
J. Plasma Phys. (2021), vol. 87, 175870201 © The Author(s), 2021.
Published by Cambridge University Press

1

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any
medium, provided the original work is properly cited.
doi:10.1017/S0022377821000106

LETTER

Constrained stellarator coil curvature
optimization with FOCUS

Thomas G. Kruger 1,†, C. Zhu 2, A. Bader 1, D. T. Anderson1

and L. Singh 1

1HSX Laboratory, University of Wisconsin, Madison, WI 53706, USA
2Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08540, USA

(Received 30 September 2020; revised 21 January 2021; accepted 25 January 2021)

Finding less complicated coils that have adequately low field errors is a crucial step
in stellarator development. One coil metric that is of high importance is the maximum
curvature of the coil centreline, or coil single filament. Conductors cannot be bent below
some threshold minimum radius of curvature. High coil curvatures can cause strains to
exceed acceptable levels, especially in superconducting coils. We investigate three ways
to optimize coil curvature and find that applying penalty functions to the coil curvature
solves for coils that have a constrained maximum curvature and low field error. Penalty
functions are implemented in FOCUS and coil solutions optimized for an HSX-like
‘plasma boundary’ are presented.

Key words: plasma devices

1. Introduction

Stellarators possess inherent advantages that are important to consider for future
fusion power plant designs, including steady-state operation, resiliency to disruptions
and theoretically high beta stability limits (Gates et al. 2018). Although stellarators
have desirable physics properties, they also require complicated engineering. Generally,
stellarators do not require current drive to achieve reasonable rotational transform
profiles. To produce non-axisymmetric magnetic fields, non-planar coils are typically
used (Merkel 1987; Drevlak 1999; Landreman 2017). Non-planar coils complicate coil
design, engineering, assembly and supports. Difficulties arising from non-planar coils led
to significant delays during the construction of the W7-X experiment (Riße 2009) and
to the cancellation of the NCSX experiment at the Princeton Plasma Physics Laboratory
(Neilson et al. 2010).

Thereisatrade-offbetweencoilsthataccuratelyreproduceadesiredmagneticfieldandcoils
that are simple to manufacture. Stellarator coils need to satisfy engineering constraints such
as maximum coil curvature, minimum coil-to-coil separation and minimum coil-to-plasma
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separation. After such engineering constraints are satisfied one can also optimize for
additional considerations such as coil resiliency to displacements, coil spacing for auxiliary
systems, coil cost and coil complexity. Coil complexity is left ambiguous here and we
do not intend to define a set of quantitative metrics for it. Coil complexity is necessarily
dependent on the manufacturing process, whereas the coil maximum curvature is important
independent of the manufacturing process. This letter investigates the maximum curvature
engineering constraint, just one of many coil considerations.

Previously, both the ONSET and COILOPT codes used curvature objective functions to
target coil curvature. The ONSET code uses a penalty function that quadratically penalizes
curvatures that exceed some input maximum curvature (see (5) and (6) of Drevlak (1998)).
This curvature objective function is not differentiable, which limits the applicability of the
objective function to different optimization schemes. Additionally the curvature objective
function is dependent on coil lengths. The COILOPT code used an exponentially weighted
function to heavily penalize high coil curvatures (see (4) of Strickler, Berry & Hirshman
(2002)). One difference between the COILOPT exponential function and our penalty
function is that the exponential function penalizes all values of curvature, not just values
that are above the maximum. Furthermore, in COILOPT, coils are constrained to lie on a
predefined winding surface which greatly limits flexibility.

In this letter we compare three curvature objective functions. In doing so we attempt to
elucidate the salient properties of penalty functions that constrain curvatures below some
maximum value and objective functions that try to reduce the integrated curvature. While
both the ONSET and COILOPT formulations target curvature and are able to reduce coil
curvatures, there has not yet been a systematic effort to understand what specific choices of
the curvature function yield. This letter provides a first attempt at resolving these questions.

The first two curvature objective functions minimize a coil’s average curvature and
average curvature squared. The third curvature objective function uses penalty functions
to explicitly constrain a coil’s maximum curvature. The maximum curvature constraint is
of crucial importance since it directly determines whether a coil set can be constructed.
For instance, if the minimum radius of curvature is greater than half the small dimension
of a coil width, then the coil will self-intersect. Also, smaller radii of curvature directly
increase coil strain and can increase the magnetic field strength in the coil, both of which
can violate engineering constraints for superconducting coils.

