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ABSTRACT

It has been observed in tokamaks that temperature profiles are resilient to changes in heating,

and that this effect has not been observed in conventional stellarators. Electron temperature

profile resiliency is attributed to anomalous transport driven by turbulent micro-instabilities,

and the resulting stiffness in the electron heat flux is measured using a combination of steady-

state and perturbative experiments. In this work, stiffness measurements are presented in

the quasihelically symmetric configuration of the Helically Symmetric eXperiment (HSX),

in which the neoclassical transport is comparable to a tokamak and turbulent transport

dominates throughout the plasma. A second gyrotron and transmission line have been in-

stalled and tested to facilitate modulated heating experiments on HSX, and a multi-pass

absorption model accurately predicts the total absorption and spatial extent of the elec-

tron cyclotron resonance heating during a modulation experiment. The electron cyclotron

emission measured by an absolutely calibrated 16-channel radiometer is used to measure the

local electron temperature and its response to the modulated heating. The amplitude and

phase of the heat wave through the foot of the steep electron temperature gradient region of

the plasma, 0.2 ≤ r/a ≤ 0.4, are used to determine a transient electron thermal diffusivity

that is close to the steady-state diffusivity. The low stiffness in this region agrees with the

scaling of the steady-state electron heat flux with temperature gradient. The results from

these experiments are compared to gyrokinetic calculations using the GENE code with two

kinetic species. Linear calculations demonstrate that the Trapped Electron Mode (TEM) is

the dominant long-wavelength microturbulence instability across most of the plasma, and

the TEM is primarily driven by the density gradient. The measured heat flux is comparable

to the saturated heat flux driven by the TEM in non-linear calculations.
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Chapter 1

Introduction and Motivation

Tokamaks and stellarators each have qualities that are desirable for fusion reactors. Toka-

maks have good single-particle confinement, as well as simple coils, and have been built exten-

sively at low-aspect ratio, whereas stellarators are intrinsically steady-state devices that have

no need for a driven current. A stellarator reactor will have low-recirculated power because

no power will be required to drive a toroidal current, and a stellarator reactor will not have

the disruptions that are caused by current driven instabilities in tokamaks. Quasi-symmetric

devices possess a direction of symmetry in their magnetic field strength, and quasi-symmetry

combines the benefits of the conventional stellarator with good single-particle confinement

at low collisionality.

The Helically Symmetric eXperiment (HSX) is the worlds first and only operational quasi-

symmetric stellarator. Quasi-symmetry is predicted to reduce the neoclassical transport of

conventional stellarators at low-collisionality where direct loss orbits lead to unacceptable

losses for a magnetic confinement fusion reactor [1]. HSX is designed to produce a Quasi-

Helically Symmetric (QHS) configuration [2], and transport in the QHS configuration has

been shown to be reduced in comparison with a conventional stellarator [3]. Consequently,

anomalous transport is dominant in the QHS configuration of HSX [4].
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It has been observed in tokamaks that temperature profiles are resilient to changes in

heating, and this phenomenon is attributed to anomalous transport driven by turbulent

micro-instabilities. Profile resiliency, or stiffness in the electron heat flux, has not been ob-

served in conventional stellarators. Perturbative heat transport experiments can be used to

measure the local variation of the heat flux as a function of temperature gradient, whereas

steady-state heat transport experiments are used to measure the total heat flux. Together,

perturbative and steady-state heat transport experiments can be used to measure the stiff-

ness in the electron heat flux, and to investigate the role of turbulent microinstabilities in

heat transport. The heat transport driven by drift wave turbulence such as the Electron

Temperature Gradient (ETG) mode and the Trapped Electron Mode (TEM) are candidates

to explain the experimental heat transport in HSX [5] [6], and the physics goal of this work

is to measure the stiffness in the electron heat flux in the QHS configuration of HSX, and

compare these results to linear and non-linear gyrokinetic simulations.

A heating source that is capable of modulated electron heating, and an electron temper-

ature diagnostic with sufficient resolution are necessary to perform heat pulse propagation

experiments. The absolutely calibrated electron cyclotron emission diagnostic is used to

measure the electron temperature and its response to modulation heating, and the analysis

of the diagnostic is described in Chapter 3. The installation and testing of a second trans-

mission line for electron cyclotron resonance heating is described in Chapter 4. The power

launched from the second antenna is modulated during heat pulse propagation experiments

on HSX and measurements and modeling of the absorbed power profile are also presented

in Chapter 4. Results from modulated heating experiments in HSX are presented, along

with the experimental and analytical techniques used in their analysis, in Chapter 5. These

results are compared to linear and non-linear simulations of the TEM and ETG mode in
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Chapter 6. The results from this dissertation are summarized in Section 7.1, and additional

work beyond that reported in this dissertation is proposed in Section 7.2.

The importance of electron heat transport in fusion plasma is discussed in Section 1.1,

and electron heat transport in magnetically confined devices is described in Section 1.2. The

HSX stellarator is described in Section 1.3, and this section includes a brief introduction to

quasi-helical symmetry, as well as previous electron heat transport experiments and modeling

on HSX. The differences between steady state and perturbative experiments are discussed

in Section 1.4, and this section includes a selected review of perturbative heat transport

experiments and stiffness measurements in stellarators and tokamaks.

1.1 The Importance of Electron Heat Transport in Fusion Plasma

Heat and particle losses from magnetically confined plasmas are commonly character-

ized as classical, neoclassical or anomalous transport. Classical transport is the diffusive

transport caused by collisions in homogeneous fields, and neoclassical transport is the addi-

tional transport caused by magnetic field inhomogeneity in toroidal devices. Any remaining

experimental transport is considered anomalous. The sourcing of fuel and the removal of

impurities in a fusion reactor depends on particle transport, while the size of the reactor is

primarily driven by thermal transport [7], making accurate predictions of the heat transport

necessary for fusion experiments. Electron heat transport is particularly important because

the alpha-particles generated in fusion experiments, such as the Deuterium-Tritium fusion

reaction, damp their energy primarily onto the bulk electron population. The electrons must

then be confined in the reactor long enough to thermalize with the ions, drive additional

fusion reactions, and achieve a burning plasma in which the reactions are self-sustaining.

Anomalous transport typically dominates the electron channel for heat and is thought

to be turbulent and driven by plasma microinstabilities. Microinstabilities contribute to
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the inverse cascade of energy from small-scale fluctuations to large-scale turbulent eddies,

which serve to increase the level of particle and thermal loss observed in experiments. This

transport of heat and particles is one of the greatest hurdles to the implementation of mag-

netically confined fusion as an energy source. Understanding and controlling the anomalous

transport driven by micro-instabilities would contribute significantly to the development of

an economical fusion reactor.

1.2 Thermal Transport

The evolution of particle densities, ns, and pressures, ps, for a particle species, s, in a

plasma may be expressed in conservative form as

∂ns

∂t
+ ~∇ · ~Γs =

∑

S, (1.1)

3

2

∂ps
∂t

+ ~∇ · ~qs =
∑

Q, (1.2)

where ~Γs, ~qs represent the particle and heat flux respectively, and the right is a sum over

sources and sinks of particles (S) and heat (Q). Thermodynamic forces drive these fluxes

and currents through interactions with the plasma, which in general can be represented as

a matrix of transport coefficients,
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Here ~Γ, ~qe, and ~qi represent the cross-field particle and heat fluxes, while ~j‖ and ~E‖

represent the current and electric field parallel to the magnetic field. The gradients are

taken perpendicular to the flux surfaces [7]. Experimental estimates of transport coefficients

are commonly derived from steady-state measurements in which the transport matrix is
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assumed to be diagonal. These effective diffusion coefficients contain all the parametric

dependencies of the transport matrix. Perturbative transport experiments allow greater

access to off-diagonal terms that contribute to “convective” transport than steady-state

transport experiments alone, and are discussed in the context of power-balance thermal

analysis versus heat pulse propagation analysis in Section 1.4.

The transport coefficients of Equation 1.3 include contributions from classical, neoclas-

sical, and anomalous transport. The study of anomalous electron heat transport requires

accurate calculation of the classical and neoclassical contributions to the total transport, so

that the anomalous heat transport may be determined.

1.2.1 Neoclassical Transport

The strong inverse temperature dependence of classical transport causes the lowest col-

lisionality regime to be the most relevant to fusion reactors. In an inhomogeneous magnetic

field, a particle’s energy may be written using its velocity parallel to a field line and the

magnetic moment, µ =
mv2⊥
2B

(which remains constant to maintain the magnetic flux through

the Larmor orbit in analogy with a current loop) as E = 1
2
msv

2
‖ + µB.

Due to the conservation of energy and the conservation of the magnetic moment, a

particle that moves into a region of increasing magnetic flux density, B, will speed up in the

direction perpendicular to the magnetic field line, v⊥, and slow down in the direction parallel

to the magnetic field line, v‖. If the increase in magnetic field strength is great enough, the

particle will reflect as its parallel velocity passes through zero and changes sign. In this way,

inhomogeneous magnetic fields cause particles to mirror between regions of varying magnetic

field densities when their velocities parallel to the field are insufficient to pass through regions

of increasing magnetic field strength. At low collisionality, these trapped particles have their

orbits altered by the varying magnetic field and undergo banana orbits which are named for
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their characteristic shape. The step length in a random walk is the banana width, which is

larger than the gyroradius in toroidal geometry [8] [9].

In the low-collisionality regime, or Long Mean Free Path (LMFP) regime, diffusion in

a conventional stellarator and a tokamak scale differently. Tokamaks have axisymmetric

magnetic fields; consequently, particles undergoing banana orbits have no net drift radially

unless they undergo a collision. Neoclassical particle diffusion monotonically decreases with

decreasing collision frequency. Conventional stellarators do not generally possess a direction

of symmetry in their magnetic field strength, and particles drift radially outward while

undergoing banana orbits due to the asymmetry in the turning points.

Figure 1.1: Neoclassical diffusion coefficient scaling vs normalized collision frequency, νe
νtr

=

νRq
vt
. Adapted from [9] to include 1/ν stellarator scaling at low collisionality.

This neoclassical transport increases as collisionality decreases, resulting in 1/ν neoclas-

sical transport in the LMFP regime for stellarators, which is illustrated in Figure 1.1. In this

regime, diffusion increases strongly with increasing temperature, D⊥,1/ν ∝ B−2T 7/2, making

classical stellarators an unappealing fusion reactor concept. Non-ambipolar transport, mean-

ing that the loss of electrons and ions is not necessarily equal [10], leads to a radial electric

field that acts to suppress the 1/ν neoclassical transport in stellarators [11] [12] [13]. This

effect is illustrated in Figure 1.2. Turbulence, fast ion orbit loss, highly localized ECRH, and
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asymmetry in the magnetic field strength can drive transport that is not intrinsically am-

bipolar, and radial electric fields arises as ambipolar transport develops in the steady-state

[14].

Neglecting contributions from impurities, the neoclassical particle flux, Γnc
s , and heat

flux, Qnc
s , are

Γnc
s

ns

= −
[

Ds
11

(

n′
s

ns

− qsEr

Ts

)

+Ds
12

T ′
s

Ts

]

, (1.4)

Qnc
s

nsTs

= −
[

Ds
21

(

n′
s

ns

− qsEr

Ts

)

+Ds
22

T ′
s

Ts

]

. (1.5)

Here Er is the radial electric field. The neoclassical transport coefficients, D11, D12, D21

and D22, are calculated for use on HSX from the mono-energetic transport coefficients from

the Drift Kinetic Equation Solver (DKES) [15]. The neoclassical diffusion coefficients result

from energy convolution of the mono-energetic coefficients over a Maxwellian distribution

function [11].

Figure 1.2: Neoclassical transport coefficient, D11, as a function of radial electric field in the

HSX stellarator. Reproduced from [13].
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Neoclassical particle transport, or the radial electron flux driven by ECRH [16] [17], can

result in a large positive radial electric field in stellarators [12]. The ambipolarity requirement

leads to an Equation for the radial electric field that has an odd number of roots through

solution of ΣsqsΓs = 0. When the electron flux dominates the ambipolarity condition, a

large positive radial electric field develops that is referred to as the electron-root solution.

When the ion flux dominates, a small, sometimes negative radial electric field develops that

is referred to as the ion-root solution. A third unstable root generally exists in which a

small perturbation generates a current that pushes the electric field to either ion or electron

root. The transition between a region dominated by the ion-root radial electric field and a

region dominated by the electron-root radial electric field can result in radial electric field

shear that can drive ExB flow shear. This flow shear has been shown to suppress anomalous

transport by decreasing the radial correlation length of turbulence [18] [19] [20], in some

cases eliminating it entirely [18] [21].

An electron Internal Transport Barrier (eITB) is characterized by a discontinuity in the

electron temperature gradient and peaked electron temperature profiles. Core electron root

confinement has been invoked to explain eITBs in the CHS [22], TJ-II [23], LHD [24], and

W7-AS [25] stellarators [26] as well as in HSX [4]. ITB’s strongly modify the propagation of

heat pulses during perturbative heat transport experiments, and this effect is discussed in

Section 1.4.1.

1.2.2 Anomalous Transport

In tokamaks and stellarators, the cross-field ion and electron thermal diffusion, the cross-

field particle diffusion, and the impurity diffusion are not described only by neoclassical

processes [27] [14]. The radial electric field, Er, plays an important role in determining the

neoclassical transport in stellarators, making the determination of the anomalous transport
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difficult when measurements of the radial electric field are unavailable. The convective

transport caused by the off-diagonal elements of the transport matrix contribute to effective

diffusion coefficients [14] and make steady-state analysis of heat transport in stellarator

configurations insufficient. Pairing steady-state transport experiments with perturbative

transport experiments of particles and heat provides the necessary information to effectively

determine the transport coefficients in Equation 1.3 using methods referenced in Section 5.3

and described in Appendix B.

Gradients act as thermodynamic forces in plasma that drive plasma modes and lead to

charge separation. When the particle motion is unimpeded, charges move to cancel the

resulting potential. In electrostatic drift-wave turbulence, this motion is impeded, and fluc-

tuating electric-fields arise that cause cross-field transport through the resulting ExB drift.

When collisions are frequent enough to cause significant resistance to parallel motion, the

dissipative drift instability develops; whereas in lower collisionality plasma, inverse Landau

damping leads to the universal, or collisionless, drift wave instability. In the LMFP regime,

trapped electrons can lead to the Trapped Electron Mode (TEM) instability [8].

Three drift wave type modes that are believed to be important for fusion experiments

are the TEM, the Electron Temperature Gradient (ETG) mode, and the Ion Temperature

Gradient (ITG) mode. TEMs arise when magnetic field gradients leads to a magnetic drift

of the banana-centers for trapped electrons whose precession resonates with the wave [8].

