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Abstract
Nine stellarator configurations, three quasiaxisymmetric, three quasihelically symmetric and
three non-quasisymmetric are scaled to ARIES-CS size and analyzed for energetic particle
content. The best performing configurations with regard to energetic particle confinement also
perform the best on the neoclassical Γc metric, which attempts to align contours of the second
adiabatic invariant with flux surfaces. Quasisymmetric configurations that simultaneously
perform well on Γc and quasisymmetry have the best overall confinement, with collisional
losses under 3%, approaching the performance of ITER with ferritic inserts.

Keywords: stellarators, energetic particles, optimization

(Some figures may appear in colour only in the online journal)

1. Introduction

Confining energetic particles, especially alpha particles born
in nuclear fusion reactions, is of key importance for magnetic
confinement fusion reactors. In configurations where axisym-
metry is not present, either tokamaks with non-axisymmetric
perturbations, or stellarators, some particle orbits will have a
non-zero bounce-averaged radial drift causing them to leave
the confined region, sometimes very quickly. These promptly
lost particles can cause significant damage to plasma fac-
ing surfaces and reduce the lifetime of the plasma wall [1].
It may never be possible to confine all alpha particles in
a fusion device, but reducing the losses, especially prompt
losses, is crucial for the longevity of the device. This paper
will show collisional energetic particle transport results from
various stellarator configurations at the reactor scale with the

∗ Author to whom any correspondence should be addressed.

goal of identifying the properties of configurations with good
confinement.

Several metrics have been developed for neo-classical con-
finement in 3D systems [2]. Some configurations possess a
symmetry in the magnetic field strength, |B|, and therefore
are isomorphic to axisymmetric systems. These configurations
are called quasi-symmetric, because they possess a symme-
try in |B| similar to an axisymmetric system [3]. This paper
includes configurations of two quasi-symmetric types, quasi-
axisymmetric (QA) where |B| contours connect toroidally,
and quasi-helical (QH) where |B| contours connect helically
[4]. QH configurations typically have lower Shafranov shifts,
smaller connection lengths and thus smaller banana widths
than QA configurations. In all the configurations, exact qua-
sisymmetry is not present, but rather an approximate symme-
try exists. The deviation from a strict symmetry is referred
to in this paper as quasisymmetric deviation. Mathematically
this is obtained by transforming coordinates into the Boozer
coordinate system, and then calculating the energy in the
non-symmetric modes.
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It has been shown experimentally that QH configurations
improve neoclassical confinement [5]. Additionally, many
numerical explorations of quasisymmetric configurations of
all types exist as well. Specifically, recent results indicate that
low quasi-symmetric deviation can help alpha confinement
in both quasiaxisymmetric [6] and quasi-helically symmetric
configurations [7].

There are alternative methods for improving neoclassical
confinement in the absence of quasisymmetry exist. A broader
class of configurations are omnigenous, in which the second
adiabatic invariant, J‖ =

∮
v‖dl, is constant on a flux surface.

A consequence of this optimization is that every local maxi-
mum and minimum of |B| on a flux surface is not an isolated
point but rather a curve that links the surface. Configurations
that approximate omnigeneity are called quasi-omnigenous
(QO). If, in addition, contours of |B| close poloidally, the con-
figuration is quasi-isodynamic (QI). A consequence of this
optimization is that drifts are purely poloidal, and bootstrap
and Pfirsch–Schlüter currents vanish. This optimization was
used to produce W7-X [8]. Confinement of energetic particles
in QI configurations is expected to improve at high pressure
when the alignment between J‖ and flux surfaces improves [9].
Experimental research on W7-X has focused mainly on beam
particles both experimentally and numerically with multiple
codes [10–13].

An even less restrictive optimization for improved confine-
ment is described as σ-optimization defined in [14]. In LHD
it is possible to achieve an equilibria where σ = 1. In this
case, every local minimum of |B| links a flux surface, but local
maxima do not. This is achieved in LHD by shifting the axis
inward, creating the ‘inward shifted’ configuration [15]. In
this optimization, collisionless drift orbits are not fully con-
fined, but the coefficient of neoclassical transport drops signif-
icantly. Improvements to energetic particle confinement due
to an inward shift of the LHD configuration is well known. It
has been verified both experimentally [16, 17] and numerically
[18] for energetic particles from neutral beams. Recent work
has verified the improved confinement by measuring neutron
flux in deuterium plasmas [19, 20].

Various metrics have been used to quantify the degree of
neoclassical transport. One metric, εeff , is the coefficient of the
neoclassical diffusion in the low-collisionality (∼1/ν) regime
has been regularly used for stellarator optimization [21]. How-
ever, previous results indicate that there is little correlation
between εeff and good energetic particle confinement [7, 22].
However, a different metric Γc [23, 24], that seeks explicitly to
align contours of J‖ with flux surfaces similar to the omnigene-
ity constraint, has been shown to correlate better with energetic
particle confinement. This metric has been used to optimize
quasi-helically symmetric configurations with good energetic
particle confinement [7, 25].

