil optimization presented in this paper employs many of the same
techniques used for single-filament optimization. Furthermore, in order to optimize
multi-filament coils in the current framework, a single-filament representation needs to be
obtained first. An explanation of the single-filament optimization, as used in FOCUS (Zhu
et al. 2018), is given in this section. A Fourier series representation for single-filament
coils in three-dimensional space is employed. This representation produces smooth coils
and has the advantage of simple analytic derivatives. The explicit formulation is given by,

r(φ) = Xc,0 +
NF∑

n=1

[
Xc,n cos(nφ) + Xs,n sin(nφ)

]
, (2.1)

where r(φ) = x(φ)x̂ + y(φ)ŷ + z(φ)ẑ is the position vector of the filament, and Xc,0 is the
centroid of the coil. Here, Xc,n and Xs,n are cosine and sine Fourier coefficients for mode
number n. These coefficients can be combined into the optimization vectors Xc and Xs,
which are vectors of NF + 1 cosine terms and NF sine terms. Because there are individual
coefficients for each Cartesian coordinate, for a given maximum mode number NF there
are 6NF + 3 independent variables in the optimization of each coil. In these expressions,
φ, which varies from 0 to 2π, is a variable that parameterizes the filament.

2.2. Target functions
This paper includes results from a new quasihelically symmetric configuration. In order
to carry out the multi-filament analysis, an optimized set of single-filament coils was
generated by varying the coefficient vectors Xc and Xs in FOCUS. Three targets were used
to optimize the single-filament coils. The most important metric, and the main metric
we will use to judge multi-filament coils, is how well the coils match a desired field
on the plasma boundary. Since the normal field on the boundary should be exactly zero
everywhere, the squared relative error of the integrated normal field fB on the boundary
surface S,

fB(Xc, Xs) ≡
[

1
2

∫
S

(
B · n
|B|

)2

ds

] (∫
S

ds
)−1

, (2.2)

is minimized. As before, Xc and Xs represent the cosine and sine coefficients of the
single-filament coils. Here, n is a normal vector to the boundary surface S, and therefore
B · n is the value of the normal field. The quantity

∫
S ds is the surface area of the

boundary. Because an equilibrium surface perfectly matched by coils has zero normal field
everywhere on the plasma boundary, finite values of the normal field represent deviations
from the target equilibrium.

Additional target functions are also employed to constrain the single-filament coils. One
target function penalizes deviations from prescribed target lengths,

fL ≡ 1
Nc

Nc∑
i=1

1
2

(
Li − Li,0

)2

L2
i,0

, (2.3)
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4 L. Singh and others

Li =
∫ 2π

0

∣∣∣∣ dr
dφ

∣∣∣∣ dφ, (2.4)

where Nc is the number of unique coils, Li is the length of a given coil and Li,0 is the
target length of the coil. An optimization procedure often requires adjusting the Li,0
values through successive iterations. For a given coil, a larger Li,0 tends to increase
coil–plasma distance, which is desirable, but also tends to add additional wiggles and
toroidal excursions to the coil, which is undesirable.

The third function provides limits on coil curvature. The curvature target is given as,

fκ ≡ 1
Nc

Nc∑
i=1

∫ 2π

0
c (κi(φ) − κ0)

γ dφ; c (κ, κ0) =
{

1 if κi ≥ κ0

0 if κi < κ0
(2.5a,b)

κi = |r′ × r′′|
|r′|3

, (2.6)

where κi is the local curvature at the point r(φ) along the coil, and primes denote
differentiation with respect to φ. The Heaviside function, c, ensures the coil is only
penalized for locations where the curvature exceeds some predetermined value κ0, usually
set by engineering constraints. For the optimizations here, κ0 is set to 10 m−1 for all coils,
setting a minimum radius of curvature of 10 cm. These optimizations use γ = 2 although
values of γ > 2 are also acceptable.