The diamagnetic drift of the ions driven by ion temperature gradients leads to ITG modes

when the parallel motion of adiabatic electrons is impeded. ETG modes are analogous to

ITG modes with the roles of the ions and electrons exchanged.

Drift wave driven anomalous transport is characterized by critical gradients. Below the

critical gradient the drift wave is stable, while above the critical gradient the growth rate

is non-zero and the drift wave is unstable. Above these critical gradients thermal transport
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is observed to increase from some (not necessarily neoclassical) background level to a large

anomalous level. The theoretical critical gradient for this transition is different for ETG

modes, ITG modes and TEMs [28], which allows experimental study of drift wave turbulence

through heat pulse propagation experiments [29].

1.3 Thermal Transport in the HSX stellarator

Figure 1.3: The HSX stellarator at the University of Wisconsin-Madison has 48 modular

coils that are used to generate an approximately Quasi-Helical Symmetric magnetic field.

HSX is a four field period quasi-symmetric stellarator with 48 non-planar modular coils

[30] [2] that are used to make the magnetic field that approximates quasi-helical symmetry.

The machine has an average major radius of 1.20 m, average plasma minor radius of 0.12
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m, and plasma volume of 0.44 m3, with 48 additional planar auxiliary coils that may be

energized independently for configuration flexibility as shown in Figure 1.3. The plasma

is heated to a core temperature up to 2.5 keV by the ordinary wave at the fundamental

harmonic of the electron gyrofrequency during 1T operation, where the electron density is

limited to 1.0 × 1019 m-3. The extraordinary wave at the second harmonic of the electron

gyrofrequency is used during 0.5T operation where the electron density is limited to 0.5×1019

m-3. The plasma duration is 50 ms with a maximum heating power of 100 kW.

The plasma is primarily diagnosed by a 10 spatial channel Thomson scattering system

that yields electron temperature and density profiles using two lasers. The Charge eXchange

Recombination Spectroscopy diagnostic indicates impurity ion temperatures of 20-70 eV [31].

The temporal evolution of the line-average density is determined by a 9-channel microwave

interferometer, and the temporal evolution of the electron temperature is determined through

analysis of a 16 spectral-channel ECE system. The primary diagnostic and heating systems

are laid out in Figure 1.4.

The first ECRH antenna is located in boxport C, and the second ECRH antenna shares

boxport B with the CHERS diagnostic neutral beam and poloidal collection optics. The

interferometer is located in boxport A, and the ECE and Thomson scattering diagnostics

share boxport D. The internal diamagnetic loops are located between field periods B and C.

1.3.1 Optimization for Neoclassical Transport

Neoclassical transport in conventional stellarators increases in the low collisionality

regime, making them an unattractive fusion reactor concept. The radial drift of trapped

electrons that results in the 1/ν regime can be minimized through stellarator optimization

[32]. One method of stellarator optimization is to restore symmetry in the magnetic field
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Figure 1.4: HSX diagnostic and system layout.

strength to the magnetic configuration. HSX approximates Quasi-Helical Symmetry (QHS)

by maintaining a helical direction of nearly constant magnetic field strength. The magnetic

field strength is most easily represented by a cosine series in Boozer coordinates where the

toroidal, ζ, and poloidal, θ, angles are related by the rotational transform, θ = !ιζ,

B = Bo(1 +
∑

m,n

εn,m cos(n− !ιm)ζ). (1.6)

In a perfectly axisymmetric device, the only variation in the magnetic field strength is

due to toroidicity, and the ε0,1 = −εt ≈ r/Ro term adequately describes the magnetic field

spectrum. An example of the magnetic field strength in this configuration is plotted in

Figure 1.5 versus Boozer angles with a magnetic field line of rotational transform equal to

1.05 overlaid, which is representative of HSX. The magnetic field strength along the field

line as a function of toroidal angle, φ, is also shown in Figure 1.5.
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Figure 1.5: Magnetic field strength along a field line versus toroidal angle (left), and magnetic

field strength as a function of Boozer poloidal and toroidal angles (right) in an axisymmetric

tokamak.

Similarly, a QHS device can be represented by a single term in the helical direction. The

ε4,1 term dominates the QHS configuration of HSX with symmetry-breaking terms that are

less than 1%. The toroidal curvature term due to toroidicity is 0.0023 in QHS, which is

equivalent to a tokamak of aspect ratio over 400. The magnetic field spectrum of the QHS

configuration is plotted in Figure 1.6.

B = Bo(1− εt cos(!ιζ)) Ideal tokamak field

B = Bo(1− εh cos(n− !ιm)ζ) Ideal quasi-helical field (general n,m)

!ιeff = |n− !ιm|(n = 4,m = 1, !ι ≈ 1) ≈ 3 Effective !ι of HSX (1.7)

The magnetic field strength at r/a = 0.6 in the QHS configuration is plotted versus

Boozer angles in Figure 1.7, along with a magnetic field line on the same surface. The

field line samples three peaks and troughs in the magnetic field strength during one toroidal

transit of HSX. The magnetic field strength along the field line is also shown in Figure 1.7,
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Figure 1.6: Mode amplitude of the magnetic spectrum as a function of normalized minor

radius for HSX in the QHS configuration. The helical mode, ε4,1 dominates the spectrum.

which is presented in contrast to the same field line in an equivalent tokamak in Figure 1.5.

Although the physical transform of HSX is approximately 1, the effective transform of HSX

Figure 1.7: Magnetic field strength along a field line versus toroidal angle (left), and mag-

netic field strength as a function of Boozer poloidal and toroidal angles (right) in the QHS

configuration.
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is approximately 3, as is shown in Equation 1.7 and illustrated in Figure 1.7. This results in

smaller drifts off flux-surfaces and lower neoclassical transport.

Forty eight planar coils are used to add symmetry-breaking terms to the magnetic con-

figuration in HSX. This configuration flexibility allows the quasi-helical symmetry of HSX to

be intentionally degraded by adding terms to the magnetic field spectrum shown in Figure

1.6. The Flip-14 Mirror configuration, referred to as Mirror in this work, is produced by

energizing the planar coils with a variable fraction of the total magnet current and reversing

the current through two of the coils in each half field-period to produce a magnetic mirror.

This adds the ε4,0 and ε8,0 spectral components to the QHS field spectrum producing the

magnetic spectrum shown in Figure 1.8 (in this case with 10% of the main current flowing

through the planar coils). This configuration is used to compare the plasma confinement in

QHS to that of a conventional stellarator experiment.

Figure 1.8: Mode amplitude of the magnetic spectrum as a function of normalized minor

radius for HSX in the 10% Mirror configuration.
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The magnetic field strength at r/a = 0.6 in the Mirror configuration is shown in Figure

1.9 with a field line from the same surface overlaid. The magnetic field strength along this

field line is also shown versus toroidal angle.

Figure 1.9: Magnetic field strength along a field line versus toroidal angle (left), and mag-

netic field strength as a function of Boozer poloidal and toroidal angles (right) in the QHS

configuration.

The intentionally degraded symmetry in the Mirror configuration leads to increased ther-

mal transport which is easily observed by comparing the electron temperature profiles in QHS

and Mirror with the same heating power. For the same launched ECRH power, the elec-

tron temperature in QHS is significantly higher than that in Mirror. Figure 1.10 compares

Thomson scattering measurements of the electron temperature and density for 100 kW of

launched power in the QHS and Mirror configurations during 1T operation (at left). The

central electron temperature reaches 1800 eV in the QHS configuration and 1200 eV in the

Mirror configuration. The difference is due to increased thermal transport in the Mirror

configuration [3].

Figure 1.10 also shows the electron temperature and density from an experiment in which

the heating power in the QHS configuration was varied until the electron temperature profile
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matched that of the Mirror configuration with 100 kW of launched power (at right). The

QHS configuration required 50 kW of launched power, half of that required for the Mirror

configuration, to match the electron temperature profiles.

Figure 1.10: Electron temperature and plasma density profiles during 1T operation in

the QHS and Mirror configurations at two heating powers with matched density profiles.

Matched ECRH power (left) and matched electron temperature profiles (right).

1.3.2 Previous Electron Thermal Transport Experiments

During 0.5T operation at similar heating powers, the temperature profile of QHS is

substantially higher than that of Mirror, and the plasma density profile is hollow in Mirror,

which is driven by an outward neoclassical convective particle flux referred to as the thermo-

diffusive flux. Comparisons between QHS and Mirror transport in [3] are made by varying

the heating power until the temperature profiles match as closely as possible in the same

manner as the experiment shown in Figure 1.10.

Figure 1.11 illustrates the neoclassical and experimental thermal diffusivities for each

configuration during 0.5T operation. Power-balance analysis, discussed in Section 5.2, using
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the diffusive assumption for electron heat transport, qe = −neχe∇Te, yields thermal diffusiv-

ities that are dominated by anomalous transport outside of r/a = 0.4 in both configurations.

For 0.2 < r/a < 0.4, the experimental thermal transport in QHS, χe ≈ 2 m2/s, is reduced

in comparison to the Mirror configuration, χe ≈ 4 m2/s, commensurate with the decrease in

the calculated neoclassical transport, ∆χneo
e ≈ 2.5 m2/s [3].

Figure 1.11: Neoclassical and power balance electron thermal diffusivity in the QHS and

Mirror configurations during 0.5T operation (left), and the corresponding anomalous thermal

diffusivity, χanom
e = χexp

e − χneo
e (right). Reproduced from [3].

Figure 1.12 illustrates the neoclassical and experimental thermal diffusivities for the QHS

and Mirror configurations. The decrease in experimental transport while operating at 1T

on-axis magnetic field strength is of the same order as the decrease during 0.5T operation.

Peaked electron temperatures are observed during 1T operation. Figure 1.12 shows the

estimated anomalous transport for Mirror and QHS at 1T. Both figures show the neoclassical

calculation for the electron- and ion-root plasma. Large radial electric field shear resulting

from the transition between the ion-root and the electron-root may be responsible for the
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decrease in thermal transport at 1T [13]. This may be due to a decrease in anomalous

transport driven by TEM turbulence [5].

Figure 1.12: Neoclassical and power balance electron thermal diffusivities in the QHS and

Mirror configurations during 1T operation (left), and the corresponding anomalous thermal

diffusivity for electron-root and ion-root neoclassical calculations (right). Reproduced from

[13].

1.3.3 Predictions for Drift Wave Driven Anomalous Transport

The 3D gyrokinetic code GS2 was used to calculate the linear growth rate of the TEM on

HSX in reference [33]. The TEM linear growth rates in the QHS and Mirror configuration

are shown at three effective radii (the r/a = 0.24, 0.51 and 0.86 surfaces) versus normalized

electron temperature gradient, a ln∇T = a/LT , and normalized density gradient, a ln∇n =

a/Ln, in Figure 1.13. The electron-to-ion temperature ratio, electron and ion collisionality,

and normalized wave number were fixed to Te/Ti = 2, νe = νi = 0, and kθρs = 0.8 for the

calculations in Figure 1.13.

Experimentally, the normalized plasma density gradient is nearly zero near the axis and

between 2 and 5 near the edge. The normalized electron temperature gradient varies between

1 and 4 across the majority of the minor radius, but can exceed 5 near r/a = 0.2 with peaked



20

Figure 1.13: TEM linear growth rates at three surfaces in the QHS and Mirror configuration

versus normalized temperature and density gradient from the GS2 code. Reproduced from

[33].

electron temperature profiles in HSX. Figure 1.13 indicates that the TEM linear growth rate

is non-zero for experimental conditions in both the QHS and Mirror configurations of HSX.

Magnetic curvature is unfavorable for drift wave stability when the curvature is in the

same direction as the gradient in the field strength, and the TEM has been shown to be

highly localized to the boxports in HSX where the curvature is unfavorable [6] [5]. The

strong localization was used in reference [5] to justify using local values from the boxports
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in an axisymmetric fluid code to model the anomalous transport on HSX. The axisymmet-

ric Weiland model for quasilinear transport [34] [35], with some HSX-specific corrections

discussed below, was used to calculate linear growth rates for TEM turbulence in the QHS

configuration of HSX in [5]. These calculations were benchmarked for the QHS configuration

against linear 3D gyrokinetic calculations from the GS2 code.

Figure 1.14: TEM linear growth rate at the ρ =0.86 surface vs normalized temperature and

density gradient from the GS2 code and the Weiland model. Reproduced from [5].

Figure 1.14 shows the calculated linear growth rates for TEM turbulence from GS2 (left)

and the axisymmetric Weiland model (right) versus normalized temperature gradient at the

ρ = 0.86 surface of HSX. The Weiland model was within 30% of the GS2 calculations for

experimentally relevant electron temperature and density gradients in HSX when the toka-

mak curvature and magnetic field scale length, κN = ∇B
B

= 1
R
, and the tokamak connection

length, qR, were replaced by effective values for HSX. The average normal curvature, κN ,

in the magnetic field of HSX is increased by the high effective transform of HSX so that

ωB ∝ ∇B
B

= κN ≈ 3/R. The effective connection length, qR, is decreased due to the period-

icity in the HSX magnetic field, qeffR = R/!ιeff ≈ R/3, which acts to decrease the effective

collisionality of HSX.
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The increased curvature and decreased collisionality act to drive the TEM more unstable

in the QHS configuration than they would be in the equivalent tokamak. The dispersion

relation of the ITG and TEM decouples when R/Ln < 2 [36] and the critical electron

temperature gradient for TEM turbulence in the axisymmetric Weiland model is analytic

and written in Table 1.1 in terms of the trapped particle fraction, ft =
√
ǫ, the temperature

scale length, R/LTe
, and the density scale length, R/Ln.

ETG-driven turbulence is comprised of electron gyroradius scale fluctuations, kθρs >> 1,

while ITG- and TEM-driven turbulence are characterized by ion gyroradius scale fluctua-

tions, kθρs ≤ 1. The dimensionless wave-number, kθρs, is the product of the poloidal wave

number of the unstable mode, kθ, and the ion acoustic gyroradius (the sound speed di-

vided by the ion cyclotron frequency), ρs = cs/ωc =
√
miTe/(eB). TEMs are stabilized by

increasing collisionality due to detrapping, and the critical gradient is dependent on normal-

ized temperature, R/LTe
, and density gradient, R/Ln, rotational transform, !ι, and magnetic

shear, ŝ = r
q
dq
dr
[37].