In previous publications stellarators were compared only
between variations of similar classes (QA, QH, QO). Com-
parisons between stellarators of different classes, have often
been hampered by different choices of magnetic field strength,
size, and profiles of density and temperature. Some calcu-
lations include collisions where others do not. Comparisons
between published results is therefore very difficult. This paper

Table 1. A list of configurations along with relevant properties.

Name Type Periods Aspect ratio β

Wistell-A QH 4 6.7 Vacuum
Wistell-B QH 5 6.6 Vacuum
Ku5 QH 5 10.0 10.0%
ARIES-CS QA 3 4.5 4.0%
NCSX QA 3 4.4 4.3%
Simsopt QA 2 6.0 Vacuum
W7-X QI 5 10.5 4.4%
LHD std Heliotron 10 6.5 Vacuum
LHD in. Heliotron 10 6.2 Vacuum
ITER Tokamak N/A 2.5 2.2%

attempts to rectify the situation by providing consistent scal-
ings across a broad class of configurations and then compar-
ing the energetic particle confinements both collisionlessly and
with collisions.

The layout of this paper is as follows. In section 2, we
will briefly describe the configurations used in this paper.
Section 3 will explain how the reactor scale configurations
were constructed. Section 4 will show results from both
collisional and collisionless calculations of alpha particles.
Section 5 compares the alpha particle losses for the met-
rics of interest in each configuration. Section 6 will discuss
the results and describe the limitations of the current work.
Section 7 will conclude the paper and provide areas for future
research.

2. Configurations

This paper considers three quasi-helically symmetric configu-
rations, three QA configurations, a W7-X like configuration,
and two LHD-like configurations. An ITER configuration
is included for comparison. A table of all the configu-
rations and their relevant properties has been included in
table 1.

The quasi-helically symmetric configurations are: the
‘Wistell-A’ configuration which has been described in a previ-
ous publication [25]; the ‘Wistell-B’ configuration, a five-field
period vacuum configuration optimized with the ROSE code
[26] explicitly for quasisymmetry and Γc; ‘Ku5’ a five field
period configuration from [27] that was optimized for qua-
sisymmetry at high normalized pressure, β. The three QA con-
figurations are comprised of the NCSX (specifically ‘li383’)
[28, 29] and ARIES-CS (specifically: ‘n3are’) [30, 31] con-
figurations. Also included amongst quasiaxisymmetric config-
urations is a more recent vacuum configuration called Sim-
sopt, which was optimized solely for quasisymmetry at the
s = 0.5 surface using the SIMSOPT optimizer [32]. Here and
throughout the paper, s represents the normalized toroidal flux,
ψ/ψedge. The W7-X like configuration is a high-mirror config-
uration designed for improved energetic particle confinement
at high β near the axis [10, 33], with coefficients given by
table IV in [34]. The two LHD [15] configurations are vacuum
configurations, with one in the standard configuration. This
configuration has a magnetic axis at R = 3.75 m and the other
in an inward shifted configuration, with the magnetic axis at
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Figure 1. Boundary flux surfaces for the scaled configurations are shown. Left: quasihelically-symmetric configurations. Center:
quasiaxisymmetric configurations (including ITER) Right: non-quasisymmetric configurations.

R = 3.60 m. The inward shifted configuration is known to have
improved confinement properties [14]. Because the configura-
tions are scaled to larger volumes, we refer to these configura-
tions as LHD-standard (or LHD std) and LHD-inward (LHD
in). Finally the ITER configuration is a near-axisymmetric
configuration, although this equilibrium includes coil ripple,
blanket modules and ferritic inserts [35].

3. Scaling to reactor size

In order to properly scale configurations to each other it is nec-
essary to adjust to a benchmark size. The ARIES-CS param-
eters are used for the scaling, representing a fairly compact
reactor size. There are two possible ways to scale the con-
figurations. One option is to scale the configurations to have
the same volume (444 m3) the other is to scale the minor
radii to the same value (1.7 m). For this paper we only show
results using the volume scaling, although the main conclu-
sions do not change when the configurations are scaled to have
equivalent minor radii.