To optimize for a coil’s maximum curvature, we will use the single-filament
coil optimization code FOCUS (Zhu et al. 2017). Single-filament coils are initial
approximations where the coil cross-section is taken to be a point. This coil approximation
is appropriate for any type of coil such as low-temperature superconducting,
high-temperature superconducting and copper coils. Depending on the size of the coil
cross-sections relative to the coil–plasma distances, a multi-filament coil optimization can
be done as a subsequent step (Singh et al. 2020). For this letter it is assumed that coil
means single-filament coil.

Our motivation and method for constraining maximum coil curvature are described in
the rest of this letter. Newly implemented FOCUS objective functions are described in § 2.
Coils optimized with these objective functions are shown in § 3. The objective functions
and resulting coils are discussed in § 4. Conclusions and future work are discussed in § 5.

2. FOCUS objective functions

FOCUS is a stellarator coil optimization code that takes advantage of parallel
computing. FOCUS solves nonlinear coil optimization problems of the following form:

min
∑

i

wifi, (2.1)
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Constrained stellarator coil curvature optimization 3

where wi is a user-specified weighting associated with the objective function fi. These
objective functions are dependent on and minimized by changing coil geometries and
currents. Objective functions in FOCUS are twice differentiable. These objective functions
are minimized with gradient-based optimization algorithms, like the conjugate gradient
method, or with Hessian-based algorithms, like the Newton method (Zhu et al. 2018).
Coils in FOCUS are approximated as space curves and defined using truncated Fourier
series as

r(t) = x(t)x̂ + y(t) ŷ + z(t) ẑ =
NF∑

n=0

[(
Xc,n cos(nt) + Xs,n sin(nt)

)
x̂

+ (
Yc,n cos(nt) + Ys,n sin(nt)

)
ŷ + (

Zc,n cos(nt) + Zs,n sin(nt)
)

ẑ
]
, (2.2)

where t ∈ [0, 2π] is our parameterizing variable and NF defines the highest Fourier mode
frequency to be used in the optimization. The optimization variables are the Fourier mode
amplitudes Xc,n, Xs,n, Yc,n, Ys,n, Zc,n and Zs,n and coil current for each coil.

The primary objective of coil optimization is to satisfy a normal field boundary
condition on an input surface. This surface can be arbitrary, but typically is a ‘plasma
boundary’ from a fixed boundary equilibrium. The normal field boundary condition can
also be arbitrary, but is typically set by plasma currents and any fixed external current
sources. For this letter we use a quadratic, normalized flux objective function:

fBn =
∫

S

1
2

(
Bv · n − TBn

|Bv|
)2

dS, (2.3)

where Bv is the magnetic field from coils, n is the input surface unit normal and TBn is the
normal field boundary condition. This objective function will be referred to as a field error
objective function. We optimize coils to reconstruct magnetic fields from a zero-beta, fixed
boundary equilibrium. This allows us to use the plasma boundary from the equilibrium as
our input surface and allows us to set the normal field boundary condition to zero.

If the Neumann boundary condition is set to zero, coil currents are not held fixed and
the quadratic flux objective function is not normalized by field strength, an additional
objective function that optimizes for toroidal flux needs to be included. If it is not included
in the optimization, a trivial solution will be solved for where coil currents go to zero,
causing the normal field on the boundary to consequently also be zero. For this letter
we keep coil currents held fixed, and use the normalized flux objective function (2.3);
therefore a toroidal flux objective function is not needed.

‘Coil ripple’ errors are caused because field strength is large at surface positions close
to coils and smaller in between coils. These errors are associated with high toroidal mode
numbers corresponding to the number of coils. Coil ripple can be reduced by moving
coils farther away from the boundary. Coil ripple errors are visible as varying stripes of
minimum and maximum error on the boundary, as in figure 1(a). At larger coil distances it
is more difficult to match the general plasma boundary shape even if the field is generated
by an external current-carrying surface (Landreman & Boozer 2016). We refer to errors of
this type as ‘non-ripple errors’.

The inverse of the Biot–Savart law is ill-posed and additional regularization is required
in coil optimizations. FOCUS uses coil length as one of the primary regularizations. If
there is no penalty on coil length, coils can become arbitrarily long to reduce coil ripple.
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(a) (b)

FIGURE 1. The (Bv · n)/|Bv| distributions plotted on a half-period of the HSX boundary from
coils optimized with our penalty curvature objective function (a) and from coils optimized with
a quadratic curvature objective function (b).