ITG turbulence is independent of collisionality, and has a critical gradient in the ratio

of the temperature and density length scales, ηi =
Lni

LTi

[38]. ETG is isomorphic to ITG tur-

bulence, but non-linear simulations predict that ETG develops radially elongated streamers

that allow non-local radial electron heat transport to occur [29]. The critical gradients for

an axisymmetric tokamak are summarized in Table 1.1. The ITG mode is linearly stable in

HSX, because of the small ion-to-electron temperature ratio, Ti/Te ≈ 1/10, and weak ion

temperature gradient, a/LTi
≤ 1. The TEM is linearly unstable in HSX for the accessible

plasma parameters [5] [39] [40] [6].

The ETG and TEM linear critical electron temperature gradients from Table 1.1 are

applied for HSX parameters by replacing
√
ǫ with the fraction of helically trapped particles,

which is approximated as ft =
√
ǫ, where ǫ ≈ b4,1 is the helical component of the HSX
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Table 1.1: Critical gradients for the onset of ITG, ETG [38], and (Weiland model) TEM [36] [41]

[42] turbulence in a tokamak. The TEM critical gradient from a fit to linear gyrokinetic calculations

at ASDEX Upgrade [43] is included as well.

Mode Critical Gradient: R/LT , Note: ηi = Lni
/LTi

ITG ηi,c =
(

1 + Ti

Te

)(

1.1 + 1.4ŝ+ 1.91 ŝ
q

)

ETG
(

R
LTe

)

c
= max

[(

1 +
ZeffTe

Ti

)(

1.33 + 1.91 ŝ
q

)

,
(

0.8 R
Ln

)]

TEM
(

R
LTe

)

c
= 0.357

√
ǫ+0.271√
ǫ

[

4.90− 1.31 R
Ln

+ 2.68ŝ+ ln (1 + 20νeff )
]

TEM
(

R
LTe

)

c
= 20(1−ft)

9ft
+ 2

3
R
Ln

+ 0.5 ft
1−ft

(

1− 0.5 R
Ln

)2

magnetic field spectrum discussed in Section 1.3.1, and assuming Zeff ≈ 1 throughout

the plasma volume. The effective collisionality in Table 1.1 is the collisionality of trapped

electrons normalized by the bounce frequency of the trapped electron population, νeff =
νe/ǫ
ωB

,

where the trapped electron bounce frequency is ωB =
√
ǫ
vth,e
qR

.

Figure 1.15: Fits for the electron and ion temperature, as well as plasma density, with

Thomson scattering measurements (left). The inverse safety factor (1
q
= ι

2π
) and trapped

particle fraction in QHS, as well as the effective collisionality (right).
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Thomson scattering measurements of the electron temperature and plasma density dur-

ing an ECRH modulation experiment, as well as the fits that result from the power balance

analysis, are shown at left in Figure 1.15. Ion temperature measurements were unavailable

during this experiment, but an estimate of the ion temperature from similar experiments

measured using the CHarge Echange Recombination Spectroscopy (CHERS) diagnostic is

also shown at left in Figure 1.15. The rotational transform, or inverse safety factor, the

trapped particle fraction in QHS, and the effective collisionality during an ECRH modu-

lation experiment are shown at right in Figure 1.15. There is no source of ion heating on

HSX, and the low plasma denstiy and high electron temperature of HSX causes thermal

equilibration to occur on a long time-scale compared to the plasma duration; consequently,

the ion temperature and its scale length remain small during experiments on HSX.

Figure 1.16: The linear critical gradient of the TEM, ETG and ITG modes for experimental

parameters are compared to a/LTe (left) and a/LT i (right). The plasma density gradient

scale length is inset at right.

The linear critical gradients for experimental temperature and plasma density profiles

measured during an ECRH modulation experiment are shown in Figure 1.16. The electron
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and ion temperature gradient scale length, a/LTe
and a/LTi

, are compared to the linear

critical temperature gradients from Table 1.1 in Figure 1.16. The plasma density gradient

scale length is included for completeness in Figure 1.16. The experimental temperature

gradient scale length is above the linear threshold for ETG and TEM turbulence across most

of the HSX minor radius and below the linear threshold for r/a < 0.2. This is consistent

with the linear gyrokinetic calculations presented in Figure 1.14 which show that there is

finite growth rate for the TEM on all three magnetic surfaces. The ITG mode is stable

across the minor radius for experimental parameters, ηi < ηi,crit.

The plasma density gradient scale length is greater than 2 across most of the plasma minor

radius, and the TEM and ITG mode are coupled. Gyrokinetic calculations are necessary

to study microinstabilities in HSX, and linear and non-linear gyrokinetic calculations with

two kinetic species are presented in Chapter 6. Additionally, the quasi-linear and non-linear

heat flux is compared to experimental measurements in Chapter 6.

1.4 Power Balance Analysis versus Incremental Heat Transport

Measurements

In steady state power balance analysis, the electron thermal diffusivity is determined

by balancing the total heat flux through a magnetic surface against the local temperature

gradient. This procedure yields an effective transport coefficient that includes all of the

off-diagonal components of the transport matrix. Perturbative heat transport experiments

are used to measure the temperature gradient dependence of the transport and yield an

incremental diffusivity,

χeff = − q

n∇T
χinc = − ∂q/n

∂(∇T )
= χ+

∂χ

∂∇T
∇T. (1.8)
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The convective and diffusive contributions to the heat flux may be separated by compar-

ing the results of the steady state analysis with an incremental analysis of the heat pulse

diffusivity [44].

Figure 1.17: The incremental, χinc, and effective, χeff , diffusivities measure different aspects

of the relationship between the heat flux (q) and temperature gradient (∇T ).

The effective power balance diffusivity is the slope between the origin and the experi-

mental operating point on the heat flux-temperature gradient diagram illustrated in Figure

1.17, and the incremental diffusivity is the local slope of the heat flux versus temperature

gradient at the operating point. The convective heat flux is the intercept that results from

extrapolating the local slope back to ∇T = 0. The total heat flux is q = −nχ∇T + qconv.

The convective heat flux in terms of the incremental and effective diffusivities is

qconv = −n∇T
(

χeff − χinc
)

. (1.9)

The diffusive heat flux carries all of the terms from the transport matrix that are proportional

to the temperature gradient, while the convective heat flux contains any term that is not

proportional to the temperature gradient, including the convective heat flux carried with the

particle flux, (5/2)ΓT [45].
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In perturbative electron heat transport experiments the incremental diffusivity is often

referred to as the heat pulse electron thermal diffusivity. Local measurements of the heat

pulse thermal diffusivity, χHP
e , are sensitive to changes in the gradient of the heat flux, and

perturbative heat transport experiments are conducted to find critical gradient thresholds

and bifurcations in the heat flux. Figure 1.18 illustrates three scenarios in which the heat flux

is a non-linear function of the temperature gradient, and the steady-state and perturbative

measurement of the electron thermal diffusivity yield different results: a smoothly varying

heat flux with temperature gradient, χHP
e > χPB

e and χHP
e < χPB

e ; and a critical gradient

threshold in the heat flux, χHP
e > χPB

e .

Figure 1.18: Heat flux vs temperature gradient showing difference between χPB
e and χHP

e in

three scenarios: a smoothly varying heat flux with χHP
e > χPB

e or χHP
e < χPB

e and a critical

gradient. Reproduced from [46].

The second scenario, χHP
e < χPB

e , is indicative of electron heat transport that is a weak

function of the electron temperature gradient or is not driven by the electron temperature

gradient. The third scenario, χHP
e > χPB

e with a threshold beneath which χHP
e ≈ χPB

e , is

characteristic of drift-wave driven anomalous transport and has been observed in the ASDEX

Upgrade (AUG) [47] and DIII-D [48] tokamaks. All three scenarios are shown in Figure 1.19,

which are reproduced from [47], and discussed in Section 1.4.1.
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1.4.1 Stiffness in the Electron Heat Flux

Many tokamak experiments have observed electron temperature profiles that are resilient

to changes in heating power [49], where large changes in the heat flux are necessary to change

the local profile gradient [48]. This phenomena is referred to as profile resiliency, or stiffness

in the electron heat flux, and is closely linked to critical gradients. For a diffusive heat flux,

this phenomenon is quantified by the logarithmic gradient of the heat flux versus logarithmic

temperature gradient,

S =
∇Te

qe

∂qe
∂∇Te

=
∂ ln qe
∂ ln∇Te

=
χHP
e

χPB
e

. (1.10)

A detailed study of electron temperature profile resiliency on the AUG tokamak exper-

iment showed that the electron heat flux was a strong function of the normalized electron

temperature gradient above a critical electron temperature gradient [47]. Figure 1.19 shows

the heat flux and TEM linear growth rate plotted as a function of normalized electron tem-

perature gradient scale length, R/LTe
= R ln∇Te, in the AUG tokamak. The heat flux,

which was controlled by varying the ECRH input power and heating location, increases

quickly with temperature gradient above a critical electron temperature gradient where the

TEM becomes unstable.

Figure 1.19 shows a decrease in stiffness in the electron heat flux as collisionality increases

in the AUG tokamak. Gyrokinetic modeling indicated that the decrease in stiffness was due

to transition from an electron heat flux driven by the TEM, which is sensitive to the electron

temperature gradient and is stabilized by increasing collisionality, to an electron heat flux

driven by the ITG mode, which is not sensitive to the electron temperature gradient or

collisionality [47].
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Figure 1.19: Heat flux and TEM linear growth rate vs normalized electron temperature

gradient on the AUG tokamak (left). The electron stiffness decreases through the transition

from TEM to ITG driven turbulence (right). Reproduced from [47].

A generalized critical gradient model, Equation 1.11, was developed for AUG ECRH

heated plasmas based on linear GS2 calculations and on the empirical existence of the thresh-

old in normalized temperature gradient [29],

χe = χsq
3/2 Te

eB

ρs
R
[
R

LTe

− R

LTe,crit

]αH(
R

LTe

− R

LTe,crit

) + χ0
Te

eB

ρs
R
. (1.11)

The model includes the local gyro-Bohm magnetic field and temperature scaling, Te

eB
ρs
R
, and

enforces the empirically-observed dependence on plasma current in tokamaks, q3/2. χs is an

alternative quantification of stiffness in the electron heat flux and is sometimes referred to

as the “intrinsic” stiffness.

Commonly α is taken as equal to unity in the empirical model [47] (although the Weiland

critical gradient model mentioned in Section 1.2.2 calls for α =0.5 [36].) The empirical model

is applied by fitting χs, χ0, and R/LTe,crit
to experimental data derived from scanning the
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electron heat flux and normalized gradient, R/LTe
. Figure 1.19 also shows results from the

empirical model of Equation 1.11 for α = 0.8 and α = 1. The critical gradient in the electron

heat flux is different for TEM and ETG mode driven turbulence, and the “apparent” critical

gradient can be determined far above the threshold, χHP
e > 2χPB

e , by interpolation between

the incremental and power balance thermal diffusivity [43],

(

R

LTe

)

crit

=

(

R

LTe

)

χHP
e − χPB

e

χHP
e

. (1.12)

With concurrent power modulation, both power balance and heat pulse propagation analysis

can be used to provide information about the heat flux and may be used to determine χPB
e ,

χHP
e , and R/LTe,crit

. The critical gradient model has been applied successfully in conjunction

with transient experiments on several machines, including the AUG, TCV, JET, FTU, Tore

Supra and DIII-D tokamaks, as well as the W7-AS stellarator [47], and is a useful model for

empirical studies of turbulence.
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1.4.2 A Review of Perturbative Heat Transport Experiments in

Toroidal Devices

Table 1.2: The ratio of electron heat diffusivity χHP
e as measured by ECRH modulation (mECH)

or by sawtooth (STH) propagation to χPB
e , as deduced from standard power balance analysis for

various experiments up to 1993. Adapted from [44].

Experiment χHP
e /χPB

e Mode Reference

ASDEX 3 STH Giannone et al 1990

DIII-D ≈ 1 mECH Lopes Cardozo et al 1992b

DITE ≈ 1 mECH Hugill et all 1988

FTU 1.5− 2.2 STH Alladio et al 1992b

ISX-B ≈ 1 STH Bell et al 1984

JET 2.5 STH Tubbing et al 1987

JT-60U 2− 4 STH de Haas et al 1992

RTP 2− 4 STH Lopes Cardozo et al 1992a

RTP 2− 4 mECH Lopes Cardozo et al 1992a

TEXT 2.25 STH Brower et al 1990

TEXTOR > 4 STH Kramer-Flecken, ([44])

TFTR 1− 10 STH Fredrickson et al 1986

TORE SUPRA 2.5− 3.5 STH Lopes Cardozo et al 1992b

T10 ≈ 1 STH Sillen et al 1986

W7-AS 1− 1.5 mECH Giannone et al 1991

Before 1993, very few perturbative heat transport experiments were performed in stel-

larators, and electron heat transport was inferred to be diffusive, based on the agreement

between χHP
e and χPB

e in magnitude and scaling with plasma parameters in the W7-AS
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stellarator [44]. The ratio of the incremental to power balance value was generally observed

to be positive and greater than unity in tokamaks, and a short comparison of results from

different tokamaks is shown in Table 1.2 that is reproduced from [44].

The analysis of temperature perturbations from sawteeth [50] and modulated ECRH

[51] yields similar results in RTP and other tokamaks [52], and χHP
e was observed to be

independent of plasma current, ohmic power, and line-average density in the JET tokamak

in both L- and H-mode plasma [52]. The conclusion that the incremental thermal diffusivity

is independent of plasma current in JET is in conflict with the q3/2 dependence of Equation

1.11.

Table 1.3 is a brief comparison of perturbative and steady-state heat transport exper-

iments since 1993 (including the results from the ORMAK tokamak which were excluded

from Table 1.2). Perturbative heat transport experiments have been used to measure critical

electron temperature gradients in the DIII-D [48], TCV, and AUG [47]. Tokamak exper-

iments and show that the perturbative and steady-state measurements agree (disagree) in

regions or regimes below (above) the critical electron temperature gradient. No critical elec-

tron temperature gradient has been directly observed on a stellarator experiment, although

evidence for a critical electron temperature gradient near that predicted for ETG driven

transport on the W7-AS stellarator at moderate heating powers has been reported recently

[47].
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Table 1.3: The ratio of electron heat diffusivity χHP
e as measured by ECRH modulation (mECH),

cold pulse (COLD) or by sawtooth (STH) propagation and χPB
e , as deduced from standard power

balance analysis for various experiments and analysis locations ρ.