All configurations are represented by VMEC equilibria [36],
and the size scaling is accomplished by adjusting the bound-
ary coefficients such that all configurations have the same
volume. The magnetic field strengths are made equivalent
by ensuring the volume averaged magnetic field is equiva-
lent across all configurations (5.86 T). The volume scaling is
accomplished by multiplying all the boundary Fourier modes
by (Vt/Vc)(1/3) where V t represents the target volume, and
Vc represents the configuration volume before scaling. The
magnetic field is scaled by multiplying the toroidal flux by
(Vt/Vc)(2/3)Bt/Bc where Bt represents the target field strength
and Bc represents the configuration field strength before scal-
ing. For both Bt and Bc the volume averaged field strength is
used. For non-vacuum configurations, the current and pressure
also need to be adjusted in order to ensure the same rota-
tional transform for each configuration. The toroidal current
is multiplied by (Vt/Vc)(1/3)Bt/Bc. The normalized pressure,
β, is similarly kept constant through the scaling procedure
by multiplying the plasma pressure by (Bt/Bc)2. The bound-
ary flux surfaces for the configurations at the φ = 0 plane,

often referred to as the ‘bean’ or ‘crescent’, are plotted in
figure 1.

For all configurations, with three exceptions, the scaling
is accomplished by starting from an idealized fixed boundary
equilibrium and scaling the coefficients. These fixed boundary
equilibria are usually generated through optimization and do
not include effects from finite coils. One exception is the ITER
equilibrium which includes coil ripple and the effect from
ferritic inserts and blanket modules. The scaled ITER equi-
librium is a direct replica of the unscaled ITER equilibrium,
but with slightly larger volume and higher field. There was
no attempt to recalculate the effects of blanket modules and
ferritic inserts on the larger size. The other exceptions are the
two LHD equilibria which represent two configurations very
similar to those generated in the actual LHD device. In these
cases, the coils used to generate the equilibria were adjusted
and new free-boundary equilibria were generated from the
enlarged coils. Results from these free-boundary equilibria
are presented in this paper. A second set of LHD calcula-
tions were undertaken with scaled fixed-boundary equilibria
and the differences were not noticeable, and are not included
here.

In order to perform the collisional calculations, it is nec-
essary to define the temperature and density profiles. These
profiles determine the initial launch points for collisional
calculations as well as the slowing down behavior of the
alpha particles. The density profile chosen for these simu-
lations is mostly flat with n = n0

(
1 − s5

)
, the temperature

profile is more peaked with T = T0 (1 − s). These profiles
are roughly consistent with those chosen for the ARIES-
CS studies [30]. The values of the core temperatures, T0

and n0 are approximately equivalent to those of ARIES-CS:
ne,0 = 4.8 × 1020 m−3 and nD,0 = nT,0 = 2.25 × 1020 m−3,
with Te,0 = T i,0 = 11.5 keV. The difference between nD + nT

and ne arises from a flat profile of Zeff = 1.13 as in the ARIES-
CS equilibrium. However, collisions with impurity ions are
not included in these calculations. Once the temperature pro-
files are chosen, the reaction profile is determined. The tem-
perature, density and reaction profiles are shown in figure 2.
The same reaction profile is used for each equilibrium, and is
estimated as
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Figure 2. Left: temperature (red) and density (blue) profiles as a function of normalized toroidal flux s. Right: the derived reaction rate given
as a function of temperature and density for the ARIES-CS equilibrium.

R
dV
ds

= nDnT〈σv〉
dV
ds

; 〈σv〉 = 3.6 × 10−18T−2/3

× exp
(
−19.94 ∗ T−1/3

)
m3 sec−1, (1)

where nD and nT are the deuterium and tritium concentra-
tions, T is the temperature in keV and dV/ds is the deriva-
tive of the volume with respect to normalized toroidal flux
s for the ARIES-CS equilibrium. Even though the reaction
profile varies slightly from equilibrium to equilibrium due
to variations in dV/ds, the same fusion reaction profile is
maintained in order to keep consistent particle launch profiles
across equilibria.

Since the configurations vary in pressure from vacuum
configurations to normalized pressures of 10%, it is impos-
sible to choose profiles consistent across configurations that
also match the pressure profiles from each configuration. The
main goal is to determine what magnetic configuration prop-
erties affect alpha particle confinement rather than to do self-
consistent studies of each of the configurations. Therefore, the
same temperature and density profiles are used in all configu-
rations for alpha particle confinement calculations even though
there is no self-consistency with the plasma pressure used in
the equilibrium.

4. Alpha particle losses

Particles are sourced by first choosing a radial location such
that the distribution matches the reaction profile given in
figure 2. Next a random location on the surface and the veloc-
ity pitch angle is chosen in the same manner as described in
[7]. The guiding centers of the particles are followed using
an Adams–Bashford integration scheme and can under go
both slowing down and pitch angle scattering. The ANTS
code is used for all particle following calculations [10]. If
a particle passes beyond the penultimate flux surface in the
VMEC equilibrium at any point in time it is considered lost.

If the particle’s energy is the same as the background ther-
mal particles it is considered confined and is no longer
followed.