To obtain the results in this letter we use a quadratic penalty on coil length given as

fL = 1
Nc

Nc∑
i=1

1
2

(
Li − Li,0

)2

L2
i,0

, (2.4)

where Nc is the total number of coils, Li is the length of the ith coil and Li,0 is the
user-specified target length of the ith coil. Including a curvature objective function further
regularizes the optimization, but it is still important to include a coil length objective
function to ensure that coil solutions are reasonable.

Coils optimized with only field error and length objective functions are discussed in § 3.
These coils have a maximum curvature that is roughly an order of magnitude larger than
that of the Helically Symmetric Experiment (HSX) coils, and therefore motivate the need
for a curvature objective function. We now present three candidate curvature objective
functions. Including a curvature objective function gives an optimization problem of the
following form:

min wBnfBn + wLfL + wκ fκ,j, (2.5)

where j = 1, 2, 3 correspond to three possible forms of the curvature objective function.
The first curvature objective function (j = 1) is given as

fκ,1 = 1
Nc

Nc∑
i=1

1
Li

∫ 2π

0
κi

∣∣ri
′∣∣ dt, (2.6)

κ = |r′ × r′′|
|r′|3 , (2.7)

with each coil’s curvature, κi, appearing linearly. Alternatively, it may be desirable to
penalize areas of high curvature more than areas of low curvature. A second curvature
objective function that optimizes for the square of the curvature should accomplish this.
This function (j = 2) is given as

fκ,2 = 1
Nc

Nc∑
i=1

1
Li

∫ 2π

0
κ2

i

∣∣ri
′∣∣ dt. (2.8)

It is important that we integrate over the coil’s arc length |ri
′| dt and not the parameterizing

variable dt. If we were to integrate over the parameterizing variable, the objective function
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Constrained stellarator coil curvature optimization 5

(a) (b)

FIGURE 2. (a) The penalty function used in the fκ,3 objective function, where the variable κi is
changed to x and the value of κ0 is set to 5. Multiple values of the penalty variable α are plotted.
(b) The derivative of this penalty function.

would be parameterization-dependent. This means coils with the same shape could have
different parameterizations and consequently different values for the objective functions.
It is also important that we normalize each integral by the corresponding coil length. If
we do not do this, coil lengths can decrease to minimize the objective functions despite
having regions of higher curvature. The curvature objective functions (2.6) and (2.8)
attempt to minimize an integrated function of coil curvature, but they do not constrain
it. Therefore we are solving an unconstrained optimization problem. In order to constrain
the coil curvature, the third curvature objective function (j = 3) uses a penalty function,
making this a constrained optimization problem.

We apply a constraint on coil curvature so that it is below some maximum value κ0 at
all points in the set of coils. That is, κi(t) ≤ κ0 = 1/R0 ∀t and ∀i, where R0 corresponds to
the minimum radius of curvature. To apply this constraint we can use the following third
curvature objective function which uses a penalty function:

fκ,3 = 1
Nc

Nc∑
i=1

1
Li

∫ 2π

0
Hκ0(κi) (cosh (α (κi − κ0)) − 1)2

∣∣ri
′∣∣ dt,

α > 0 κ0 > 0,

⎫⎪⎪⎬
⎪⎪⎭

(2.9)

Hκ0(κi) ≡ H(κi − κ0) =

⎧⎪⎨
⎪⎩

0, κi < κ0,
1
2 , κi = κ0,

1, κi > κ0.

(2.10)

The third curvature objective function includes a Heaviside function defined in
(2.10) which is discontinuous. It is important to notice that at the Heaviside function
discontinuity, the term cosh(α(κi − κ0)) − 1 goes to zero which can be seen in figure 2.
This preserves the objective function’s continuity and moreover its differentiability. This
objective function is twice differentiable, fκ,3 ∈ C2. FOCUS has multiple optimization
algorithms implemented. If the user were to choose one of the quasi-Newton methods,
superlinear convergence can be observed since the FOCUS objective functions are twice
differentiable (Nocedal & Wright 2006).