Experiment χHP
e /χPB

e Analysis Location Mode Reference

TFTR ≈ 2 ρ < 1.5ρmix STH Fredrickson et al, 2000 [53]

DIII-D ≈ 1 ρ < 1.5ρmix STH Fredrickson et al, 2000 [53]

AUG ≈ 1 ρ < 0.4 mECH Ryter et al, 2003 [54]

RTP ≈ 1 ρ < 0.3 mECH Gorini et al, 1993 [55]

RTP 2− 4 ρ > 1.5ρmix mECH/STH Mantica et al,1996 [56]

JET 2− 4 ρ > 1.5ρmix STH Fredrickson et al, 2000 [53]

TFTR ≈ 5 ρ > 1.5ρmix STH Fredrickson et al, 2000 [53]

DIII-D ≈ 10 ρ > 1.5ρmix STH Fredrickson et al, 2000 [53]

ORMAK 2.5− 15 ρ > 1.5ρmix STH Callen and Jahns, 1977 [50]

AUG ≫ 1 ρ > 0.4 mECH Ryter et al, 2003 [54]

DIII-D 2− 5 ρ = 0.45 mECH Gentle et al, 2006 [57]

JT-60U ≈ 1 ITB present mECH/COLD Inagaki et al, 2006 [58]

JT-60U 1− 3 No ITB mECH/COLD Inagaki et al, 2006 [58]

WVII-A ≈ 1− 3 mECH Hartfuss et al, 1986 [59]

W7-AS ≈ 1 mECH Gasparino et al, 1998 [60]

WEGA ≈ 1 mECH Zhang et al, 2012 [61]

L-2M ≫ 1 mECH Akulina et al, 2001 [62]

CHS 0.2− 0.5 STH Takagi et al, 2003 [63]

TJ-II ≈ 1 mECH Eguilior et al, 2003 [64]

LHD 0.3 ρ < ρITB COLD Ida et al, 2004,2009 [65][66]

LHD ≈ 1 mECH/COLD Inagaki et al, 2006 [58]
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The electron heat flux, normalized by the gyro-Bohm electron temperature dependence

of W7-AS at the plasma mid-radius, is reproduced from [47] in Figure 1.20. The empirical

model, Equation 1.11, predicts a stiffness of approximately 3 for this data. The thermal

diffusivity and temperature profiles from two experiments are shown at right in Figure 1.20.

The heating power was varied between a source located on-axis and a source located off-

axis with 0.8 MW launched on-axis in the first experiment and the total power reduced to

0.1 MW on-axis and 0.4 MW launched off-axis in the second experiment. Modulated ECH

experiments on W7-AS at higher heating powers (0.6 MW on- and 0.6 MW off-axis) yielded

incremental thermal diffusivities that were similar to the power balance values [67]. This

suggests that there is a decrease in stiffness with additional heating power in W7-AS [47].

Figure 1.20: Normalized electron heat flux vs temperature gradient in W7-AS from steady-

state experiments and the empirical model at the mid-radius (left). The heat flux and

temperature profiles from two experiments (right). Reproduced from [47].
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The transition behavior of an eITB was investigated in the JET tokamak using a combi-

nation of heat pulse propagation and cold pulse propagation experiments in [68]. Reference

[68] showed evidence that the eITB in JET was a narrow region of improved confinement, in

which the critical gradient in the electron heat flux increased above the experimental gradient

in that region, resulting in a complete loss of stiffness in the electron heat flux (χHP
e ≈ χPB

e

within the eITB layer and χHP
e > χPB

e outside of the eITB layer). The eITB observed in

LHD covers the inner third of the minor radius and the thermal diffusivity is reduced within

the eITB; but results were not so clear on the JT-60U tokamak where the thermal diffusivity

was reduced across the minor radius when an transport barrier was present in the plasma

[58]. Modeling of cold pulse propagation experiments on JET showed that the eITB was

fragile near the eITB foot and could be removed during cold pulse propagation from outside

of the eITB layer [68]. This result may affect the results from the JT-60U tokamak and LHD

stellarator where cold pulses were used in the perturbative heat transport analysis of plasma

with eITBs.

Modulated ECH and cold pulse propagation were used to study electron heat transport,

with and without an eITB [69], for a variety of heating powers and plasma densities [65]

on LHD. The steady-state and incremental thermal diffusivities were reduced by a factor

of 5 within the eITB. Before the transition to an eITB, the stiffness was measured to be

comparable to, or larger than, unity; however, after the transition into an eITB, the stiffness

was reduced to approximately 1/3 [65].

Figure 1.18 shows that when χHP
e < χPB

e , a small increase in heat flux can lead to a

large increase in electron temperature gradient. This was interpreted as evidence of an eITB

on LHD when accompanied by a large increase in core electron temperature [70], but not

as evidence of an eITB on the CHS stellarator, where χHP
e < χPB

e occurred without the

commensurate increase in electron temperature [63]. Additionally, the thermal diffusivity in
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LHD was shown to be independent of the temperature gradient, but to have a gyro-Bohm

temperature dependence, T 1.5
e , in plasmas without an eITB, and a strong inverse temperature

dependence in plasma with an eITB. This was in contrast to results at JT-60U, where there

was little temperature dependence but a strong temperature gradient dependence in plasmas

without an eITB [58].

Since 1993 there have been several perturbative heat transport experiments in stellara-

tors, but only results on the L-2M stellarator have shown the strong temperature gradient

dependence of tokamak experiments. It is unclear whether the results from the L-2M stel-

larator are significant, because further experiments have not been published, there was no

test for temperature dependence of the thermal diffusivity. Additionally, the W7-AS, CHS,

TJ-II, and LHD stellarators have been shown to have eITBs. This complicates the com-

parison between stellarators (where stiffness in the electron heat flux is not observed) and

tokamaks (where stiffness in the electron heat flux is observed) because JET and JT-60U

showed that there was no stiffness in the electron heat flux within eITBs. All of these re-

sults encourage perturbative heat transport experiments on a device that has been optimized

for neoclassical transport and is dominated by anomalous heat transport across the minor

radius. An eITB has been predicted to exist in the core of HSX, and experimental measure-

ments of the electron heat flux are available in the region where the eITB is predicted to

exist.
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Chapter 2

Electron Cyclotron Waves: the Kitchen Physics

Heat pulse propagation experiments require a source capable of modulating its output

power, and a time-resolved electron temperature diagnostic with high spatial resolution.

Electron Cyclotron Resonance Heating (ECRH) is used as the source for heat pulse propa-

gation experiments on HSX, and the Electron Cyclotron Emission (ECE) diagnostic is used

to measure the electron temperature and its response to modulated heating. This chapter

provides the theoretical background in electron cyclotron wave propagation, emission, and

absorption that is used in the analysis of the ECE diagnostic in Chapter 3, and the ECRH

system in Chapter 4.

Electron cyclotron waves are absorbed and emit radiation at harmonics of the cyclotron

frequency. Blackbody radiation represents an upper limit to the amount of radiation that a

physical object may emit, and in most cases the ECE radiation from a dense, hot plasma.

Planck’s law describes the spectral radiation intensity, Iω (the radiative power per unit area

per unit solid angle per unit cyclic frequency), from a body with a stationary temperature,

T . In the microwave band, where h̄ω ≪ κT , Planck’s law reduces to the Rayleigh-Jeans

approximation, Ibb,ω ≈ ω2κT
4π2c2

. The spectral intensity of a blackbody is directly proportional

to its temperature, and electron cyclotron emission is used as a temperature diagnostic in

modern fusion devices.
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At very high plasma temperatures, strong wave absorption occurs across a large volume

of the plasma, and re-absorption of the ECE power can occur before the radiation reaches

the antenna. Conversely at low plasma density or temperature, the absorption is weak and

the ECE power may undergo many wall reflections without being re-absorbed. In the limit

of weak wave absorption, modeling is necessary to determine the electron temperature from

the electron cyclotron emission from a plasma.

The accessibility of electron cyclotron waves to the plasma is briefly introduced in Section

2.1, and the Doppler and relativistic mechanisms of spectral line broadening are introduced

in Section 2.2. The theory of linear absorption and emission of cyclotron waves from a weakly

relativistic plasma is introduced in Section 2.3.

Kinetic theory is necessary to model non-thermal plasma, and the regime that nonthermal

plasma is generated in HSX is described in Section 2.4. The radiation transport of cyclotron

emission is introduced in Section 2.5, and the effect of multi-pass emission and wave damping

is discussed in Section 2.6. A summary of the important concepts from this Chapter is

included in Section 2.7.

2.1 Electron Cyclotron Wave Propagation and Accessibility

The basics of electron cyclotron wave propagation and accessiblity are governed by the

linearized dispersion relation for cold plasma waves [71], ~n×~n× ~E+ ε · ~E = 0, where ~n = c~k
ω

is the wave index of refraction, and the cold plasma dielectric tensor is

ε

εo
= 1− Σs













ω2
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ω2−Ω2
c,s

ω2
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ω2
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











. (2.1)

Here ns is the plasma density for species s, ωp,s =
nsq2s
εoms

is the plasma frequency, and ~Ωc,s =
qs ~B
ms

is the algebraic cyclotron frequency. The first two coordinates are perpendicular to the
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direction of the magnetic field, and the third coordinate is aligned along the magnetic field

direction.

For parallel wave propagation, ~n ‖ ~B, the transverse (E1,E2,0) and the longitudinal

(0,0,E3) waves decouple, and the transverse right-hand and left-hand circularly polarized

waves and the longitudinal electrostatic plasma wave may propagate. The right-hand cir-

cularly polarized wave resonates with the Larmor motion of the electrons, where the wave

frequency equals the electron cyclotron frequency, ω = Ωc,e. Similarly, the left-hand circu-

larly polarized wave resonates with Larmor motion of the ions, where the wave frequency

equals the ion cyclotron frequency, ω = Ωc,i.

Waves propagating oblique to the background magnetic field are elliptically polarized. In

this case, the electric vectors of the ordinary and the extraordinary wave rotate in opposite

directions as they propagate. For perpendicular wave propagation, ~n ⊥ ~B, the ordinary

wave is linearly polarized, with its electric field parallel to the background magnetic field,

and it cannot propagate below the plasma frequency. The electric field of the extraordinary

wave is perpendicular to the background magnetic field, and it has two cut-off densities. The

cut-offs of the extraordinary wave are ω± = 1
2

(√

Ω2
c,e + 4ω2

p,e ± |Ωc,e|
)

. The extraordinary

wave also has two hybrid-resonances that occur where the wave interacts with both the ions

and electrons at either the upper-hybrid frequency, ωUH =
√

ω2
p,e + Ω2

c,e, or the lower-hybrid

frequency, ωLH ≈
√

Ωc,eΩc,i.

The extraordinary wave at the fundamental cylotron frequency is prevented from access-

ing the cyclotron resonance by the evanescent region between the low-density cut-off and

the upper-hybrid resonance during 1T machine operation. The extraordinary wave cut-off,

upper-hybrid and resonance layers are illustrated in the boxport of HSX in Figure 2.1. The

extraordinary wave at the fundamental cyclotron frequency must be launched from the high

magnetic field side of the machine, for its resonance to be accessible to the wave. Higher
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Figure 2.1: Extraordinary wave cut-off (ω−), upper-hybrid (ωuh), and electron cyclotron

resonance (Ωc,e) layers in the HSX boxport.

harmonics of the extraordinary wave retain access to the resonance regardless of the mag-

netic field gradient as long as the frequency remains above the cut-off frequency. Similarly,

the ordinary wave has access to the cyclotron resonance from any launching position, as long

as the wave frequency remains above the plasma frequency.

The plasma wave resonances and cut-offs intercepted by the 28 GHz ECRH beam along

the mid-plane of the boxport of HSX are shown in Figure 2.2 for a 1T on-axis magnetic field.

The ordinary wave is used for plasma start-up and heating during 1T machine operation.
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Both of the ECRH antennas on HSX are located on the outboard-side of the device. Dur-

ing 0.5T machine operation, the extraordinary wave at the 2nd harmonic of the cyclotron

frequency is used for plasma start-up and heating.

Figure 2.2: The fundamental and 2nd harmonic of the electron cyclotron frequency, fce, the

plasma frequency, fpe, and the upper-hybrid frequency, fuh, are shown along the mid-plane

of the HSX boxport during 1T machine operation. The 28 GHz ECRH frequency used for

ECRH is shown as a black dashed line.

The ECE diagnostic observes the 2nd harmonic of the electron cyclotron frequency, and

this frequency is also shown in Figure 2.2. The ECE antenna couples to the wave emitted

from the plasma that has its wave electric field perpendicular to the background magnetic

field, which corresponds to the extraordinary wave. The fundamental electron cyclotron

resonance is above the plasma frequency cut-off, and it is below the upper-hybrid frequency

during 1T machine-operation.
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2.2 Spectral Broadening of Electron Cyclotron Emission

The cyclotron resonance for harmonic, m is

ωm = mΩc,e + k‖v‖, (2.2)

In the limit of k‖ = 0 (perpendicular observation), the relativistic effect on the electron

mass leads to a shift in the cyclotron frequency. In the opposite limit of high k‖ (oblique

observation), the relativistic effect can be small compared to the Doppler shift due to high

parallel electron velocity. In addition to shifting the electron cyclotron frequency, finite elec-

tron temperature causes both relativistic and finite temperature broadening of the absorption

and emission. Figure 2.3 illustrates the temperature broadening mechanism of changing the

ECE spectral shape. With the observation angle set at 45◦, the spectral shape of the ECE

is broadened by increasing the electron temperature from 3 keV to 10 keV.

Figure 2.3: Broadening of the ECE spectral shape is illustrated as the temperature is in-

creased from 3 keV to 5 keV to 10 keV under a fixed observation angle of 45◦. Reproduced

from [72].



47

The relativistic shift and finite temperature broadening of the ECE spectrum is demon-

strated in Figure 2.4. The spectral shape of the ECE is shifted to lower frequencies and

broadened as the electron temperature is increased from 3 keV to 5 keV to 10 keV.

Figure 2.4: The spectral shape of the ECE is downshifted and broadened by increasing

temperature from 3 keV to 5 keV to 10 keV under perpendicular observation. Reproduced

from [72].

2.3 Linear Theory: Absorption and Emission

As the plasma density increases, the re-absorption of the radiation by the plasma becomes

important and must be included to calculate the total emission. When the plasma density

and temperature are insufficient for the plasma to be considered a perfect absorber, the re-

absorption and emission along the line of sight of a diagnostic is described by the radiation

transport equation [73],

n2
r

d

ds
(
Iω
n2
r

) = jω − αωIω, (2.3)

where jω and αω are the plasma emissivity and absorption along ray-trajectories with ray-

refractive indice nr that originate at the observation point [73]. Electron cyclotron absorption
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and emission are complementary processes, and the damping of a wave carrying heating

power, P , along a ray trajectory is dP
ds
= αωP in the geometric optics approximation.