The total penalty function is,

f = wB fB + wL fL + wκ fκ , (2.7)

where the weights wB, wL and wκ are set by the user to guide the optimizer in different
directions. FOCUS can optimize filaments using various descent algorithms, including
the nonlinear conjugate gradient method. Fast calculation of target function derivatives
with respect to the coil coefficients is available using analytic derivatives. More details
can be found in Zhu et al. (2018).

2.3. A multi-filament coil model
The multi-filament coil representation is motivated by the internal structure of
non-superconducting modular stellarator coil sets, including those of W7-AS and HSX
(Sapper and Renner 1990; Anderson et al. 1995). These coils are comprised of NW
layered windings each containing NT turns, producing a rectangular array referred to
as the ‘winding pack’. In the multi-filament representation, each space of the array is
represented as a filament, producing a two-dimensional rectangular array of NW × NT
parallel filaments. To place the set of filaments in space, we centre the winding pack
about the single-filament coil. User-specified winding pack dimensions then determine
the location of each parallel filament relative to the central single-filament coil, which can
be expressed in terms of distance rf , angle αf and angle of orientation of the winding pack
α, as shown in figure 1. In the plane of the winding pack, the coordinates of filament f are
given by,

xf = rf cos
(
α + αf

)
(2.8)

yf = rf sin
(
α + αf

)
. (2.9)

The first two parameters, rf and αf , are held fixed for each filament. The third parameter,
α, is a free parameter and can vary at each point along the coil. Optimization of α is the
main focus of this paper, so we refer to it as the optimization angle.
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Optimization of finite-build stellarator coils 5

FIGURE 1. (a) Schematic of a coil winding pack with NW = 2 and NT = 6. Each filled circle
represents a filament comprising the multi-filament coil. The central filled circle, shown in
blue, represents the corresponding single-filament coil. The orientation of the winding pack is
determined by the normal and binormal vectors. The coordinates of one filament are given by rf
and αf . (b) The effect of the optimization angle α on winding pack given in (a). The dashed grey
line indicates the initial filament direction prior to rotation.

2.4. The Frenet–Serret frame
There is no unique orthogonal basis local to the filament f even if one of the axes, such as
the z axis, is taken to be the tangent direction. Therefore, a choice must be made regarding
how to orient the axes that are normal to the tangent vector. The three orthogonal axes are
referred to as the local winding pack coordinate frame, and it suffices to specify a single
parameter to define the relative orientation of the x- and y-axes in this frame.

One choice for the local winding pack coordinate frame is given by the Frenet–Serret
formulas. In terms of the coil parameterizing variable φ these are,

t̂fs = ∂r/∂φ

|∂r/∂φ| , (2.10)

n̂fs = ∂ t̂/∂φ

|∂ t̂/∂φ| , (2.11)

b̂fs = t̂ × n̂, (2.12)

where, as before, r is the curve given by (2.1). The normal n̂fs and binormal b̂fs directions
to the curve could then specify the two unique winding pack directions. Simple and fully
analytic expressions for the Frenet–Serret frame given by (2.10)–(2.12) can be derived
from (2.1) and can be readily implemented into any optimization procedure.

There is an inherent limitation to the use of the Frenet–Serret frame. If a filament has
a vanishing value of ∂ t̂fs/∂φ then the normal vector, n̂fs is undefined. This will happen
whenever the coil is locally straight. Even if the coil is only approximately straight, that
is, regions where ∂ t̂fs/∂φ � 1, the local normal and binormal angle can oscillate strongly
over a short distance, producing complicated coil shapes. This behaviour can be seen in
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(a) (b) (c)

FIGURE 2. (a) Visual representation of the coil centroid coordinate frame. Basis vectors are
shown at one position along a single-filament coil. (b) Frenet–Serret frame normal n̂fs (red) and
binormal b̂fs (blue) vectors for an example stellarator coil. (c) Coil centroid frame normal n̂ and
binormal b̂ vectors for an example stellarator coil.

figure 2(b,c). Figure 2(b) shows Frenet–Serret basis vectors along an example coil. In
the bottom right of the figure the value of ∂ t̂fs/∂φ is small and the vectors display rapid
variation. Figure 2(c) shows an alternative to the Frenet–Serret frame that reduces these
variations. This will be the topic of § 3.1.