The penalty function only penalizes coil locations where coil curvature exceeds the
specified maximum curvature, κ0. The value of Hκ0(κi)(cosh(α(κi − κ0)) − 1)2 is zero
if κi ≤ κ0, positive if κi > κ0 and increases exponentially with the constraint violation
κi − κ0. To guarantee a constraint on coil curvature, the value of α needs to be iteratively
increased to ∞. Here α is called our penalty variable. As α → ∞, the value of fκ,3 → ∞,
if any coil has a location where the coil’s curvature exceeds the maximum curvature.
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Optimization run wBn wL wκ

No curvature objective function 1 × 104 1 × 103 0
Linear curvature objective function 3 × 104 6 × 102 2 × 101

Quadratic curvature objective function 5 × 103 2 × 102 4 × 10−2

Penalty curvature objective function 1 × 104 1 × 103 5.0

TABLE 1. Objective function weightings for the four optimization runs. Here wBn, wL and wκ

are the field error, length and curvature objective function weightings, respectively.

This forces all local minima to have coil geometries with curvature less than or equal to
the input maximum curvature. To obtain coils using fκ,3 for this letter, the initial value of α

is set to 0 and the optimization is run until a local minimum is found. Coils from the initial
optimization are then input back into FOCUS with α increased to 0.1 and the optimization
is again run until a local minimum is found. This process is repeated with α increasing
after each optimization. Coils with a constrained maximum curvature are found after α is
increased to 4.

3. Applications

FOCUS is used to solve for coils, targeting an idealized boundary similar to that of
the HSX that has been smoothed to remove errors produced by the actual HSX coils. We
refer to this smoothed boundary as the HSX boundary. HSX is a four-field-period device
with 48 coils. Because of symmetries, there are only six unique coil shapes. The normal
field boundary condition is set to zero, TBn = 0, representing a zero beta equilibrium with
no fixed external magnets. We initialize the optimizations with filamentary coils that are
roughly equal to the centroids of the HSX finite build coil cross-sections. For the remainder
of this letter, the term ‘HSX coils’ refers to these filamentary coils.

We present four optimizations to compare the different objective functions: one with
no curvature optimization and one for each of the three curvature objective functions.
Coils in these optimizations have equal currents of 151 kA and currents are held fixed
during optimization. We do not change each coil’s target length between optimizations,
we use the nonlinear conjugate gradient algorithm and strong Wolfe conditions (Nocedal
& Wright 2006) and we set Fourier series truncation to be NF = 16 for the coils in each
optimization. Target coil lengths are chosen to be slightly larger than the HSX coil lengths.
The four optimizations are run until local minima are found.

Choice of objective function weightings will significantly change the solution space and
resulting coil solutions. Objective function weightings are given in table 1. The value of
coil length objective function weightings is chosen such that the difference between the
resulting coil lengths and target coil lengths is of the order of centimetres for each of the
four optimization runs. Weighting for the linear curvature objective function was adjusted
until the field error objective function value fBn for the resulting coils was close to the fBn
value for the HSX coils. Weighting for the quadratic curvature objective function is set in
the same way. It should be noted that the penalty function variable α is more important
than the penalty curvature objective function weighting.

To evaluate each optimization result, we compare against the HSX coils. The HSX
coils and the four FOCUS-optimized coil sets can be seen in figure 3. A comparison
of the coil curvatures can be seen in figure 4. Important metrics to consider for each
coil set are the field error objective function, maximum field error, maximum curvature
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(a) (b)

FIGURE 3. Coils optimized for the HSX boundary are shown. HSX coils that are not optimized
are plotted in black and are included in both panels. (a) FOCUS coils with no curvature
optimization are plotted in blue and FOCUS coils optimized with linear curvature are plotted
in red. (b) FOCUS coils optimized with quadratic curvature are plotted in green and FOCUS
coils optimized with our penalty curvature objective function are plotted in magenta. Parameter
|Bv| from coils with no curvature optimization is plotted on a half-period of the HSX boundary
in (a) and |Bv| from coils optimized with our penalty curvature objective function is plotted on
a half-period of the HSX boundary in (b). High |Bv| is plotted in black and low |Bv| is plotted in
yellow.

and minimum coil-to-coil separation. These values are given in table 2. For the penalty
curvature objective function, the value of κ0 is set equal to the HSX coil maximum
curvature and we can see that our penalty curvature objective function has been used to
successfully constrain the coil curvature.