The elements of the cold plasma dielectric tensor used in the introduction of wave propa-

gation and accessibility in Section 2.1 are insufficient for modeling the absorption of cyclotron

waves. Absorption requires an imaginary component to the dielectric tensor, and the anti-

Hermitian portion of the cold plasma dielectric tensor is identically zero.

The collisionless absorption of electromagnetic waves through weak wave damping can

be used to calculate the absorption coefficient in a hot, dense plasma, α ≡ 2ℑ[~k] · ~s, by

using the Poynting theorem to determine the spatial damping rate along the direction of the

energy flux, ~s =
~S(~k,ω)

|~S(~k,ω)| . The emission can be determined in a similar way, and the absorption

coefficent and the emission coefficient are

α(ω) =
ω

4π

~E∗ · ǭa · ~E
|~S(~k, ω)|

, (2.4)

j(ω) = πn2
r

(ω

c

)2 ~E∗ · Ḡ · ~E
|~S(~k, ω)|

. (2.5)

Here ǭa =
1
2
[ǭ + ǭ†] is the anti-Hermitian part of the dielectric tensor (ǭ), and † indicates

the conjugate transpose (Hermitian conjugate). ~E is the Fourier transformed wave-electric

field, and Ḡ is the micro-correlation tensor [71]. The wave absorption and emission depends

sensitively on the wave polarization, but the absorption also depends on the anti-Hermitian

portion of the dielectric tensor.

In the weakly-relativistic limit, the anti-Hermitian part of the dielectric tensor is

ǭa = −π
ω2
p

ω2

+∞
∑

m=−∞

∫

d3p
1

γ

[

mΩce

ω

∂f

∂p⊥
+ n‖

p⊥
mec

∂f

∂p‖

]

S̄(m)δ

(

γ − k‖v‖
ω

− mΩce

ω

)

, (2.6)

and the micro-correlation tensor, Ḡ, is

Ḡ = − π

(2π)5
1

me

ω2
p

ω2

+∞
∑

m=−∞

∫

d3p
p⊥f

γ
S̄(m)δ

(

γ − k‖v‖
ω

− mΩce

ω

)

, (2.7)
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where

S̄(m) =
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.

Jm(b) is the Bessel function of the first kind, and its argument is the ratio of the electron

Larmor radius to perpendicular wavelength, b =
∣

∣

∣

k⊥p⊥
meΩc,e

∣

∣

∣
, J ′

m is its derivative, n‖ is the

parallel refractive index, and γ is the Lorentzian factor. The emissivity depends on the

electron distribution function, f(p‖, p⊥), where p‖ and p⊥ are the parallel momentum and

the perpendicular momentum respectively, and the absorption depends on the derivative of

the electron distribution function in momentum space [74].

2.4 Consequences of Nonthermal Electrons in HSX

When the absorbed power density is high enough, pabs/neTeνe ≪ 1 where νe is the

collision frequency of the resonant electrons, collisional relaxation is insufficient to thermalize

the electrons, and the deviation from a Maxwellian distribution function can be large [75].

The ECE radiation temperature from an experiment with low power density, where the

plasma may be considered Maxwellian, and high power density, where the effect of nonther-

mal electrons modifies the measurement, are shown in Figure 2.5. In the low-ECRH power

density case of Figure 2.5a, 44 kW of launched power is used to support a plasma of line-

average density 4.3×1012cm-3, and the ECE radiation temperature at the edge, half-radius,

and core of the plasma are thermal. In the high power density case of Figure 2.5b, 96 kW

of launched power is used to support a plasma of line-average density 2.0×1012cm-3, and the

ECE radiation temperature at the half-radius and core of the plasma have bursty behavior

with a duration less than 0.1 ms.
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(a) Low P/n: 44 kW, 4.3×1012cm-3 (b) High P/n: 96 kW, 2×1012cm-3

Figure 2.5: Edge (blue), half-radius (green), and core (red) ECE radiation temperature for

two ECRH power densities. Bursty behavior is measured at high power density.

Similar behavior was observed in the W7-AS experiment with high ECRH power densi-

ties. In W7-AS, the bursty phenomena were attributed to local degradation of the power

absorption due to flattening of the distribution function, and the flattening of the distribution

function was followed by increased absorption by collisionless ripple trapped electrons that

were resonant at high energies [76]. Investigation of the bursty behavior on HSX through

kinetic modeling is suggested as future work in Chapter 7.

The ECE signal after ECRH turn-off is also modified by high-energy, collisionless elec-

trons in HSX. The decay of the ECE signal after ECRH turn-off is shown for a channel near

the HSX half-radius in Figure 2.6, for the two ECRH power densities of Figure 2.5. In the

low-ECRH power density case, the ECE signal decays to zero quickly after ECRH turn-off.

In the high power density case, the ECE signal decays with two time-scales: a fast decay-

time that is associated with thermal electrons, and a slow decay-time that is associated with

non-thermal electrons. The non-thermal electrons have high residency time in HSX because

of good fast particle confinement at a low-collisionality.
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Figure 2.6: ECE signal near the HSX half-radius after ECRH turn-off for two power densities.

At low power density (red), the signal decays quickly. At high power density (blue), there

are two time-scales associated with the decay.

The analysis of the ECE and ECRH on HSX is limited to regimes where the plasma

is Maxwellian. The total plasma stored energy, W diam
E measured by a diamagnetic loop,

includes the energy in the thermal and nonthermal populations of the plasma. This quantity

is compared to the kinetic stored energy (the energy in the thermal electron population)

inferred from Thomson scattering measurements to limit the experimental regimes explored

in this work. The kinetic stored energy is approximated by the thermal energy of the ions and

electrons, W kin
E = WE,e +WE,i. An example of the diamagnetic stored energy measurement

of a plasma supported by 85 kW of launched ECRH power at a line-average plasma density

of 4×1012cm-3 is shown in Figure 2.7.

The diamagnetic stored energy does not measurably change for line-average plasma den-

sities between 2×1012 cm-3 and 4.3×1012 cm-3; however, the kinetic stored energy does vary

over this density range, and the change is attributed to a change in the energy carried by

nonthermal electrons (the comparison is shown in Figure 2.10). The Thomson scattering di-

agnostic of HSX samples the thermal part of the electron distribution function. The thermal
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Figure 2.7: Diamagnetic stored energy measured by a flux loop versus time (solid line) with

experimental uncertainty (dashed lines) at a plasma line-average density of 4×1012cm-3.

electron energy is obtained by integrating over the plasma density and electron temperature

measured by Thomson scattering, WE,e =
∫

neTedV where V is the plasma volume.

The uncertainty in the kinetic stored energy is dominated by the systematic uncertainty in

the fit to the electron temperature and plasma density profiles, and a Monte-Carlo approach

is used to include this uncertainty by fitting four functions to the profiles: a piecewise linear

fit, a stiff-spline fit, and a 5th and 6th order polynomial fit. The experimental uncertainties

are also included by varying the fitted electron temperature and plasma density within their

uncertainties. Twenty-five test profiles are used per fitting function. An example electron

temperature and plasma density profile measured through Thomson scattering in a plasma

supported by 85 kW of launched power at a line-average plasma density of 4×1012cm-3 is

shown in Figure 2.8 along with the fits used during integration.

The ion portion of the kinetic energy is estimated from previous impurity ion measure-

ments using Charge Exchange Recombination Spectroscopy (CHERS). There are no impurity

ion temperature measurements in these experiments, because the HSX CHERS system re-

quires a significant fraction of carbon in the plasma; however, previous measurements have



53

Figure 2.8: Four electron temperature and plasma density fiting functions, each with 25 fits

that result from varying the measured temperature and density within their experimental

uncertainties, are used to determine the electron thermal energy.

shown that the impurity ion temperature did not change significantly over a large parameter

regime in HSX when carbon was present [77] [78]. The proton and impurity energy equili-

bration time is much faster than the ion confinement time, and the impurity temperature

is assumed to be approximately equal to the proton temperature [77]. Additionally, the ion

plasma density is assumed to be equal to the electron plasma density, ni ≈ ne (through quasi-

neutrality with the effective charge of the thermal plasma ions equal to unity, Zeff ≈ 1). The

kinetic energy carried by the ions is the integral of these profiles, WE,i =
∫

niTidV . Figure

2.9 shows the impurity carbon (C+6) ion temperature measured through CHERS in a plasma

with significant carbon fraction. There is no measurable change in the ion temperature as

the line-average density was changed from 3×1012cm-3 to 4×1012cm-3.

The plasma stored energy from the diamagnetic loop is compared to the kinetic stored

energy over a range of line-average densities measured using the central chord of the HSX

interferometer in Figure 2.10. The launched power was held at 85 kW during this experiment.

There is a discrepancy between the total plasma stored energy and the kinetic stored energy
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Figure 2.9: Impurity carbon (C+6) ion temperature measured through CHERS at line-

average plasma density of 3×1012cm-3 (red circles) and 4×1012cm-3 (blue crosses). Repro-

duced from [77].

at low-plasma density, and this discrepancy decreases with increasing line-average density.

The two measurements converge near line-average plasma density of 3.5×1012cm-3. The

change in kinetic stored energy is primarily attributed to increased electron thermal energy

in the plasma, and a decrease in the portion of energy carried by nonthermal electrons.

As the launched ECRH power decreases, the threshold for assuming the plasma is thermal

also decreases. The analyses of the ECE in Chapter 3 and of the ECRH in Chapter 4 are

limited to experimental regimes above line-average plasma density of 3.5×1012cm-3, where

the distribution function is expected to be Maxwellian. The heat transport experiments

introduced in Chapter 5 and compared to gyrokinetic calculations in Chapter 6 are also in

this density regime.

2.5 Radiation Transport

Following [73], a radiation temperature can be defined in analogy with Kirchoff’s law in

terms of a source function, Sω =
1
n2
r

jω
αω

= ω2

8π3c2
κTr,ω, such that for a Maxwellian distribution
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Figure 2.10: The total stored energy measurement (W diam
E , black circles), electron stored

energy measurement (WE,e, blue asterisks), an estimate of the energy carried by the ions

(WE,i, green asterisks), and the kinetic stored energy (W
kin
E = WE,e +WE,i, red circles).

function the source reduces to the vacuum blackbody intensity, Iω,bb. The equation of radi-

ation transfer along the ray direction, ~s, in terms of the radiant intensity, Iω and the source

function, is

d

ds
(
Iω
n2
r

) =
Iω
n2
r

− Sω. (2.8)

The solution to Equation 2.8, including a radiation of intensity Io,ω incident on the

opposite side of the plasma from the observation point and located outside of the plasma, is

Ir,ω = Io,ωe
−τ +

∫ s

0

Sω(s)e
−τ ′ds, (2.9)

where τ =
∫

αds is the integrated absorption from the back of the slab to the detector

along the ray, and τ is an optical depth. The first term of Equation 2.9 represents damping

of incident radiation as it passes through the resonant region, and the second term is a

combination of emission, Sω, and re-absorption, e
−τ , within the plasma. The spectral radiant

intensity Ir,ω that reaches the detector is the sum of the damped incident radiation and the

remaining generated radiation along the ray.
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The fundamental electron cyclotron resonance, neglecting the Doppler effect, is ωc,e =

e|B|
me

√

1− Te

mec2
, where |B| is the magnetic field strength and me is the rest mass of the

electron in this case. Finite electron temperature causes electrons to emit radiation at lower

frequencies than the cold plasma resonance. The absorption coefficient (a), plasma optical

depth (b), normalized emissivity (c), and integrated emissivity (d) along the view of the

ECE antenna are shown in Figure 2.11 for the extraordinary wave at 56 GHz. Two central

electron temperatures are shown in Figure 2.11 along with the cold plasma resonance of the

wave at a central plasma density of 6×1012cm-3 and an on-axis magnetic field of 1T.

The emissivity in Figure 2.11c is determined through Kirchoff’s law by jω(s) =

Iω(s)αω(s)e
−τ(s) [74] [79]. The emissivity of Figure 2.11c is broadened and the spatial reso-

lution is decreased by hot electrons, but the re-absorption stays low for the experimentally

relevant density profile used in the calculation (this is evident from the integrated emissiv-

ity in Figure 2.11d). The natural line width is the width of the emitting layer from which

90% of the radiation escapes without re-absorption [79], and it is found by integrating the

emissivity.

The measured radiation temperature in the absence of background radiation is Tr,ω =

Te(1− e−τ ). For an optically thick plasma, where τ ≫ 1, the radiant intensity perpendicular

to the magnetic field can be considered blackbody. The measured radiation temperature in

this case is the local electron temperature, Tr,ω = Te. In practice, the emission is considered

blackbody when τ > 2, and the natural line width of the ECE, ∆d, can be defined as the

point at which τ =
∫ ∆d

antenna
αds = 2 [80].

For an optically thin (semi-transparent or gray) plasma, where τ ≪ 1, the radiation

temperature is proportional to the optical thickness of the plasma, Tr,ω ∝ τTe. For the

extraordinary wave at the 2nd harmonic of the cyclotron frequency, the optical depth is



57

(a) Absorption Coefficient (b) Optical Depth

(c) Emissivity (normalized) (d) Integrated Emissivity

Figure 2.11: (a) Absorption, (b) optical depth, (c) normalized emissivity, and (d) integrated

emissivity at central electron temperatures of 0.5 (blue line) and 5 keV (red line) are shown

along the ECE viewing axis for the extraordinary wave at 56 GHz. The cold plasma resonance

is also shown (black line).

proportional to the local temperature and plasma density, and the resulting plasma emission

is linear in the electron density and quadratic in the electron temperature, Tr,ω ∝ neT
2
e .

Based upon the slab model for single-pass absorption, the percent of relative systematic

error in interpreting the ECE radiation temperature as an electron temperature is 5% for
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an optical depth of 3, but grows to 37% for an optical depth of 1. The first-pass optical

depth of the plasma to the extraordinary wave at the 2nd harmonic of the electron cyclotron

frequency is less than 3 across the minor radius of HSX, and the plasma is optically gray to

the ECE diagnostic according to the single-pass model.

Similarly, the absorption efficiency of ECRH may also be related to the optical depth of

the plasma to the incident radiation, η = Pabs/P0 = 1−e−τ . The ECRH absorption efficiency

after the first-pass through the plasma is 95% for an optical depth of 3, but decreases to

below 30% for an optical depth lower than 0.35. The first-pass optical depth of the plasma

to the ordinary wave at the fundamental resonance is less than 0.5, and there is low-first

pass absorption during 1T machine operation in HSX according to the single-pass model.