The results from the collisional calculation are shown in
figure 3. The line style indicates the configuration type, with
solid lines indicating QH, dotted lines QA, dashed lines for
the LHD-like configurations and both ITER and W7-X use
dashed-dotted lines. To help the reader, throughout the paper
consistent colors and linestyles (where possible) for each con-
figuration are used. Among the quasisymmetric configura-
tions, the QHs strongly outperform the QAs with the exception
of the Simsopt configuration which performs as well as the best
QHs. The three best performing configurations shown (outside
of ITER) are the Ku5 configuration (QH), the Wistell-B con-
figuration (QH) and the Simsopt configuration (QA). W7-X
performs about equivalently to both the WISTELL-A configu-
ration and the inward shifted LHD configuration when examin-
ing total lost energy. However, the energy loss profiles for these
configurations are different and this behavior will be exam-
ined in depth later. Note that due to differences in machine
size, magnetic field, and particle sourcing, the results shown
here may differ from previously published results on energetic
particle confinement.

In addition to the collisional calculation, calculations with-
out collisions are also presented in figure 4. For these calcula-
tions particles were started on a specific flux surface, in this
case s = 0.3, representing a surface just outside the midra-
dius is chosen. Particles are launched on this surface and
followed until they are lost or 200 ms have elapsed, corre-
sponding to several (∼3) slowing down times. Figure 4 shows
the particle loss versus time rather than the energy loss, but
because no collisions are included, all lost particles have the
full energy. Some configurations have very low collisionless
losses, including ITER which has no losses. Collisionless cal-
culations were previously used to distinguish between config-
urations [7], and they are very useful to highlight the specific
loss behaviors of the configurations, which will be examined
below. Note that the addition of collisions tend to enhance

4
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Figure 3. Energy loss from alpha particles as a function of time for all configurations.

Figure 4. Collisionless particle loss as a function of time for all configurations for particles born on the s = 0.3 surface. The ITER
configuration is included despite not being visible because of the absence of collisionless losses.

energetic particle losses due to pitch angle scattering onto lost
orbits.

Before a more detailed look at the configurations, it will be
useful to distinguish between the different types of losses seen.
Some particles are born on lost orbits and leave the confined
region at almost the full energy values even in the collisional
calculation. Particles born on the outer regions of the plasma
are likely to be lost in this manner. In fact all the losses from
ITER are particles born near the edge that are promptly lost.
We will refer to these particles as ‘prompt’ losses.

There is a second class of lost particles that undergo
many orbits before being lost. Sometimes this is the result
from diffusive properties, especially pitch-angle scattering
which becomes increasingly important at low energies. How-
ever, these slow losses can also occur in collisionless cal-
culations. As such we will refer to all losses on extended
time scales as ‘stochastic’ losses, following the convention in
[37, 38].

The exact boundary between prompt and stochastic losses
is not clear in all configurations, but it is often easy to see
the distinction in some of the configurations. The W7-X col-
lisionless losses at, say, s = 0.3 are particularly clear. The
W7-X configuration loses about 2% of launched particles
born at s = 0.3 before 0.2 ms. There are almost no addi-
tional losses until about 1 ms when additional stochastic
losses begin accumulating again. Many of the particles are
lost stochastically, however the precise behavior is important.
Slow stochastic losses are less problematic because particles
will be able to deposit most of their energy. The same dis-
tinction between prompt and stochastic losses in W7-X exists
with collisionless losses on other flux surfaces (not shown).
It also is visible in the collisional losses, however, with col-
lisional losses, diffusive behavior causes there to be some
particle losses between 0.2 and 1 ms. A more detailed discus-
sion about prompt versus stochastic losses is in sections 6.2
and 6.3.

5
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Figure 5. The deviation from quasisymmetry as a function of normalized toroidal flux, s for quasiaxisymmetric configurations (left) and
quasihelically symmetric configurations (right).

5. Alpha particle loss metrics

We consider two metrics for alpha particle losses, quasisym-
metry and Γc. A given configuration is quasisymmetric if the
variation of |B| along a field line is the same for all field lines
on a flux surface [39]. Quasisymmetry can be determined by
Fourier decomposing |B| on a flux surface in the straight field
line coordinate system known as Boozer coordinates [40]. If
the only modes present are ones where the ratio of the toroidal
mode n to the poloidal mode m is constant, the configuration is
quasisymmetric. For quasiaxisymmetric equilibria, n/m = 0
and a perfectly quasiaxisymmetric equilibrium will only have
modes with n = 0. For quasihelically-symmetric equilibria,
the ratio n/m is usually equal to the number of field periods
(modulo a sign). So for a perfectly quasihelically-symmetric
equilibrium with four periods, the only modes present are ones
where n/m = 4. A third symmetry, quasipoloidal symmetry,
where only modes with m = 0 are present, is not considered
in this paper.