3. Optimization of multi-filament coils
3.1. A coil centroid frame

An alternative local coordinate frame that does not vary rapidly at straight sections of the
single-filament curve has been identified. We modify the definition of the Frenet–Serret
normal vector while retaining the definition of the tangent and binormal vectors. First, the
coil centroid R is computed as,

R = 1
2π

∫ 2π

0
r(φ) dφ, (3.1)

where again r(φ) is given by (2.1). As noted previously, this centroid is simply the constant
amplitude of the Fourier series given in (2.1), Xc,0. Next, a vector δ(φ) pointing from Xc,0
to position r(φ) is computed as δ(φ) = r(φ) − Xc,0. The component of δ(φ) orthogonal
to the tangent vector at r(φ) is then found via the Gram–Schmidt process. The resulting
normal vector is found by normalizing the component of δ orthogonal to the tangent vector.
The tangent vector and binormal vectors retain their definitions, giving the coordinate
frame,

t̂ = ∂r/∂φ

|∂r/∂φ| (3.2)

n̂ = δ − (δ · t̂)t̂
|δ − (δ · t̂)t̂| , (3.3)

b̂ = t̂ × n̂. (3.4)

The coil centroid frame at one location along a filament coil is shown in figure 2(a).
By analogy with the Frenet–Serret formulas, the modified normal and corresponding

binormal directions specify the winding pack orientation of the finite coil. The vector
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Optimization of finite-build stellarator coils 7

(a) (b)

FIGURE 3. (a) The HSX coils with winding pack orientation (rf , αf ) given by the coil centroid
frame are shown in blue, with the plasma boundary in red. (b) The magnitude of the normal
magnetic field error on the boundary as a function of toroidal angle ζ and poloidal angle θ for
the coils given in (a). Two hotspots with large values of |βn,0| are pointed out in the plot, hotspot
1 in purple and hotspot 2 in orange.

δ(φ) is expected to be well defined everywhere along the single-filament curve, so this
coordinate frame should not suffer from rapid rotation at single-filament straight sections,
unlike the Frenet–Serret frame. This is not true in the specific case where a coil segment is
oriented parallel to a ray originating from the coil centroid. Such coil segments are avoided
in the calculations presented in this paper. The coil centroid frame normal and binormal
vectors are shown in figure 2(c). In this figure, the smooth variation of the normal and
binormal vectors over the entire coil length is visible.

3.2. Initial multi-filament HSX coils
Figure 3(a) shows the coils produced by expanding filaments using the normal and
binormal directions from the coil centroid frame for the HSX device. Only a half-period
is shown, with all six distinct coils. In the HSX device, these coils would be mirrored
to produce the corresponding set for a full period. For these coils, a winding pack with
NW = 2 and NT = 7 is used with cross-section dimensions of 6 by 12 cm, similar to
the actual HSX coil dimensions. Figure 3(b) shows the value of the normal magnetic
field divided by the field strength, which we will refer to as the normal field error,
|βn| = |Bn|/|B| = (B · n)/|B| on the boundary for one full period. Stellarator symmetry
is visible in the plot by inspection: |βn(θ, ζ )| = |βn(2π − θ, 2π/N − ζ )|, where N is the
number of periods, 4 for HSX. This unoptimized case is used as a baseline for comparing
the HSX-like coil optimizations discussed in the rest of the paper. As such, the normal
field error for this case is referred to as |βn,0| with the ‘0’ subscript indicating the baseline
scenario.