2.6 Finite Reflectivity: Multi-pass Emission and Wave Damping

In low-optical depth plasma, electron cyclotron radiation undergoes multiple reflections

from the vacuum vessel wall, and traverses the plasma many times before reaching the ECE

diagnostic. With each pass through the plasma the intensity of emission is reinforced raising

the effective optical depth of the plasma. This leads to spatial averaging across the ECE

resonance, as regions that are not directly viewable by the ECE diagnostic are sampled

through multi-pass absorption and emission. In the limit of infinite reflections between

parallel planes, the collected radiation can be written as an infinite series

Ir,ω = Ibb(1− e−τ )
∞
∑

n=0

ρne−nτ = Ibb
1− e−τ

1− ρe−τ
, (2.10)

where ρ represents the reflectivity of the planes. Equation 2.10 is the solution to the radia-

tion transport equation in a slab, where the incident radiant intensity of Equation 2.9 has

been replaced by an isotropic background intensity, Io,ω (which includes contributions from
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polarizations and harmonics other than the target mode and polarization) [81],

Iω(R, z, θ, φ) = Ibb,ω[1− e−τ ] + Io,ωe
−τ . (2.11)

Equations 2.10 and 2.11 are equivalent when the isotropic emission incident on the back of

the slab is Io,ω = Ibb,ωρ
1−e−τ

1−ρe−τ , which explicitly includes the final reflection.

There are four limits of Equation 2.10. In the zero-reflectivity limit, ρ = 0, the single-pass

absorption model is recovered and Tr,ω = Te(1 − e−τ ). In the total reflection limit, ρ = 1,

the plasma behaves as a blackbody, Tr,ω = Te, and the radiation temperature is the average

electron temperature over the resonance Tr,ω = Te(R, z).

In the optically thick limit with finite reflections, where τ ≫ 1, Equation 2.10 reduces

to Tr,ω ≈ Te, and the plasma may be considered a blackbody. In the optically gray or thin

limit with finite reflections, the emission is reinforced by taking multiple passes through

the resonance, and Equation 2.10 describes the radiation transport with an effective optical

depth greater than the optical depth from a single-pass through the plasma.

The systematic error in interpreting the average radiation temperature, Tr,e, as the av-

erage electron temperature, Te, is plotted as a function of reflectivity and optical depth in

Figure 2.12. The systematic error is unacceptably high for reflectivities less than 0.9, and

the finite optical depth and reflectivity correction must be included for reflectivities less than

0.9 when determining the average electron temperature from ECE.

The reflectivity of the stainless steel vacuum vessel of HSX at 56 GHz is nearly unity

(0.998); however, the reflectivity used in Equation 2.10 is an effective reflectivity that includes

beam truncation losses and specular reflection [81]. The effective reflectivity of HSX is

inferred to be greater than 0.9 (and approximately equal to unity) across the majority of the

HSX minor radius by comparing the absolutely calibrated ECE radiation temperature with

Thomson scattering measurements in Section 3.6.
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Figure 2.12: Systematic error in interpreting the average radiation temperature, Tr,e, as the

average electron temperature, Te, as a function of optical depth and reflectivity.

Similarly, previous measurements of the absorption of ECRH in HSX during 0.5T machine

operation [82] indicate that the effective reflectivity of the first ECRH antenna is 0.9, and

this value is consistent with absorption measurements during 1T machine operation, and

modeling of the multi-pass wave damping in Section 4.2.2.

2.7 Summary of the Kitchen Physics

The electron cyclotron emission from a plasma is used as a spatially localized and time-

resolved electron temperature diagnostic in magnetically confined fusion experiments; how-

ever modeling is necessary to determine the electron temperature in HSX. For the perpen-

dicular view of the ECE diagnostic from the low field side of the device, there is a relativistic

frequency shift due to the change in electron mass with energy, and the emission originates

from the high field side of the cold plasma resonance. Fast electrons are efficient emitters

and absorbers of cyclotron radiation, and nonthermal electrons can significantly alter the
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electron cyclotron emission and absorption. A model for emission including multiple reflec-

tions from the vessel wall is necessary in plasma with low first pass optical depth, and wall

reflections increase the optical depth of the plasma.

Electron cyclotron emission and absorption are complementary processes, and the chal-

lenges in modeling the electron cyclotron emission are shared in modeling the electron cy-

clotron absorption in a magnetically confined plasma. Electron cyclotron resonance heating

is an efficient method of increasing the electron temperature of a plasma, but it can result

in large deviations from a Maxwellian distribution function in low-collisionality plasma at

high powers. Wave absorption is sensitive to the slope of the distribution function, and

bursty phenomena are observed in the electron cyclotron emission at high power densities

in HSX. The analysis of the ECE in Chapter 3, and the ECRH in Chapter 4, as well as the

heat transport experiments in Chapter 5 and Chapter 6, are limited to line-average plasma

densities above 3.5×1012cm-3. This is the operational regime with a negligible non-thermal

electron population, and where the HSX plasma is assumed to be Maxwellian.
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Chapter 3

ECE Diagnostic and Analysis

The emission of the extraordinary wave at the 2nd harmonic of the electron cyclotron fre-

quency is used to diagnose the electron temperature on HSX using an absolutely calibrated,

16 channel heterodyne radiometer. The radiation temperature is in good agreement with

the electron temperature measured through Thomson scattering, and it is significantly larger

than that predicted by a model with an optical depth from the single pass absorption. The

antenna pattern of the ECE diagnostic and the plasma parameters have a significant impact

on the measured radiation temperature, and modeling of the emission sampled by the diag-

nostic is necessary to determine the radiation temperature. An iterative procedure is used

to self-consistently determine the electron temperature from the measured radiation spec-

trum. Relativistically down-shifted emission causes asymmetry in the ECE intensity across

the magnetic-axis at high ECRH power density in HSX; however, the channels on the high

field side of the magnetic axis remain thermal. The spatial and temporal resolution of the

ECE radiometer have been increased for use in heat pulse propagation experiments, and to

ensure that emission is thermal the ECE channels on the high-field side of the magnetic-axis

are used in the analysis of heat pulse propagation experiments on HSX.

The 16-channel ECE radiometer is described in Section 3.1, and the absolute calibration

of the diagnostic is discussed in Section 3.2. The optical depth of the plasma is analytically

modeled using a 1D analysis along the diagnostic view, as well as a 2D analysis in the
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helical cut of the boxport, and these results are compared to a 3D model from ray tracing

in Section 3.3. The absorption modeling is followed by an overview of changes made to

the diagnostic to increase the spatial and temporal resolution of the radiometer in Section

3.4. The absolutely calibrated radiation temperature is compared to an analytic model of the

first-pass emission in Section 3.5, and an iterative procedure for self-consistently determining

the electron temperature from the measured radiation spectrum is presented in Section 3.6.

3.1 The ECE Radiometer

The HSX electron cyclotron emission diagnostic is a 16-channel heterodyne radiometer

that measures the power radiated at the 2nd harmonic of the electron cyclotron frequency

in the extraordinary wave. The “front-end” of the ECE diagnostic converts microwave

power within the HSX vacuum vessel to electrical power at the heterodyne receiver. The

“front-end” consists of the ECE antenna, waveguide line, and microwave mixing element.

The “back-end” is the heterodyne reciever of the ECE diagnostic where the signal from the

“front-end” is divided, amplified, filtered and detected. The diagnostic layout of the ECE

system is shown in a block diagram in Figure 3.1.

Outside of the plasma, the perpendicularly propagating extraordinary wave couples to

a Transverse Electromagnetic (TEM) wave in vacuum that is linearly polarized with its

wave electric field perpendicular to the background magnetic field [72]. An ellipsoidal mirror

re-directs the wave to a pyramidal horn antenna that couples its power into a rectangular

microwave waveguide. Two views of the ECE antenna within the HSX vacuum vessel are

shown in Figure 3.2.

Figure 3.2a shows the view from behind the antenna, in which the back of the vac-

uum vessel wall in boxport D is visible. The ellipsoidal mirror of the antenna has three
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Figure 3.1: ECE diagnostic block diagram in the standard configuration. The diagnostic

“front-end” is comprised of the ECE antenna, waveguide line, and mixing element. The

diagnostic “back-end” is everything between the mixer and the data acquisition system.

hemisphereical detents that were machined into the back of its surface to facilitate antenna

alignment with a Coordinate Measuring Machine (CMM).

Figure 3.2b is a view of the aperture of the pyramidal horn. The front of the ellipsoidal

mirror is also visible in Figure 3.2b. The pyramidal horn is held in a protective tube, and

it is aligned with the mirror by four set screws. The ECE antenna pattern is modeled
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(a) ECE antenna from behind (b) Ellipsoidal mirror and pyramidal horn

Figure 3.2: Two views of the ECE antenna within the HSX vacuum vessel: (a) the view into

the vessel from the behind the antenna, and (b) the ellipsoidal focusing mirror and pyramidal

horn that form the antenna.

as a Gaussian beam with its beam-waist in the plasma. Gaussian beams and the specific

parameters used to model the antenna are described in Appendix C using methods presented

in Reference [83] and Reference [84]. The antenna pattern has a significant impact on the

radiation temperature measurement in the core of HSX (r/a < 0.2), and the effect of the

antenna pattern on the measurement is discussed in Section 3.5. The solid angle of the of

the plasma subtended by the antenna is discussed in detail in Section 3.2.2.

The first element of the heterodyne receiver is the mixing element. The mixing element is

a square-law diode that shifts the input radiofrequency (RF) signal down to an intermediate
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frequency (IF) signal using a 42.5 GHz local oscillator (LO). The output power is at the

beat frequency of the RF and LO, fIF = |fRF ± kfLO| (k = 1, 2, ...). The power in the IF

frequency of the heterodyne signal is a combination of the power from the LO and the power

incident on the diode. The radiometer is tuned to the lower band during 0.5T machine

operation, and to the upper band during 1T machine operation.

The ECE radiometer on HSX is a single-sideband receiver. The microwave signal that

would contribute to the lower band is removed by a high-pass waveguide filter. The waveguide

filter also protects the mixing element by attenuating unabsorbed ECRH power at 28 GHz.

The high-pass filter is implemented using a WR-15 (V-band) waveguide, which has a 40 GHz

cut-off frequency, and two waveguide transitions.

After the mixing element, the IF signal is amplified by 32 dB before being split into

Low-Field Side (LFS) and High-Field Side (HFS) ECE channels by a 2-way power divider.

Following an additional 25 dB amplification each side is split once again by an 8-way power

divider to yield 16 channels. The power in the IF signal that is split between each channel

is passed through a band-pass filter, before it is rectified and amplified by a crystal detector

and a video-amplifier.

The radial resolution of each ECE channel is set by the IF bandwidth, BIF , and the

spectral broadening through BIF

fRF
= ∆Ωc,e

Ωc,e
[79] [80]. The power gathered by a single mode

antenna is proportional to the IF bandwidth, as discussed in Section 3.2, and the signal

level increases with plasma temperature and IF bandwidth, P = kBIFTe (k is Boltzmann’s

constant). The minimum level of thermal noise that a radiometer can measure with a signal-

to-noise level of 1 is [85]

δTr

Tr

=

√

2Bv

BIF

, (3.1)

where Bv is the video bandwidth of the ECE radiometer [79]. For HSX, Bv = 300 kHz and

the smallest fluctuation that each ECE channel can detect is on the order of 3-5%.
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The diagnostic configuration shown in the block diagram in Figure 3.1 has channels with

center frequencies spanning from 50.8 to 60.8 GHz. The HFS channels have center frequencies

between 13.5 and 18.3 GHz, and the LFS channels have center frequencies between 8.3 and

12.9 GHz. An inline 3 dB attenuator is used to decrease the signal on the 13.5 GHz channel,

which gathers emission at 56 GHz (twice the gyrotron frequency used for ECRH). The video

amplifiers have a bandwidth of 300 kHz. The DC offset from the RF signal and LO are

rejected by a DC block in the heterodyne receiver.

3.2 Absolute Calibration

The ECE signals for a representative thermal plasma are shown in Figure 3.3. The output

voltages range between 20 mV from an edge channel to 4 V from a core channel, and these

signals correspond to temperatures between 100 and 1200 eV. An absolute calibration is

used to determine the sensitivity of each channel of the radiometer in terms of the power

input to the ECE diagnostic “front-end” and the voltage output from the ECE radiometer

“back-end.”

During absolute calibration, the overall system gain is determined for each ECE channel

by measuring the response to a noise source of known power at the input to the ECE

diagnostic. The calibration performed on HSX does not include the ECE antenna because

the antenna is within the HSX vacuum vessel, but the wave pattern of the antenna is modeled

in the data analysis.

3.2.1 Measuring the Gain of the Radiometer

The Y-factor method [85] is used to calibrate the ECE radiometer on HSX. A noise-

source that connects directly to the waveguide is used as the calibration load, and the source

is attached as close to the vacuum barrier window as possible.
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(a) Low-Field Side ECE (b) High-Field Side ECE

Figure 3.3: Raw voltages from the LFS (a) and HFS (b) ECE channels for a representative

thermal plasma.

The noise source is driven by a 28 VDC power supply that is full depth square wave

modulated, and an analog lock-in amplifier is used to phase-lock average the signal. The

gain of the radiometer is the difference in signal during the on- and off-phase, ∆T
∆V

.

The noise source generates white noise between 50 and 75 GHz that is amplified by more

than 15 dB over the ambient temperature of the source with a variation of ± 2 dB over the

frequency range of application. The amplification factor is referred to as the Excess Noise

Ratio (ENR), and the equivalent temperature of the calibration load during the on-phase

is Th = (290K)10ENR/10 + 290K. During the off-phase, the radiometer measures signal

generated at the ambient temperature, Tc = 290K = 0.025eV , and during the on-phase the

radiometer measures amplified signal that is equivalent to Th = 950K = 0.82eV .

Figure 3.2.1 shows the response of an ECE channel to the square wave modulated noise

source. The signal from the 28 VDC driver is also shown in Figure 3.2.1. The DC signal mea-

sured by the oscilloscope is due to thermal (Johnson-Nyquist) noise [85]. The thermal noise
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Figure 3.4: Response of an ECE channel (green) to the modulated noise source, and 28V

noise source driver signal (purple).

power includes the noise from the Device Under Test (DUT: the waveguide and heterodyne

radiometer), as well as the components used during calibration (the lock-in amplifier, noise

source, and the oscilloscope itself). To measure the noise temperature of the DUT alone,

TN (the temperature of a resistor necessary to generate the same thermal noise), the noise

temperature of the calibration components must be measured with the radiometer removed

from the circuit, and this is not possible with the equipment used here. The noise temper-

ature measured during the absolute calibration is negligible in comparison to the radiation

temperature measured during the experiment, and it is not included in the analysis of the

ECE in HSX.