Excepting precisely axisymmetric configurations, it is con-
jectured that perfect quasisymmetry can only be achieved on
a single flux surface [41], and a metric is needed to describe
the deviation from perfect quasisymmetry. The metric is cal-
culated by first Fourier decomposing the two dimensional flux
surface in Boozer coordinates, and then summing the mag-
netic energy in all non-symmetric modes normalized to the
m = 0, n = 0 mode, which is representative of the background
field strength. That is,

Qqs(s) =
1

B0,0(s)

⎛
⎝ ∑

m/n �=Cqs

B2
m,n(s)

⎞
⎠

1/2

, (2)

where Cqs represents the target for quasisymmetry, 0 for
quasiaxisymmetry and the number of field periods for
quasihelical symmetry. Lower values of Qqs indicate better
quasisymmetry.

Figure 5 shows the results of Qqs for quasiaxisymmet-
ric configurations (left) and quasihelically symmetric con-

figurations (right) as a function of flux surface. There is
clear separation among the quasiaxisymmetric configurations.
At all s values, the ARIES-CS configuration is the least
quasisymmetric and the Simsopt configuration is the most
quasisymmetric. The story is less clear for the quasiheli-
cal configurations. The Ku5 configuration is the most qua-
sisymmetric in the core and the least quasisymmetric in the
edge. Overall the Wistell-B configuration has the best average
quasisymmetry.

The second metric, Γc was introduced by Nemov [24]
(equations (36), (50) and (61)) as a measure of the energetic
ion confinement properties and is given by,

Γc =
π√
8

lim
L→∞

(∫ L

0

dl
B

)−1∫ Bmax /Bmin

1
db′

×
∑
wellj

γ2
c

vτb, j

4Bmin b′2 ; γc =
2
π

arctan
vr

vθ
. (3)

Here, vr and vθ are the bounce average radial and poloidal
drifts respectively; v is the particle velocity; τ b is the bounce
time given by τ b =

∮
dl/v‖ with v‖ being the parallel velocity

and the integral is taken over a bounce; Bmax and Bmin are the
maximum and minimum field strength on a flux surface or suit-
ably long field line; b′ represents a normalized field strength,
here equivalent to |B|/Bmin, which corresponds to the normal-
ized magnetic field strength at the bounce points; and L is the
length over which to integrate. The summation is over every
well along a field line, where the boundaries of the wells are
themselves a function of the integrating variable, b′. When
Γc is small, contours of J‖ align with flux surfaces, and the
bounce average radial drift goes to zero. More information
about Γc and its use for stellarator optimization can be found
in [7]. Unlike quasisymmetry, the Γc metric is meaningful for
all stellarator configurations. All calculations for both Γc and
quasisymmetry were carried out using the ROSE code. Due
to an unresolved difficulty with handling single field period
equilibria, Γc for the ITER calculation is unavailable for this
paper.

6
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Figure 6. Γc as a function of normalized toroidal flux, s for quasisymmetric configurations (left) and non-quasisymmetric configurations
(right).

Figure 7. Values of total collisional energy lost as a function of quasisymmetry on the s = 0.6 surface (left) and Γc on the s = 0.6 surface
(right).

Nine configurations are represented in figure 6 in the two
plots showing Γc as a function of normalized toroidal flux,
s. The six quasisymmetric configurations are plotted on the
left, and the three non-quasisymmetric configurations are plot-
ted on the right. Looking at the non-quasisymmetric config-
urations first, there is a clear distinction between the opti-
mized configuration W7-X and the two LHD configurations.
There is also a clear improvement between the LHD inward
shifted configuration compared to the standard configuration.
However, the LHD inward shifted configuration has roughly
the same magnitude of Γc as the worst of the quasisym-
metric configurations NCSX (note the difference in y-axis
scale).

The quasisymmetric configurations also show considerable
spread in the Γc metric. Once again there is clear separa-
tion among the three quasiaxisymmetric configurations. The
best performing case is the Simsopt equilibrium. Contrary to
the quasisymmetry result, ARIES-CS outperforms NCSX with
regard to theΓc metric. This behavior is not surprising since the
ARIES-CS optimization explicitly degraded quasisymmetry

in order to improve energetic particle confinement [31]. The
particle loss results shown in figures 3 and 4 indicate that this
optimization was successful.

For the three quasihelically symmetric configurations the
Wistell-A and Wistell-B configurations have almost identical
values of Γc (these are similar in scale to the W7-X value).
The Ku5 configuration has a larger value in the core, but a
lower value in the outer half of the plasma. Since the Ku5 and
Simsopt configurations represent the best performing configu-
rations, it appears that the edge values in the outer half may be
more important. The importance of the quasisymmetric values
on the outer half of the plasma has already been discussed with
respect to optimizations of quasisymmetry [6] and the results
presented here indicate that the values of Γc in the outer half
of the plasma may be more closely related to energetic particle
confinement as well.

