

Application of Ferromagnetic Inserts to Reduce Modular Coil Ripple in Stellarators T. Kruger, C. Martin, D.T. Anderson, A. Bader *University of Wisconsin-Madison*

Motivation for Using Ferritic Inserts in a Stellarator

- Modular coils impose a short wavelength nonsymmetric mode in magnetic spectra which is referred to as modular coil ripple
- Coil ripple is detrimental to energetic particle confinement and can lead to unacceptable losses of fusion born alpha particles

ANSYS requires finite build coils to carry out its analysis

Design of Finite Build Coils

To model ferromagnetic materials we use the finite element solver ANSYS [1]

• We start coil design with winding surface calculations using REGCOIL [2]

$$\chi^{2} = \chi^{2}_{b} + \lambda \chi^{2}_{k}$$

$$\chi^{2}_{b} = \int d^{2}a B^{2}_{normal}$$

$$\chi^{2}_{k} = \int d^{2}a K(\theta, \varphi)^{2}$$

- χ_b^2 is the main objective function used throughout this work
- Current potential contours are cut to produce single filament coils that are input to FOCUS [3]
- FOCUS performs non-linear optimizations where the coils are no longer constrained to lie on a winding

$$\mathbf{r}(\theta) = \left[\sum_{n=0}^{N} X_{c,n} cos(n\theta) + X_{s,n} sin(n\theta)\right] \hat{\mathbf{x}} + \cdots$$
$$\left[\sum_{n=0}^{N} Y_{c,n} cos(n\theta) + Y_{s,n} sin(n\theta)\right] \hat{\mathbf{y}} + \cdots$$

$$\left[\sum_{n=0}^{N} Z_{c,n} cos(n\theta) + Z_{s,n} sin(n\theta)\right] \hat{\mathbf{z}}$$

- We use local coordinate frames located at the single filament coils to parameterize multi-filament coils
- See poster by Luquant Singh for multi-filament coil parameterization and optimization
- Multi-filament parameterization allows for optimization of important quantities
 - Tilt of coil finite build
 - Coil aspect ratio
 - Coil centroids
- Multi-filament coils approximate finite build coils
- Build directions for multi-filament coils are the same build directions that are used for finite coils
- Once the finite coils are produced the model is reproduced in ANSYS

Ferritic Inserts are Used in Tokamaks and Designed for ITER

- Ferritic inserts used in the JFT-2M tokamak and have shown to reduce coil ripple, n= 16 mode
- Higher order harmonics arise, specifically secondary and tertiary ripple modes n = 32, 48
- Ferritic inserts are placed inside the coils and only on the outboard, low field side

- Ferritic inserts are going to be used in ITER and have important physical implications
 - Reduced coil ripple
 - Decrease alpha particle loss
 - Decrease heat fluxes to first wall

Example of Ferritic Inserts for a Shaped Tokamak

- D shaped tokamak coils modeled with rectangular coil cross sections and uniform current density
- Ferritic material with relative permeability equal to 1000, roughly equal to ferromagnetic steel

Modular coil ripple is reduced from roughly 1.5% to 1.2%

Progress on Ferritic Inserts for the HSX Stellarator

- Model of HSX coils has been created in ANSYS
- Ripple calculation for stellarator is from Boozer spectrum

$$B = B_0 \sum_{n,m} b_{nm} \cos(n\varphi - m\theta)$$

- Modular coil ripple for the HSX stellarator is captured in the $b_{48.0}$ mode amplitude
- Initial ferritic inserts can be approximated and optimized by assuming a magnetization direction and using a far field dipole field

$$\boldsymbol{B}(\boldsymbol{r}) = \frac{\mu_0}{4\pi} \left[\frac{3(\boldsymbol{m} \cdot \hat{\boldsymbol{r}}) \, \hat{\boldsymbol{r}} - \boldsymbol{m}}{r^3} \right]$$

- Low field side of field is observed to have highest coil ripple
- Ferritic inserts will be placed on low field side due to highest ripple being on low field side
- Optimization of $b_{48.0}$ mode amplitude will be carried out by minimizing $\int d^2a B_{normal}^2$

Future Work

- Implement a more accurate interpolation from ANSYS tetrahedral mesh to mgrid
- Compare magnetic field solutions from ANSYS finite coils to multi-filament models
- Construct a realistic tokamak coil set model in ANSYS, possibly ITER
- Optimize ferritic inserts for the realistic tokamak model
- Perform optimization of approximated magnetic dipoles and use solution as input to optimization of ANSYS model
- Constrain optimization to toroidal anulus which will be defined by spacing between coils and vacuum vessel
- Evaluate ripple reduction through boozer spectrum
- Optimize ferritic inserts for existing and future stellarators and calculate difference of fusion born alpha particles losses at ARIES-CS scale

References

- [1] ANSYS Academic Research Mechanical, Release 19.2
- [2] M. Landreman, <u>Nuclear Fusion</u>, <u>57(4)</u>, 046003 (2017)
- [3] C. Zhu et al., Plasma Physics and Controlled Fusion, 60(6), 065008 (2018)
- [4] K. Shinohara et al., Fusion Science and Technology, 49:2, 187-196 (2006)
- [5] K. Shinohara et al., <u>Nuclear Fusion</u>, <u>43</u>, 586 (2003)
- [6] K. Shinohara et al., Nuclear Fusion, 51, 063028 (2011)
- [7] K. Tobita et al., Plasma Phys. Control. Fusion, 45, 133 (2003)

This work is supported by US DOE grant DE-FG02-93ER54222 and UW Foundation under grant 135AAD3116