During calibration, the gain is determined from the change in noise power, P over the

change in radiometer output voltage Vrad, and is normalized by the IF bandwidth of each

channel, B = δω/2π to be put in terms of noise temperatures. The noise power during
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the on-phase is Ph = GVh = kBTh + kBTN , and the noise power during the off-phase

is Pc = GVc = kBTc + kBTN , where k is Boltzmann’s constant. The power gain of the

radiometer is

G =
dP

dV
=

kBTh − kBTc

Vh − Vc

. (3.2)

The sensitivity in Table 3.2.1 is related to the power gain in Equation 3.2 by S = B/G,

where the sensitivity is in mV/eV. The LFS channels have sensitivities between 2.3 and 4.1

mV/eV, while the HFS channels have lower sensitivities. The sensitivity and integrating

time-constant of the lock-in amplifier (amplifier gain and integration time) can not be held

constant during calibration because of the large difference in sensitivity between ECE chan-

nels. Channels with lower sensitivity require larger amplifier gain, and a longer integration

time is necessary to maintain the stability of the output signal. A diagnostic upgrade to a

24 channel radiometer is suggested as future work, and the sensitivity of the radiometer can

be balanced during that upgrade to improve the accuracy of the absolute calibration.

Table 3.1: The ENR of the noise source interpolated to the RF center frequency of each ECE

channel, and the sensitivity measured during absolute calibration of the radiometer.

ENR S [mV/eV] ENR S [mV/eV]

Ch 1 16.7 2.8 Ch 9 17.3 0.9

Ch 2 16.9 2.3 Ch 10 17.1 3.7

Ch 3 17.2 4.1 Ch 11 16.7 0.7

Ch 4 17.5 2.3 Ch 12 17.4 0.2

Ch 5 17.5 2.4 Ch 13 17.6 0.6

Ch 6 17.4 2.7 Ch 14 17.5 1.3

Ch 7 17.4 3.8 Ch 15 17.4 2.1

Ch 8 17.3 3.4 Ch 16 17.9 0.8
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3.2.2 Modeling the Gain of the Antenna

For a calibration of the complete system, the antenna wave pattern and the losses between

the antenna and the noise source must be included. The power passing collected by the

antenna, and can be cast as an antenna temperature [79] [85]. The antenna temperature,

TA, is the radiation temperature averaged over the antenna pattern (in terms of the aperture

efficiency or effective aperture of the antenna, Ae(θ, φ)),

TA =
1

λ2

∫

4π

Ae(θ, φ, )Tr(θ, φ)dΩ. (3.3)

For an isotropic source that completely fills the antenna, the antenna temperature reduces

to the radiation temperature. This assumption is not satisfied in the core of HSX (r/a <

0.2), and modeling is necessary to correctly determine the radiation temperature from the

ECE diagnostic in this region. The necessary correction to the effective aperture antenna

temperature, and the resulting radiation temperature, are discussed in Section 3.5. The

power carried in the IF signal of each channel is derived in Appendix D and is related to the

measured radiation temperature through the antenna temperature, TA ≈ 1
λ2AeΩTr, as

kBTr =
2πλ2

ΩAe

(GVrad + kBTN) ≈
2πλ2

ΩAe

GVrad. (3.4)

The power gain, G, is known from Section 3.2.1. The horn antenna aperture efficiency,

Ae = ηAhorn, where Ahorn is the aperture area of the pyramidal horn, and η ≈ 0.49 for

the optimal horn antenna [86]. There is a significant change in aperture efficiency due to

incomplete illumination of the antenna that is discussed in Section 3.5 and used in the

analysis of the ECE diagnostic in Section 3.6. The solid angle of the plasma subtended by

the ECE antenna is limited by the aperture area of the horn. The solid angle is

Ω =
Ahorn

(∆zm + dres)
2 , (3.5)
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where ∆zm = 7.5 cm is the distance between the aperture of the horn and the center of

the ellipsoidal mirror, and dres is the linear distance between the center of the ellipsoidal

mirror and the location of the electron cyclotron resonance. The two distances necessary to

calculate the solid angle of the ECE antenna are shown schematically in the block diagram

of the absolute calibration in Figure 3.2.2.

The area of the horn aperture, and the distance from the horn aperture to the center

of the ellipsoidal mirror are constant. The distance from the mirror to the resonance layer

changes as the electron cyclotron resonance moves through the plasma. The calibration

factors measured in Section 3.2.1 and shown in Table 3.2.1 relate the antenna temperature

to the signal measured by the radiometer. Equation 3.4 relates the radiation temperature

of the plasma to the antenna temperature. Together, they yield the absolutely calibrated

radiation temperature.
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Figure 3.5: The block diagram of the absolute calibration and the quantities used to calculate

the solid angle of the ECE antenna.
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3.3 Absorption Calculations

The emission frequency of radiation corresponds to a specific plasma location through

knowledge of the magnetic field strength in HSX and the resonance condition for the 2nd

harmonic of the electron gyrofrequency. The resonance location for each channel is calculated

by propagating a qausi-optical beam from the horn to the mirror and through the plasma,

and then calculating its intersection with the resonant vacuum field of HSX. This cold-plasma

resonance has finite breadth due to the bandwidth of each ECE channel. The warm-plasma

resonance including the bandwidth of each channel, the power-density distribution of the

wave beam, and the finite absorption of each ECE channel is shown in Figure 3.6.

The resonance condition for each electron is dependent upon the the velocity of that

electron due to the relativistic effect on the mass [87]. This mass dependence broadens the

frequency band, and consequently the spatial range, in which electrons emit power. When

a population of suprathermal electrons is present in the plasma, they emit at frequencies to

lower than the cold plasma resonance [74].

The optical depth is the integrated absorption across the resonance, and it is calculated

along the beam axis, τ =
∫

αds, for each channel using the formula for the absorption of

the extraordinary wave at the 2nd harmonic of the cyclotron frequency under perpendicular

observation (formula (28) from reference [88]).

Figure 3.7 shows the absorption shapes that are calculated along the beam propagation

direction and the corresponding optical depth for each ECE channel. The spatial resonance

position of each ECE channel for this calculation is determined by using an absorption

weighted average of the position, and the effective radius and plasma optical depth are

shown versus resonance frequency in Figure 3.8.
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Figure 3.6: Warm-plasma resonance for each ECE channel in the boxport of HSX (horizontal

is the major radial direction).

The absorption is also calculated across the resonance including the width of the ECE

beam in the boxport. The optical depth determined from the 2D absorption is given by τω =

1
δZ

∫ ∫

2αωdRdZ, where δZ is the beam-width at the resonance location. The integration is

over the absorption region for each ECE channel, but the integral is truncated by the width

of the ECE beam.

Quasi-optical beams carry 90% of their power within the beam waist, wz, and the peak

in the ECE beam intensity occurs along the beam-axis with a magnitude twice the total

beam power divided by the area of the beam at the waist, I(0, z) = 2Po

πw2
z
[83]. Consequently,
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Figure 3.7: ECE absorption shapes (left) and optical depth (right) calculated for the standard

ECE configuration using parameters from a modulation experiment with 85 kW of total

launched power along the beam propagation direction.

Figure 3.8: ECE resonance positions (left) and optical depth (right) calculated for the stan-

dard ECE configuration using parameters from a modulation experiment with 85 kW of total

launched power along the ECE beam.
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the 2D absorption calculation encapsulates 90% of the power of the ECE beam, and the 1D

absorption calculation captures the peak intensity along the beam axis [83].

Figure 3.9: Optical depth from the 1D and 2D analytic calculations, and optical depth from

3D ray tracing, which includes refraction, in the real geometry of HSX.

The optical depth from the 1D absorption calculation along the ECE beam-axis, and the

2D absorption calculation in the boxport of HSX are shown in Figure 3.9. The optical depth

calculated in the full 3D magnetic geometry of HSX using the ray tracing code TRAVIS,

which includes refraction and is described in Section 4.2.1, is also shown in Figure 3.9. The

maximum core density of HSX during 1T operation is approximately 35% of the cut-off

density for the extraordinary wave at the 2nd harmonic electron cyclotron frequency, which

is 2× 1019 m-3, and although it is included in the 3D calculation, refraction does not have a

significant effect on the ECE wave propagation.

The 1D calculation over-estimates the optical depth in the core of the plasma, where

the ECE beam-waist is greater than the dimension of the sampled flux-surfaces. All of the

absorption occurs along the beam-axis in the 1D calculation, while the absorption from each

flux-surface within the sampling volume is weighted by the power density of the quasi-optical

beam in the 2D calculation.
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Despite the power density weighting, the 2D analytic calculation over-estimates the solid

angle of the plasma subtended by the ECE antenna, and this contributes to the over-estimate

in the absorption in the core. The Gaussian beam-width of the ECE antenna at the resonance

is sufficient in regions of the plasma where the resonance is larger than the beam width;

however, in the core the plasma sampling volume is smaller than the ECE beam width.

This significantly impacts the radiation temperature measured by the diagnostic within the

core (r/a < 0.2), and an iterative procedure is necessary to calculated the ECE electron

temperature in this region. The iterative calculation is discussed in Section 3.5.

3.4 The Increased Resolution Configuration

The heat pulse propagation experiments presented in Chapter 5 and Chapter 6 require an

electron temperature diagnostic with high spatial and temporal resolution. High temporal

and spatial resolution is also necessary for the absorption measurements presented in Chapter

4. For this reason, the resolution of the ECE diagnostic has been increased by re-arranging

the “back-end” of the ECE radiometer to achieve maximum spatial resolution of the plasma

core for 1T on-axis magnetic field strength. This was achieved at the expense of the edge

resolution of the diagnostic, and for a 1T on-axis magnetic field, all 16 of the ECE channels

are resonant within r/a < 0.5. The digitizers used to record the signal output by the

radiometer have also been changed over the course of this work to take full advantage of the

high temporal resolution offered by the 300 kHz bandwidth of the video amplifiers.

The intermediate frequency and bandwidth of each ECE channel in the standard and

increased resolution configurations is shown in Table 3.2. In addition to shifting the ECE

channels to gather emission from electrons resonating in the plasma core, the IF bandwidth

of nearly all of the IF filters was reduced to 200 MHz.
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Figure 3.10: ECE Absorption shapes (left) and optical depth (right) calculated for the

increased core resolution ECE configuration using parameters from a modulation experiment

with 85 kW of total launched power.

Figure 3.11: ECE resonance positions (left) and optical depth (right) calculated for ECE

configurations using parameters from two matched ECRH modulation experiments with 85

kW of total launched power.

Figure 3.10 shows the absorption shapes and optical depth along the ECE beam-axis for

an ECRH modulation experiment with 85 kW of launched power that was matched to the

experiment used to produce 3.7. Figure 3.10 shows the effective radial locations and optical

depth for both ECE configurations from the two experiments.
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Table 3.2: The standard and increased resolution configurations of the ECE diagnostic.

Standard Configuration Increased Resolution Configuration

fRF [GHz] IF [GHz] B [GHz] fRF [GHz] IF [GHz] B [GHz]

1 50.8 8.3 0.4 52.9 10.4 0.2

2 51.6 9.1 0.4 53.5 11 0.2

3 52.1 9.6 0.2 53.8 11.3 0.2

4 52.9 10.4 0.2 54.1 11.6 0.2

5 53.5 11 0.2 54.4 11.9 0.2

6 54.1 11.6 0.2 54.7 12.2 0.2

7 54.7 12.2 0.4 55.1 12.6 0.2

8 55.4 12.9 0.4 55.4 12.9 0.2

9 56 13.5 0.2 55.7 13.2 0.2

10 56.3 13.8 0.2 56.3 13.8 0.2

11 57 14.5 0.2 57 14.5 0.2

12 57.8 15.3 0.2 57.8 15.3 0.2

13 58.3 15.8 0.2 58.3 15.8 0.2

14 59 16.5 0.4 58.6 16.1 0.2

15 59.8 17.3 0.4 59 16.5 0.4

16 60.8 18.3 0.4 59.8 17.3 0.4
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3.5 The Absolutely Calibrated Radiation Temperature

The absolutely calibrated ECE radiation spectrum is shown in Figure 3.12a, and the

radiation temperature is shown versus plasma effective radius in Figure 3.12b, for a plasma

supported by 66 kW of launched power. The radiation spectrum is symmetric with respect

to the magnetic axis of the plasma at low ECRH power density.

(a) Absolutely Calibrated ECE Spectrum (b) Radiation Temperature: P0 = 66 kW

Figure 3.12: Absolutely calibrated ECE spectrum (a) and the radiation temperature versus

effective radius (b) for an ECRH modulation experiment with 66 kW of launched power.

The essential features of Figure 3.12b are reproduced at higher launched powers in Figure

3.13. The ECE radiation temperature is symmetric for r/a > 0.2; however, there is a short-

fall for r/a < 0.2. As the launched ECRH power increases in HSX, the LFS channels gather

relativistically down-shifted emission, and the spectrum becomes asymmetric. Figure 3.13a

and Figure 3.13b show the radiation temperature versus plasma effective radius for ECRH

modulation experiments with 78 kW and 85 kW of launched power respectively. The LFS
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channels flatten with increasing ECRH power density, and the LFS channels are not repre-

sentative of the electron temperature in HSX at high ECRH power density. Consequently,

they are not used in the analysis of perturbative heat transport experiments in this work.

(a) Radiation Temperature: P0 = 78 kW (b) Radiation Temperature: P0 = 85 kW

Figure 3.13: Radiation temperature versus effective radius for 78 kW (a) and 85 kW (b) of

launched power.

The first-pass emission can be determined analytically in a slab from the emissiv-

ity [79], and a synthetic radiation temperature in terms of the absorption is Tr,ω =
∫

Te(s)α(s)e
−τ(s)ds. The synthetic radiation temperature is compared to the absolutely cali-

brated ECE spectrum from the HFS channels for each of the three launched powers in Figure

3.14. The electron temperature measured through Thomson scattering is also shown for each

case.

The effective radius of each channel in Figure 3.12b, Figure 3.13, and Figure 3.14c use

the 1D asorption model to calculate the plasma effective radius. The location and width of

the emission of each channel changes with plasma parameters and main magnetic field, but

the position calculated using either the 1D or the 2D absorption model are nearly identical.

The full-width at half-max of the absorption calculated from the 1D model is on the order of
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(a) P0 = 66 kW (b) P0 = 78 kW (c) P0 = 85 kW

Figure 3.14: Absolutely calibrated ECE spectrum from the HFS channels is compared to the

synthetic first-pass radiation temperature and the electron temperature measured through

Thomson scattering at three launched powers: (a) 66 kW, (b) 78 kW, and (c) 85 kW.