As can be seen in figure 3(b), the largest local errors on the boundary are approximately
3.5 %, and these correspond to the half period, ζ = π/4. This is also the location where
the coils have the largest toroidal excursions. The expectation is that this is the area where
optimization can have the largest effect, but possibly at the expense of making already
complicated coils even more complicated. Specifically we will focus on 2 ‘hotspots’
near ζ = π/4 that are labelled in figure 3(b). Hotspot 1 has the largest error on the
boundary with |βn,0| ≈ 3.5 %. Hotspot 2 has a normal field error of |βn,0| ≈ 2.5 %. Both
hotspots appear in two separate stellarator-symmetric locations. The half-period where the
hotspots appear tends to be one of the more difficult to match for quasihelically symmetric
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8 L. Singh and others

configurations because at the half-period, the high-field side is on the outside of the device,
and the low-field side is on the inside. Both are difficult to match, but the fact that the
hotspots are located close to θ = π in figure 3(b) indicates that it is the low field on the
inboard side that is the more difficult to replicate for this coil set.

3.3. Optimization of winding pack rotation profile
Single-filament coil sets, multi-filament coil sets with orientation determined using the
Frenet–Serret frame (2.10)–(2.12) and multi-filament coil sets with orientation determined
using the coil centroid frame (3.2)–(3.4) all produce different plasma boundaries. Because
the orientation of the winding pack itself is a free parameter for the construction of
the coils, it can be optimized to determine which orientation best reproduces the target
boundary. To allow the flexibility to optimize the rotational profile, we introduce the scalar
function α(φ) defined along each multi-filament coil in a set. This function is represented
as the Fourier series,

α(φ) = αc,0 +
Nα∑

n=1

[
αc,n cos(nφ) + αs,n sin(nφ)

]
, (3.5)

where, analogous to (2.1), αc,n and αs,n are the cosine and sine Fourier coefficients. The
effect of this function is, at each single-filament position r(φ), a local rotation of the
winding pack by α = α(φ), as can be seen in figure 1. All Nα + 1 cosine and Nα sine
coefficients can be combined into the optimization vector A with Nc(2Nα + 1) independent
variables.

To limit the twisting of optimized coils, particularly at high values of Nα, a spectral
weighting is added to the optimization procedure in OMIC. High-order modes in the
Fourier series (3.5) are penalized by the function,

fsw(A) =
∑

i

A2
i n2

i , (3.6)

where Ai is the ith coefficient of A and ni is the mode number corresponding to Ai. The
objective function implemented in OMIC is the weighted sum of both (2.2) and this
spectral weighting cost function,

f (A) = wBfB(A) + wswfsw(A), (3.7)

where wB and wsw weight the fB and fsw cost functions, respectively. In general, fB is a
function of Xc, Xs and A, but in this paper we vary only the coefficients in A and hold Xc
and Xs constant.

3.4. Steepest descent method in OMIC
To determine the set of Fourier coefficients A that best minimizes (3.7), a forward-tracking
gradient descent line search is performed. The integrated normal field error cost function
derivative is approximated by central differences. With respect to the ith element of A, the
central difference is,

∂fB

∂Ai
≈ fB(Ai + h) − fB(Ai − h)

2h
, (3.8)

where h is some step. The spectral weighting cost function derivative is computed
analytically and has the simple form,

∂fsw

∂Ai
= 2Ain2

i . (3.9)
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Optimization of finite-build stellarator coils 9

Multi-filament coils are initialized with A = 0, which is chosen to correspond with the
coil centroid frame given by (3.2)–(3.4). At each iteration k of the optimization, Fourier
coefficients in A(k) change according to,

Ak = Ak−1 − pk∇f (Ak−1). (3.10)

Here, pk is a step size and ∇ denotes the vector containing all ∂/∂Ai. We note that coil
current is not optimized in OMIC, as it is assumed that single-filament currents have
previously been optimized. In these optimizations, each single-filament current is divided
uniformly amongst the NW × NT filaments that comprise each multi-filament coil.