4. Discussion
4.1. No curvature optimization

If NF = 16 and coil curvature is not optimized for, it is evident that FOCUS does not solve
for reasonable coils due to high coil curvatures, with radius of curvature in places reduced
below 1 cm. One technique to reduce coil curvatures is to decrease the value of NF. Even
for low values of NF, coil curvature can still become too high. Using a low value of NF
restricts coil shaping and leads to higher field errors.

4.2. Linear curvature optimization
Including the linear curvature objective function produces coils with low average
curvature. Unfortunately, the maximum curvature of these coils is 74.4 m−1 which is
significantly larger than that of the HSX coils that have a maximum curvature of 12.3 m−1,
and both coil sets have roughly equal fBn values. After close inspection it can be concluded
that some regions of the coils have been straightened out while other regions of the coils
still have sharp bends. High curvatures are not heavily penalized as long as they exist over
short arc lengths.

4.3. Quadratic curvature optimization
The quadratic curvature objective function should penalize regions with high curvatures
more than does the linear curvature function. Coils generated with the quadratic curvature
function have a maximum curvature of 7.62 m−1 which is lower than the HSX coil’s
maximum curvature of 12.3 m−1. Again both coil sets have roughly equal values of fBn.
It can be seen from figure 1(b) that the field error distribution does not appear to be
dominated by coil ripple. A large portion of the error comes from non-ripple error. For
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(a)

(b)

FIGURE 4. Coil curvature is plotted against the length around the fifth coil. HSX coils that are
not optimized are plotted in black and are included in both panels. (a) FOCUS coils with no
curvature optimization are plotted in blue and FOCUS coils optimized with linear curvature are
plotted in red. (b) FOCUS coils optimized with quadratic curvature are plotted in green and
FOCUS coils optimized with our penalty curvature objective function are plotted in magenta.
The plot in (a) is truncated to a maximum curvature of 65 (m−1). The blue spike that is cut off
in (a) extends to a maximum value of 246.

roughly equal values of fBn, it appears that the quadratic curvature objective function
outperforms the linear curvature objective function with regards to the maximum
curvature. Coils optimized with the linear curvature objective function have a maximum
curvature that is ≈10 times higher than coils optimized with the quadratic curvature
objective function.

4.4. Penalty function curvature optimization
The penalty function is designed to only penalize positions on the coils where the
curvature exceeds a prescribed maximum, here set to be the HSX coil curvature maximum,
κ0 = 12.3. Coils solved for with the penalty function are shown to have a maximum
curvature equal to that of the HSX coils. The value of fBn is more than an order of
magnitude lower than that of the HSX coils. Remarkably, the value of fBn for these coils is
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Constrained stellarator coil curvature optimization 9

Optimization run fBn max
∣∣∣∣Bv · n

|Bv |
∣∣∣∣ max κ min ccsep

HSX coils 1.49 × 10−4 2.28 × 10−2 12.3 9.3
No curvature objective function 6.72 × 10−6 7.90 × 10−3 246 8.0
Linear curvature objective function 1.49 × 10−4 2.28 × 10−2 74.4 8.3
Quadratic curvature objective function 1.49 × 10−4 3.37 × 10−2 7.62 8.2
Penalty curvature objective function 9.92 × 10−6 1.02 × 10−2 12.3 8.5

TABLE 2. Important coil metrics for the initial HSX coils and four optimization runs are
given. The normalized field error objective function is given as fBn. Maximum normalized field
error is given as max |(Bv · n)/|Bv||. Maximum curvature is given as max κ (m−1). Minimum
coil-to-coil separation is given as min ccsep (cm).

close to the value of fBn from the FOCUS coils that are not optimized for curvature. Since
we do not penalize locations of coils that have curvatures below our specified maximum
curvature, the coils have more flexibility to accurately reconstruct the plasma boundary. It
can be seen from figure 1(a) that the field error distribution appears to be dominated by coil
ripple and the normalized ripple error is roughly 0.25 %. This means that the normalized
non-ripple error is even lower than 0.25 % and because of this we have higher confidence
that the general shape of the ‘plasma boundary’ is reconstructed well.