Figure 7 shows the total energy loss for each configuration
plotted against the value of a parameter of interest evaluated at
s = 0.6. The deviation from quasisymmetry (for the QS con-
figurations) is plotted on the left hand plot andΓc is in the right

7
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Figure 8. Histogram of number of particles lost (per 10k) as a function of the loss energy for Wistell-A (black), W7-X (magenta dashed)
and LHD-inward shifted (green dashed). Prompt losses at 3.5 MeV are at the far right side of the graph.

hand plot. A correlation between alpha energy confinement
and Γc is clear from the right hand plot. Although a perfect
correlation does not exist, it is clear that the best/worst per-
forming configurations also have the best/worst performance
with regard to this metric. For quasisymmetry the correlation
is weaker. While the Simsopt and Wistell-B configuration both
perform very well on this metric, the Ku5 configuration per-
forms worse despite having the best overall energetic particle
confinement.

Among the QA configurations the best performing config-
uration is the Simsopt QA, which also performs the best on
both metrics, despite only optimizing for quasisymmetry. As
noted above, ARIES-CS performs worse in quasisymmetry but
better in both Γc and energetic particle confinement.

The QH configurations include two stellarator configura-
tions with excellent confinement, Ku5 and Wistell-B. For the
QH configurations, Wistell-A performs worse in the quasisym-
metry metric but approximately as well in Γc. Both Wistell-A
and Wistell-B were optimized including both quasisymmetry
and Γc in the target function. The Ku5 configuration only opti-
mized for quasisymmetry, but despite this has the lowest Γc.
There is a caveat to the performances of the two high per-
forming QH configurations. In both the Wistell-B and Ku5
configurations, strong indentations in the plasma boundary
make designing coils extremely challenging (see for example
figure 13 in [27]). However, coils that reproduce the ener-
getic particle properties have already been designed for the
Wistell-A configuration [25].

The W7-X configuration was specifically designed for good
energetic particle transport [33] and indeed it outperforms
ARIES-CS and is on par with the Wistell-A configuration.
Interestingly, the W7-X and Wistell-A configuration also have
almost the same minimum value for Γc so the points are very
close in figure 7(b).

The inward shifted LHD-like configuration has properties
that deserve some attention. The overall losses for this con-
figuration are on par with both W7-X and Wistell-A. Even
more interesting is that this configuration does exceedingly
well at confining prompt losses. This good performance in
the collisional results appears despite not performing particu-
larly well on the Γc metric. Figure 8 illustrates this by plotting
a histogram of the number of lost particles in the collisional

calculation against the energy at which they are lost. Prompt
losses are on the far right of the graph. These prompt losses
are lowest for the LHD inward shifted configuration com-
pared to both Wistell-A and W7-X. The LHD losses reach
their maximum between 2.5 and 3.0 MeV after which they
fall to a very low level. The Wistell-A and W7-X, in con-
trast have fewer particles lost between 2.5 and 3.0 MeV but
considerably more particles lost at energies under 1 MeV.
These configurations will be examined closer in sections 6.2
and 6.3.

6. Discussion

6.1. Optimization

One salient feature of the configuration scan is that two of
the configurations with lowest achieved values of Γc were not
actually optimized for Γc but rather for quasisymmetry only.
These are the Ku5 and Simsopt configurations. Optimizations
for quasisymmetry typically also improve Γc. In fact, in sev-
eral steps of the Wistell-B optimization it was found that the
best improvement on both metrics, quasisymmetry and Γc was
obtained when the Γc optimization was turned off in the opti-
mizer. Cases where optimization for quasisymmetry does not
improve Γc, such as one of the configurations presented in [7]
are fairly uncommon. There are many pathways to improv-
ing Γc that do not include quasisymmetry, for example, the
optimizations that lead to W7-X.