4. Applications
4.1. Designing coils for the HSX stellarator

The HSX is an optimized stellarator located at the University of Wisconsin-Madison
(Anderson et al. 1995) that was designed in the 1980s and began operation in the early
2000s. The magnetic design of this stellarator emphasizes quasihelical symmetry such that
one mode, the n = 4, m = 1 mode, is dominant. The major radius of the device is 1.2 m,
the minor radius is 0.12 m and the magnetic field on axis is 1 T. HSX is a four field period
device with 12 main modular coils per period for a total of 48 coils. Due to the stellarator
symmetry of the HSX configuration, there are only a total of 6 unique main coils. For
the optimization, the HSX coils are represented by filaments defined as the centre of the
winding pack of each actual HSX coil. These single-filament coils are then expanded into
multiple filaments using the coil centroid frame. In the optimization, a winding pack with
NW = 2 and NT = 7 was chosen. For these coils, the winding pack cross-section is 6 by
12 cm, which is similar to the actual HSX coils. The total coil current is 150 kA giving a
current density of ∼2 kA cm−2.

The finite build of the HSX coils is determined by optimizing multi-filament coils
using OMIC. The results are shown in figure 4(a–c). The difference between the coil
optimizations is the spectral weighting term, wsw. The leftmost column (a, d, g, j) show
the result with no spectral weighting, the rightmost column (c, f, i, l) have the highest
spectral weighting, while the middle column (b, e, h, k) have intermediate weighting. In
all optimization results, the number of Fourier modes in the spectrum, Nα was limited
to 5. Figure 4(a) shows the coils with no spectral weighting applied. The resulting coils
show very significant twists. In contrast, figure 4(c) shows a result with fairly high
weighting on the spectral terms. As a result, the coils exhibit less overall rotation of the
winding pack. The difference between these coils with high spectral weighting and the
unoptimized coils shown in figure 3(b) is not easily visible.

Figure 4(d–f ) shows the rotation angle, α, as a function of the parameterizing angle
along the coil, φ. From here, the differences in the allowable twist is visible. In the two
cases with lower spectral weighting (d, e), the rotation angle reaches almost π/2 on coils 4,
5 and 6. This highlights the difficulty of matching target fields in this region. Interestingly,
the α angle for coil 1 shows a large n = 4 mode in the case with no spectral weighting.
Without the spectral weighting, the algorithm includes high deviations for this coil for
only minor benefit. Figure 4( f ) shows results for coils with the highest spectral weighting,
and with this set, the α angle does not exceed 0.5 on any coil. However, even with this
high spectral weighting, coils 4, 5 and 6 can be seen to deviate the most.

The results from the optimization can be seen in figure 4(g–l). Plotted in (g–i) are
the values of |βn| = |Bn|/|B|, the normal field on the boundary divided by the field
magnitude at that position. Recalling the positioning of the hotspots near ζ = π/4 shown
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(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(a) (b) (c)

FIGURE 4. OMIC optimization results for HSX-like coils. (a–c) Show the optimized coils
(blue) with the plasma boundary (red). (d–f ) Show the optimization angle α as a function of
parameterizing angle φ for the 6 coils. (g–i) Show the normal field error on the boundary
from the coils as a function of the toroidal angle ζ and the poloidal angle θ . ( j–l) Show the
difference between the corresponding normal field error (g–i) and the normal field error with no
optimization (figure 3b). The three different coil sets examined are without spectral weighting
(left), with medium spectral weighting (middle) and with high spectral weighting (right).

in figure 3(b), it is clear that only the case with no spectral weighting (g) can effectively
eliminate both hotspots. The cases with spectral weighting (h,i) can reduce only hotspot 2.