5. Conclusions

Without a curvature objective function, optimizations in FOCUS can quickly solve for
coils that have unreasonably high curvatures. There are techniques that can be used to
limit coil curvatures, but typically at the cost of increasing field errors. Because of this,
multiple curvature objective functions have been implemented in FOCUS. We see that a
quadratic curvature objective function seems to outperform a linear curvature objective
function with respect to maximum coil curvature, but does not outperform with respect
to maximum field error. Neither result is satisfactory. This motivated a constraint on
maximum curvature as opposed to optimizing for curvature at every location of the coil.
To apply this constraint we used penalty functions. The resulting coils with the penalty
functions outperformed both the linear and quadratic objective functions with regard
to matching the target boundary while still remaining below the maximum curvature
threshold.

If coil buildability is our primary concern, then a coil’s maximum curvature seems to
be a more apt metric than the average coil curvature or average squared curvature. We
see that constraining a coil’s maximum curvature with a penalty function can solve for
coils with a very low value of the field error objective function, fBn. A hyperbolic cosine
penalty function was chosen for the optimization mainly due to its exponential penalty and
its differentiability.

The penalty objective function achieves the desired behaviour of only penalizing
locations of the coils where curvatures exceed a maximum curvature. However, we can
see in figure 3(b) that there are small wiggles in the coils produced with the penalty
objective function. These deviations may decrease field errors by a small amount, but
more importantly, they may also significantly increase ‘coil complexity’. Removing these
additional wiggles is a topic that can be addressed with additional curvature objective
functions that specifically target coil complexity. This is left for a future publication.
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10 T. G. Kruger, C. Zhu, A. Bader, D. T. Anderson and L. Singh

In this letter we demonstrate how to use penalty functions to constrain coil curvature.
We intend to also use penalty functions to constrain the minimum coil-to-coil separation.
Many more useful applications of penalty functions exist outside of coil optimization.
For instance, when optimizing for stellarator equilibria, it is often desirable to constrain
rotational transform profiles so as to not cross low-order rational values. Penalty functions
are easy to implement and do not require additional optimization algorithms for their
implementation.
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Appendix A. Objective function derivatives

First derivatives of the three curvature objective functions are now given. Here Xi is an
arbitrary Fourier mode amplitude, Xi ∈ {Xc,0,i, . . . , Xc,NF,i, Xs,1,i, . . . , Xs,NF,i}, that defines
the x position of the ith coil. Derivatives for Yi or Zi Fourier mode amplitudes take a similar
form. The equation for ∂Li/∂Xi is given in (15) in Zhu et al. (2017). The derivatives are

∂fκ,1

∂Xi
= − 1

Nc

1
L2

i

∂Li

∂Xi

∫ 2π

0
κi

∣∣ri
′∣∣ dt + 1

Nc

1
Li

∫ 2π

0

∂κi

∂Xi

∣∣ri
′∣∣ dt

+ 1
Nc

1
Li

∫ 2π

0
κi

∂ |ri
′|

∂Xi
dt, (A 1)

∂fκ,2

∂Xi
= − 1

Nc

1
L2

i

∂Li

∂Xi

∫ 2π

0
κ2

i

∣∣ri
′∣∣ dt + 1

Nc

1
Li

∫ 2π

0
2κi

∂κi

∂Xi

∣∣ri
′∣∣ dt

+ 1
Nc

1
Li

∫ 2π

0
κ2

i
∂ |ri

′|
∂Xi

dt, (A 2)

∂fκ,3

∂Xi
= − 1

Nc

1
L2

i

∂Li

∂Xi

∫ 2π

0
Hκ0(κi) (cosh (α (κi − κ0)) − 1)2

∣∣ri
′∣∣ dt

+ 1
Nc

1
Li

∫ 2π

0
Hκ0(κi)2α (cosh (α (κi − κ0)) − 1) sinh (α (κi − κ0))

∂κi

∂Xi

∣∣ri
′∣∣ dt

+ 1
Nc

1
Li

∫ 2π

0
Hκ0(κi) (cosh (α (κi − κ0)) − 1)2 ∂ |ri

′|
∂Xi

dt. (A 3)
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The i coil indices are dropped for convenience. Now we give the derivative of curvature
with respect to an arbitrary x Fourier mode amplitude:

∂κ

∂X
=

(r′ × r′′) ·
(

∂x′

∂X
x̂ × r′′ + ∂x′′

∂X
r′ × x̂

)

|r′ × r′′| |r′|3 −
3 |r′ × r′′| x′ ∂x′

∂X
|r′|5 . (A 4)
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