Another important point of consideration is that many
of the configurations were designed with additional metrics
included. Both the NCSX and ARIES-CS equilibria placed
strong emphasis on stability properties at finiteβ. Among other
things, this generates a strong crescent shape at the φ = 0
plane. In contrast the Simsopt QA is a vacuum configuration
without a vacuum magnetic well and no attempt to provide
stability at high pressure. The Simsopt configuration should
be viewed as what is possible if you attempt to make the most
quasiaxisymmetric configuration possible perhaps in opposi-
tion to other desired or even necessary properties. As always,
significant effort is needed to weigh different optimizations
considerations together to produce the ideal configuration for
an experiment or reactor.
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A similar story exists in the QH configurations. While
Wistell-A and Wistell-B are both vacuum configurations,
Wistell-A has a vacuum magnetic well and Wistell-B does
not. Furthermore, attempts to generate coils to reproduce the
Wistell-A configuration were successful, while attempts to
produce coils for Wistell-B or Ku5 have not been successful
to date. Of course this does not mean that it is impossible to
find coils for these configurations, just that it is comparatively
easier to design coils for Wistell-A. Despite having entirely
different optimization schemes, Wistell-B and Ku5 have simi-
lar features. Specifically, both have a strong indentation in the
teardrop shape that is very difficult to reproduce with coils.
Future work that incorporates coil buildability should exam-
ine whether this feature is necessary for good confinement or
not.

Finally we note that several of the configurations, namely
the LHD configurations are actually built machines. It is much
easier to design a configuration with good parameters than to
actually build one. It is possible that the performance of the
other configurations would degrade due to accumulated errors
in the construction process. Efforts to optimize taking into
account manufacturing errors are being undertaken by others
[42] and will not be discussed further here.

6.2. LHD inward shifted

We focus here on the performance achieved by the LHD
inward shifted configuration. While it has been theorized
and experimentally verified [16, 17, 19] that the con-
finement improves in LHD with inward-shifted configura-
tions, the results presented here deserve some additional
discussion.

The specific optimization in question aligns the minimal
values of the magnetic field on the surface, referred to as
σ = 1 optimization. This can be seen in figure 9 where a
field line from both the standard and inward shifted cases are
plotted as a function of toroidal angle. The minima align for
the inward shifted case (green) but do not align for the stan-
dard configuration (yellow). Another feature of these LHD-
like equilibria is because the field is generated with helical
coils, the field strength is smoothly varying with no local
minima above the global minimum value. These local min-
ima are problematic for particle confinement and can lead to
promptly lost particles, similar to ripple trapped particles in a
tokamak.

Since the maxima along the field line do not align, par-
ticles in the LHD inward shifted configuration have a finite
radial drift. In fact, as visible in figure 4 even in the absence
in collisions, many trapped particles in both LHD configura-
tions are eventually stochastically lost. For both LHD config-
urations, ∼63% of trapped particles are lost. The end result is
a configuration which has no prompt losses due to the σ = 1
optimization, but eventually loses the majority of the trapped
particles. The parameters used for this calculation use the
ARIES-CS parameters which have high plasma density and
low temperature giving a slowing down time of ≈50 ms in
the core, and considerably lower in the edge. When exam-
ining the collisional results under these conditions, the LHD

Figure 9. Magnitude of the magnetic field, |B| along a field line
for the LHD inward shifted (green) and standard (yellow)
configurations evaluated at s = 0.5.

inward shifted configuration compares favorably to configura-
tions such as Wistell-A even though stochastic losses are very
low in Wistell-A.

6.3. QH: collisionless vs collisional losses

The performance of Wistell-A is also worth looking at closer.
In the collisionless losses (figure 4) the total losses are low,
below all other configurations except for Wistell-B and ITER.
Furthermore, almost all the losses that do exist are prompt,
occurring well before 1 ms. Yet, when collisions are added,
Wistell-A performs significantly poorer to Wistell-B and Ku5
and instead performs equally well to W7-X which has more
prompt losses and significantly more collisionless stochas-
tic losses. The performance of Wistell-A is actually slightly
worse than LHD, which has fewer prompt losses, but very large
values of collisionless stochastic losses.

To understand this behavior it is necessary to not only dis-
tinguish between prompt and stochastic losses, but between
the pitch angle of promptly lost particles. Particles can diffuse
through phase space by pitch-angle scattering. Although pitch-
angle scattering is small for 3.5 MeV alpha particles compared
to momentum loss (by roughly a factor of 20), it still exists. If a
particle diffuses into a region of phase space which is promptly
lost, it will likely be lost before it can diffuse out. The distribu-
tion of these loss regions in phase space is important. If there
is one major region of losses, such as all deeply trapped par-
ticles, the only particles that will be lost are those born in the
region or close to it. However, if the prompt-loss regions are
scattered around phase space, even if the total volume is lower,
the amount of particles that may drift through a prompt-loss
region may be higher. Although verification will require statis-
tical analysis tools beyond the scope of this paper, some basic
analysis can be done by examining the pitches of promptly lost
particles. Figure 10 shows a histogram of prompt (within 1 ms)
collisionless particle losses for W7-X and Wistell-A as a func-
tion of pitch. The pitch parameter is given as E/μ where E
is the particle energy and μ is the first adiabatic invariant.
This ratio is the maximum field a particle can reach before
reflecting. As with previous collisionless results [25] the losses
for Wistell-A appear mostly near the trapped-passing bound-
ary. The trapped-passing boundaries for Wistell-A and W7-
X are slightly different and are shown with vertical dashed