The direct improvements for all the configurations can be seen in ( j–l). These figures
show the difference between |βn| of the optimized coils and |βn,0| of the unoptimized coils
(figure 3b). In these plots, blue colours represent locations on the boundary where the
optimized coils perform better, i.e. where the normal component of the magnetic field on
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HSX coils

Coil set fB
fB

fB,0
wsw fsw

No spec. weight 0.543 × 10−4 0.46 0.0 69.51
Med. spec. weight 0.950 × 10−4 0.51 0.8 × 10−2 22.47
High spec. weight 0.873 × 10−4 0.74 1.5 × 10−2 7.02
Unoptimized coils 1.182 × 10−4 1.00 — 0.00
Filament coils 0.764 × 10−4 0.64 — —

TABLE 1. Values for the integrated normal field, fB; the normalized integrated field, fB/fB,0; the
spectral weight, wsw, and the spectral weight penalty, fsw, for HSX-like coils with three separate
spectral weights. Results are also given for the initial unoptimized coils and the corresponding
filament coils.

the boundary is smaller. Conversely, red colours represent locations where the unoptimized
coils perform better. Because the target function metric only considers the integrated error
on the boundary, it can produce overall improvement even if the local matching is worse
in some places (red) provided it improves more significantly in other places. In the case
with no spectral weighting ( j), both hotspots are visible as deep blue sections where large
improvement occurred. Hotspot 2 is visible on the two cases with no spectral weighting
(k,l), but there appears to be no improvement for hotspot 1.

The improvements of the coils with no spectral weighting are available by inspection in
figure 4( j). However, the explicit improvement in the target function can be calculated and
is shown in table 1. Here the integrated normal field error fB and spectral weighting wsw
values are given. In addition, the value of the normalized integrated field, fB/fB,0 is given,
which directly compares the improvement of a given configuration with the unoptimized
field. For the case without spectral weighting, the integrated normal field error is reduced
by approximately half. This represents the largest possible reduction available through
modifying the coil angle. However, even for fairly modest optimization of the coil angle,
as evidenced by the high spectral weighting case, the integrated error can be reduced by
approximately 25 %.

4.2. Candidate coil designs for a new UW-Madison QHS stellarator
A new quasihelically symmetric stellarator configuration is under investigation at the
University of Wisconsin-Madison, and a candidate plasma equilibrium has been found
(Bader, submitted to JPP). This equilibrium, which we refer to as WISTELL-A,
is optimized for physics goals, including energetic particle confinement, neoclassical
transport and magnetohydrodynamic stability. WISTELL-A has a major radius of 2.0
m, a minor radius of 0.3 m and a magnetic field strength on axis of 2.5 T. Like HSX,
WISTELL-A is a four field period device with 12 main modular coils per period, 6 of
which are unique. Single-filament coils for WISTELL-A have been optimized to maximize
coil–plasma distance using the procedures described in § 2.2. In the optimization, a
winding pack with NW = 2 and NT = 7 was chosen. For these coils, the winding pack
cross-section is 7.5 by 15 cm. The coil current is 590 kA, producing a higher current
density (∼5 kA cm−2) than the low current density used in the HSX coils, which was
mainly chosen due to power supply limitations. The normalized boundary error |βn,0|
corresponding to this coil set is shown in figure 5.
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12 L. Singh and others

FIGURE 5. The magnitude of the normal magnetic field error on the boundary as a function of
toroidal angle ζ and poloidal angle θ for the WISTELL-A unoptimized coils initialized using the
coil centroid frame.

The results of the multi-filament coil optimizations are shown in figure 6. The layout is
similar to figure 4 in that the top row shows the coils, the second row plots the optimization
angle α as a function of parameterizing angle φ, the third row shows the values of |βn|
on the boundary and the bottom row shows the difference in the normal magnetic field
between the optimized and unoptimized coils. As before, the leftmost column shows the
results where there is no spectral weighting on αn values, and the rightmost column has
the largest spectral weighting. Like the HSX results, unoptimized coils for this case refer
to those initialized using the coil centroid frame.

Some similarities with the HSX coils are easily visible. Most obvious is that, as with
HSX, the largest errors on the boundary are near the half-period. Furthermore, the coils at
this period tend to also have the largest variation in the α angle. However, unlike in HSX,
these variations are not large enough to completely remove the areas with largest |βn|, as
can be seen by comparing figure 5 with 6(g). When examining the values of the normal
integrated field error in table 2, it can be seen that the same overall level of improvement
is obtained by optimizing the WISTELL-A coils as was found when optimizing the HSX
coils. That is, the case with no constraints on the spectral weighting found roughly a 50 %
improvement, while the high spectral weighting case found roughly a 25 % improvement.

5. Discussion
5.1. Dependence on single-filament optimization

In both the HSX and WISTELL-A coil sets, the agreement between the vacuum field due
to the coils and the desired plasma boundary, as measured by the integrated normal field,
worsens with spectral weighting. The relative improvements for the cases with no spectral
weighting and the cases with high spectral weighting are approximately the same in both
HSX and WISTELL-A. This can be seen numerically by the fB/fB,0 column of tables 1
and 2. However, figures 4(g–i) and 6(g–i) show the maximum |βn| error among all
optimized coil sets differs by about a factor of two between the configurations. The
maximum error is roughly 2.5 % in the HSX coil sets and 1.2 % in the WISTELL-A
coil sets. Part of this difference can be attributed to differences in the single-filament
coil set that corresponds with each configuration. The WISTELL-A coils were explicitly
designed with new modern tools to increase coil–plasma spacing, thus reducing coil ripple,
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(j) (k) (l)

(g) (h) (i)

(d) (e) (f)

(a) (b) (c)

FIGURE 6. OMIC optimization results for WISTELL-A coils. (a–c) Show the optimized coils
(blue) with the plasma boundary (red). (d–f ) Show the optimization angle α as a function of
parameterizing angle φ for the 6 coils. (g–i) Show the normal field error on the boundary
from the coils as a function of the toroidal angle ζ and the poloidal angle θ . ( j–l) Show the
difference between the corresponding normal field error (g–i) and the normal field error with
no optimization (figure 5). The three different coil sets examined are without spectral weighting
(left), with medium spectral weighting (middle) and with high spectral weighting (right).

one of the main sources of error. The average coil-plasma distance for the filamentary
WISTELL-A coils is ∼22.5 cm. In contrast, the HSX coils were designed with an early
code, NESCOIL, that enforced a constant, and relatively small coil–plasma spacing, ∼14.5
cm for the filamentary coils. Partly for this reason, the HSX coils have larger coil ripple
terms and thus larger boundary errors. The fB errors of the unoptimized HSX coils are
about 4 times as large as the fB errors of the unoptimized WISTELL-A coils.
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Wistell-A coils

Coil set fB
fB

fB,0
wsw fsw

No spec. weight 0.143 × 10−4 0.50 0.0 39.65
Med. spec. weight 0.184 × 10−4 0.64 1.0 × 10−2 10.79
High spec. weight 0.210 × 10−4 0.73 2.5 × 10−2 3.94
Unoptimized coils 0.285 × 10−4 1.00 — 0.00
Filament coils 0.147 × 10−4 0.52 — —

TABLE 2. Values for the integrated normal field, fB; the normalized integrated field, fB/fB,0; the
spectral weight, wsw, and the spectral weight penalty, fsw, for Wistell-A coils with three separate
spectral weights. Results are also given for the initial unoptimized coils and the corresponding
filament coils.

The sizes of the machines differ as well, and this size difference is expected to alter
the efficacy of the optimization. The HSX multi-filament coils shown in figure 3(a)
have a larger coil profile with respect to the plasma boundary than that of the coils
in the WISTELL-A set. Even with a slightly thicker build, the WISTELL-A coils are
significantly further from the plasma, limiting the effect of winding pack orientation on
the normal magnetic field error. The expectation is that as machine size increases, the
coil profile relative to the plasma will be reduced even if the field increases modestly.
The optimizations presented here are expected to have the largest effects on high-field
configurations with a small minor radius.