9
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Figure 10. Histogram of collisionless prompt losses (less than 0.1 s)
as a function of starting pitch for Wistell-A (black) and W7-X
(magenta). The vertical dotted lines represent the minimum possible
value of E/μ and the vertical dashed lines represent the
trapped-passing boundaries for each configuration. The large
population for W7-X corresponds to deeply trapped particles, while
the other peak, larger on Wistell-A is near the trapped-passing
boundary.

lines. All the lost particles are trapped. In contrast, most of the
losses from W7-X are from deeply trapped particles. While
there are some losses near the trapped passing boundary for
W7-X, these losses are significantly less in number than for
Wistell-A.

One speculative explanation for the relatively poor per-
formance of Wistell-A compared to the expectations from
collisionless losses is as follows. The LHD-inward shifted
configuration has no prompt losses and the collisional results
appear similar to the collisionless results. Most particles are
lost, but they are lost slowly. To lose a particle quickly requires
the particle to be born on a lost orbit, or be suitably close to
a lost orbit so that it can pitch-angle into a loss orbit. Since
for alpha particles in the reactor conditions described here, the
pitch angle scattering time is ∼20 times slower than the slow-
ing down time, particles need to be born close to phase-space
locations of lost orbits to be promptly lost. W7-X does have
prompt losses, but these occur mostly in the deeply trapped
particles. Only particles that are close to the deeply trapped
region can diffuse onto lost orbits and be lost. In contrast, the
losses from Wistell-A occur mostly near the trapped-passing
boundary. The phase space volume near the trapped-passing
boundary is significantly larger than the deeply trapped vol-
ume. For this reason, it is easier to diffuse into loss regions
near the trapped-passing boundary. This may partly explain
why losses are enhanced for Wistell-A when collisions are
included. One result from this analysis is that if a configura-
tion is to have prompt losses, it is far better to have them in
deeply trapped regions. Future research areas could focus on
estimation of the phase space volume of the loss regions along
with calculating how that volume expands when collisional
processes are included.

6.4. Limitations and caveats

The analysis presented in this paper is useful particularly for
comparing different configurations, but to actually calculate
losses in reactor configurations additional steps need to be

taken. This section outlines some of the limitations of the
calculations.

As noted above, the same profiles were used for every con-
figuration despite significant differences in β. Including a real-
istic profile for each configuration would obscure some of the
differences between the configurations, which is the primary
purpose of the results presented here.

Another limitation is the particle following algorithm is
a guiding center algorithm and does not include finite gyro-
orbits, which can have gyroradii as high as 9 cm in these
configurations. Finite orbits for alpha particles can be large
and a full-orbit analysis between configurations would help
determine whether the alpha loss estimates are accurate. At
increased machine size, the effects of finite orbits are smaller
and the guiding center approximation gets increasingly bet-
ter. Many other effects are also not included, including any
transport from Alfvén Eigenmodes.

The configurations presented here all rely on VMEC equi-
libria. VMEC describes the equilibria as having nested toroidal
flux surfaces without magnetic islands or stochastic field
regions. Calculations with more realistic field, which also
includes the effects from fields generated from coils are left
for future work.

Particles are considered lost if they pass beyond the penul-
timate surface in the VMEC equilibrium at any point in their
orbit. In reality, particles may leave the confined plasma and
reenter. This effect may be significant in QA configurations
which have the longest connection lengths and thus the largest
banana widths, but is also known to be important for LHD-
like configurations which have a large separation between the
plasma and the wall [43].

7. Conclusions and outlook

The analysis presented here shows that it is possible to opti-
mize for stellarators to have good energetic particle confine-
ment, often by ensuring very high quasisymmetry, as was
done in the Ku5 and Simsopt equilibria. Post-hoc analysis
of these two configurations indicate that it may be possi-
ble to achieve acceptable levels of energetic particle loss by
optimizing for Γc instead. Since Γc is less restrictive than
quasisymmetry, a large configuration space is available, and
it may be possible to find a configuration that satisfies var-
ious other needs as well. Indeed, the Wistell-A configura-
tion was optimized with Γc and has both a vacuum mag-
netic well and a buildable coil set. Additionally, improvements
to energetic particle metrics may yield new possibilities for
optimization [44].

Unfortunately, none of the configurations presented here
satisfy all of our needs for a stellarator reactor, which requires
not only energetic particle confinement, but performance at
high pressure, a buildable coil set, as well as other properties
that are more difficult to quantify, like a viable divertor solution
and reduced turbulent transport. As optimization algorithms
and the physics metrics that feed into them improve, it is more
likely that configurations which perform satisfactorily on all
required axes will be found.
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