The effect of single-filament coil–plasma distance on the optimization in OMIC can
also be seen in optimization function α(φ), shown in figures 4(d–f ) and 6(d–f ). In the
WISTELL-A case, coil 6 deviates most from the unoptimized coils, followed by coil 5
and coil 4. This ordering matches the that of the minimum distance between the coils and
the plasma; coil 6 is closest to the plasma with a minimum coil–plasma distance of 19.5
cm, coil 4 is the furthest with a minimum distance of 23.0 cm and coil 5 is between the
two with a minimum distance of 21.3 cm. On the other hand, there is a less pronounced
difference between the α angle deviations of the optimized coils and the unoptimized coils
across all of the HSX coil sets. This correlates with uniformity in minimum coil–plasma
distance across these coils: the range of minimum coil–plasma distances for these sets
deviates by only 0.4 cm, from 14.3 to 14.7 cm.

These differences help distinguish the two optimizations. The HSX coils are, in general,
closer to the plasma, have large relative build profiles, larger coil ripple errors and larger
normal field errors. The OMIC optimization lowers the errors significantly, reducing fB
by ∼0.6 × 10−4 in the case with no spectral weighting. In contrast, WISTELL-A has
smaller relative build profiles, smaller coil ripple errors, and smaller normal field errors.
The OMIC optimization is less effective here, only reducing fB by ∼0.1 × 10−4. Note
that it would be impossible for the WISTELL-A coils to reduce the error by as much
as the HSX coils since the unoptimized coils have fB errors already below ∼0.5 × 10−4,
the lowest error achieved with HSX coils. When comparing the relative improvement of
optimized to unoptimized coils, both configurations show equal improvements, though.
This highlights the need to begin with as close to an optimal filamentary coil set as
possible.
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5.2. Simplifying coil shapes
Initial attempts at optimizations with OMIC targeted only the integrated normal field fB
without any spectral weighting constraint. The resulting coils did improve the integrated
normal field, but at the same time, produced undesirable coil shapes such as those shown
in figure 4(a). The inclusion of spectral weighting in OMIC reduces the complexity of
coil shapes at the expense of reducing fB. In general, optimization attempts are defined
by the relative weighting of the spectral term, and the number of toroidal modes to
include. It should be noted, however, that this spectral weighting does not target the
relevant engineering parameters directly. The spectral weighting term is only a crude tool
to approximate these engineering parameters. A more robust cost function that optimizes
real space coil engineering parameters directly is planned for future work.

6. Conclusions

In this paper, we have described a new method for designing finite-build stellarator coils
and presented the numerical implementation, OMIC. Employing a multi-filament model
to approximate coil build, we have found that optimizing the winding pack twisting of
coils can consistently reduce integrated normal magnetic errors on the plasma boundary.
Numerical applications have been presented for two quasihelically symmetric stellarator
configurations. The steepest descent minimization we employ successfully optimizes both
physics and engineering constraints, using a spectral weighting on the local rotation
function α to enforce simpler coil shapes. The expectation is that such an optimization
is critical for small- and mid-scale stellarators, especially those where the coil ripple is
considerable. For larger-scale devices, or those that employ coils with small builds, such
as with high-temperature superconductors, the improvements would be more modest, and
it would be more important to optimize coils solely based on engineering constraints.

A primary focus for future work will be integrating filament coil and winding pack
optimization. Several additional improvements are also planned. Improvements to the
implementation involve employing a target function for maximum normal magnetic error
and a target function for coil complexity that is more geometrically motivated than the
spectral weighting we have presented. Also, additional engineering constraints could be
employed, such as ensuring that the distance between the full build of coils is adequate.
Improvements to the optimization algorithms may be able to find better solutions, and
it would be advantageous to use analytic derivatives to calculate the gradient of fB
with respect to α, since filament position is an analytic function of α. Finally, these
optimizations were performed by specifying the coil winding pack aspect ratio and build
dimensions. However, these are free parameters and can also be optimized in tandem.
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