2-5% of the minor radius, while the full-width at half-max calculated by the 2D absorption

code on the order of 5% of the minor radius.

The absolutely calibrated radiation temperature is significantly larger than that calcu-

lated by the single-pass model outside of r/a > 0.2 indicating high optical depth due to

multi-pass emission; however, there is a shortfall in the core (within r/a < 0.2), where the

measured radiation temperature is small, and the measurement even appears to erroneously

match the first-pass emission model. A reflectivity of approximately 0.9 is necessary to match

Thomson scattering measurements of the blackbody electron temperature for r/a > 0.2, but

a reflectivity of 0 (corresponding to the first-pass model) reproduces the core electron tem-

perature (within r/a < 0.2). The wall reflectivity used in the multi-pass emission model

does not change significantly at microwave frequencies and is expected to be constant for

all of the channels (the reflectivity of the stainless steel vacuum vessel of HSX at 56 GHz

is ρ ≈ 0.998). Additionally, the shortfall decreases with increasing electron temperature.

The results of Figure 3.14 imply a spatially varying reflectivity that is electron temperature

dependent, which is unphysical.
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Figure 3.15: ECE radiation temperature versus effective radius using effective radii and

effective aperture of the antenna calculated from the 2D absorption code.

In Section 3.2.2, the ECE antenna was assumed to be completely illuminated by the

source and this was used to derive the antenna temperature in terms of the ECE radiation

temperature, solid angle subtended by the antenna, and the effective aperture of the antenna.

The absorption shapes from the 2D calculation do not extend across the beam width of the

antenna (wz), and the core channels do not fully illuminate the antenna. The effective

aperture in Equation 3.4 is too large, and it is corrected by using the full-width at half-max

of the absorption, wFWHM , in the vertical direction of the boxport to write,

Ae = ηAhorn
wFWHM

wz

. (3.6)

Equation 3.6 may be implemented by calculating the absorption using the Thomson

scattering electron temperature, or it may be implemented by iteratively calculating the ab-

sorption using the procedure discussed in Section 3.6. The radiation temperature measured

in an ECRH modulation experiment with 85 kW of launched power, using the absorption

calculated from Thomson scattering measurements of the electron temperature and density,
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is shown in Figure 3.15. There is no electron temperature shortfall in the core, and the radia-

tion temperature is approximately equal to the electron temperature measured by Thomson

scattering, implying an effective wall reflectivity of 1 across the minor radius of HSX.

3.6 The Electron Temperature from ECE

An iterative procedure is used to determine the electron temperature from the radiation

temperature on HSX, independent to the Thomson scattering diagnostic. The multi-pass

emission model, discussed in Section 2.6, is implemented by iterating upon the absorption

calculation until the the electron temperature is self-consistent with the measured radiation

temperature. The procedure is diagrammed in Figure 3.16.

Figure 3.16: Flow diagram of the iterative procedure used to calculate the electron temper-

ature from the ECE radiation temperature. In addition to the ECE radiation temperature,

the solver requires |B|, and a plasma density profile.

The iterative solver is initialized by the ECE radiation temperature from the HFS chan-

nels and the density profile from the Abel inverted interferometer density profile, which are

used to calculate a preliminary optical depth. Then Equation 2.10 is used to calculate a trial
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electron temperature from,

α(R,Z) = f(ne, Te, |B|) → τ,

Imodel
r

Ibb
=

1− e−τ

1− ρe−τ
,

Te = Tr
Ibb

Imodel
r

→ ∆Te = |Te − Tmodel
e |. (3.7)

This procedure is iterated until the calculated electron temperature profile and the absorp-

tion calculation are self-consistent with the measured radiation temperature. The electron

temperature is considered self-consistent when the difference between electron temperature

iterations, ∆Te, is less than 5 eV. The HFS radiation temperature is used to minimize the ef-

fect of suprathermal populations and down-shifted emission in the calculation. The iterative

procedure of Equation 3.7 is extended to include the change in effective antenna aperture

with absorption by adding the change in radiation temperature intermediate to calculating

the electron temperature.

Figure 3.17: ECE radiation temperature, with the effective aperture correction from the

iterative procedure, versus effective radius in an ECRH modulation experiments with 85 kW

of total launched power.

In the limit of unity wall reflectivity, ρ = 1 in Equation 3.7, the radiation temperature is

equal to the blackbody electron temperature, and the iterative procedure is used to calculate
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the absorption across the ECE beam width in the 2D helical cut of the boxport of HSX. The

resulting ECE radiation temperature is compared to the electron temperature measured by

Thomson scattering in Figure 3.17. The radiation temperature is equivalent to the blackbody

electron temperature in HSX, and the effective reflectivity is approximately unity.

Figure 3.18: Temporal evolution of the ECE radiation temperature, with the effective aper-

ture correction from the iterative procedure, in an ECRH modulation experiments with 85

kW of total launched power.

Although the temporal evolution of the absorption may also be included in the calcula-

tion, the optical depth is taken constant for the heat transport analysis in this work to avoid

altering the phase between electron temperature perturbations. The temporal evolution of

the electron temperature measured during an ECRH modulation experiment with 85 kW of

total launched power is shown in Figure 3.18.

The radiation temperature measured by the ECE diagnostic, with the effective aperture

correction from the iterative procedure, is shown for three launched powers in Figure 3.19.

The iterative procedure is necessary to use the ECE as an independent electron temperature

diagnostic.
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(a) P0 = 66 kW (b) P0 = 78 kW (c) P0 = 85 kW

Figure 3.19: The radiation temperature using the effective aperture correction from the

iterative procedure is compared to Thomson scattering at three launched powers: 66 kW

(a), 78 kW (b), and 85 kW (c).

3.7 Conclusions from ECE Measurement and Modeling on HSX

The emission of the extraordinary wave at the 2nd harmonic of the electron cyclotron

frequency is used as an electron temperature diagnostic on HSX. The antenna pattern of

the ECE diagnostic has a significant impact on the antenna temperature measured by the

absolutely calibrated 16 channel radiometer, and modeling of the emission sampled by the

diagnostic is necessary to determine the radiation temperature. An iterative procedure is

used to self-consistently determine the electron temperature from the measured radiation

spectrum, and the electron temperature is in good agreement with the electron tempera-

ture measured through Thomson scattering. Relativistically down-shifted emission causes

asymmetry in the ECE radiation temperature across the magnetic-axis at high ECRH power

density in HSX; however, the channels on the high field side of the magnetic axis remain

thermal. The spatial and temporal resolution of the ECE radiometer have been increased

for use in heat pulse propagation experiments, and the ECE channels on the high-field side

of the magnetic-axis are used in the analysis of heat pulse propagation experiments on HSX.
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Chapter 4

ECRH Measurement and Modeling

To increase flexibility in experiments on HSX, a second gyrotron and transmission line

have been installed. The second antenna includes a steerable mirror for off-axis heating, and

the launched power may be modulated for use in heat pulse propagation experiments. The

extraordinary wave at the second harmonic of the electron gyrofrequency or the ordinary

wave at the fundamental resonance are used for plasma start-up and heating on HSX. The

TRAcing VISualized ray tracing code [89] is used to estimate single-pass absorption and to

model multi-pass wave damping in the 3D HSX geometry. These results are compared to

the RAYS code that was used in the design of both antennas. The single-pass absorption of

the ordinary wave at the fundamental resonance is calculated to be as high as 30%, while

measurements of the total absorption indicate that 45% of the launched power is absorbed.

A multi-pass ray tracing model correctly predicts the experimental absorption and indicates

that the launched power is absorbed within the plasma core (r/a≤ 0.2).

4.1 ECRH on HSX

Electron cyclotron resonance heating (ECRH) has become a fundamental component of

heating schemes in fusion experiments [90] [91], and modeling is necessary in the design of

new systems, as well as in the characterization of implemented systems, in experiments with

3D magnetic fields.
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For this work, the propagation and absorption of electron cyclotron waves is modeled

using the TRAcing VISualized (TRAVIS) ray tracing code [89] [92]. At low plasma density,

ne ≤ 1019m-3, the absorption of electron cyclotron waves is less than 50% for the electron

temperatures achieved in HSX, Te ≤ 2.5 keV. The TRAVIS code calculates the absorption

of electron cyclotron waves in plasma, and the code is capable of modeling multiple passes

through the plasma upon reflection from the stainless steel vessel wall of HSX.

A second 200 kW, 28 GHz gyrotron and hybrid transmission line have been installed

and tested on the HSX stellarator. According to the factory specifications, the dominant

gyrotron mode is TE0,2, while other modes account for less than 10% of the power in the

output spectrum. To maximize the microwave power launched into the HSX vacuum vessel

and to avoid arcing during transmission, two hybrid beam lines are used to deliver microwave

power from the gyrotrons to the plasma. Both lines include a mode converter, mirrors and

oversize waveguides. Additionally, the second launcher includes a steerable mirror inside the

vacuum vessel.

The new transmission line on HSX is described in Section 4.2. Single-pass ray tracing

calculations using the TRAVIS code are presented and compared to those from the RAYS

code [93] [94] in Section 4.2.1, and multi-pass absorption calculations are compared to ex-

perimental measurements in Section 4.2.2.

4.2 A Second Transmission Line for ECRH on HSX

Two ECRH antennas are used for plasma start-up and heating in HSX. Each hybrid

transmission line is connected to a 28 GHz Varian Gyrotron (VGA-8050M). The gyrotron

has been rated for 200 kW of output power for a 75 ms pulse length. The hybrid beam

line was designed to avoid internal arcing and to increase its transmission efficiency [95]. A

Vlasov mode converter is used to convert the TE0,2 mode output from the gyrotron into a
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TEM0,0 wave [96]. The Vlasov mode converter converts 83% of the power in the TE0,2 mode

into an elliptic Gaussian beam. The Vlasov mode converter is followed by an ellipsoidal and

a cylindrical focusing mirror that transform the beam shape from elliptical to circular. A

mirror that controls the polarization of the wave also redirects the beam into a 5 m long,

100 mm diameter copper waveguide in which the TE1,1 and TM1,1 modes are excited.

Figure 4.1: The optical path and the main components of the second transmission line on

HSX. (1) Gyrotron output (2) Vlasov mode converter (3) Focusing mirrors (4) Polarizer (5)

Copper waveguide (6) Beam optics matching mirrors (7) Miter bend (8) Steerable launching

mirror.

Two ellipsoidal mirrors match the output from the 100 mm diameter copper waveguide to

the input of the 63 mm diameter oversize aluminum waveguide with two dominant modes on

the HSX side of the transmission line. A miter bend directs the beam into the vacuum vessel

through a quartz window. The internal ECRH antenna includes a steerable ellipsoidal mirror

that focuses the beam to a 4.2 cm diameter spot (e−2 power level) at a distance 30 cm from

the launch mirror. The full divergence of the vacuum beam is 18.6◦. For 1T experiments,

the wave launched into the plasma is in the ordinary mode; however, for 0.5T experiments,
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the polarization of the wave launched into HSX is rotated 90◦ into the extraordinary mode

by replacing the smooth planar mirror used for the ordinary wave with a grooved mirror

[97].

Figure 4.2: As-designed versus as-measured beam power density (right) inverted from ther-

mal imaging of a ceramic target at the aperture of the copper waveguide during an ECRH

pulse (left, Courtesy of Konstantin Likin).

The final alignment of the transmission line was achieved using an infrared camera to

measure the thermal imprint of the beam on ceramic and LCD targets at different locations

along the transmission line. The thermal images were also used to optimize the operational

regime of the gyrotron by reducing the content of spurious modes (non-TE0,2). The power

in the side-lobes at the aperture of the copper waveguide was measured to be less than 20

dB. A thermal image of the circular beam at the aperture of the copper waveguide and its

inversion into beam power density are shown in Figure 4.2. The beam diameter at the e-2

power level is measured to be 65 mm, which is close to the optimal value for efficient coupling

(99%) of the beam into a superposition of the TE1,1 and TM1,1 modes.

The total RF power output from the gyrotron was measured at the input (gyrotron side)

and at the output (HSX side) of the ECRH beam line using a quasi-optical calorimeter
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[95]. The results are shown in Figure 4.3. The transmission efficiency of the beam line was

measured to be 70%, and most of these losses are due to mode conversion and filtering of

gyrotron spurious modes. The gyrotron output power was also optimized versus the main

gyrotron magnet currents.

Figure 4.3: The power measured on the gyrotron side (red open circles) and HSX side (blue

filled squares) of the transmission line. The power was also measured at several gyrotron

magnet currents (black asterisks).

In experiments at fixed launched power the second gyrotron is tuned to the maximum

output power, while in experiments with modulated heating the power is modulated within

the calibrated range of Figure 4.3. For simplicity, this range of operating parameters is

referred to as 50 kW of launched power for the remainder of this work; however, the as-

measured launched power is used in the calculations.

4.2.1 Ray Tracing Calculations and First Results

The axis of the second beam can move from 10 cm above the helical magnetic axis to 18

cm below by tilting the internal mirror of the second antenna. The ray trajectories launched

from the second antenna at an angle of θ = 10◦ with respect to the major radial direction

are shown in Figure 4.4. The absorption profiles calculated for three magnetic field strengths
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at this launch angle are shown in Figure 4.5. Wave refraction is significant in the presence

of a strong density gradient, and ray tracing calculations are necessary to determine the

resonance location in the plasma.

Figure 4.4: A projection of the rays launched from the second antenna into the vertical plane

of the launcher.

Figure 4.5: Absorption profiles and absorbed power for three magnetic field strengths at a

θ = 10◦ launch angle, and a launched power of 50 kW.

The ray tracing codes RAYS and TRAVIS have been used to calculate the ray trajectories

and absorption profiles in HSX. The RAYS code was used in the design of both ECRH
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antennas; however, the TRAVIS package includes additional features that are used on HSX.

TRAVIS is capable of modeling multiple passes through the plasma, the results of which are

reported in this work, and the TRAVIS code also includes a module for Electron Cyclotron

Emission (ECE) studies [92]. The ECE module can be used in the analysis of the ECE

diagnostic on HSX, and this is suggested as future work in Chapter 7. The TRAVIS code

produces almost identical results to the RAYS code when applied to either ECRH antenna

on HSX. In this chapter, the predictions from the TRAVIS code are presented and compared

to experimental measurements.

Figure 4.6: Two projections of rays launched from the second antenna into a high density

plasma. A vertical plane (left) and a horizontal plane (right) are shown.

The first antenna launches the beam along the electron density gradient in the HSX

symmetry plane, and while no deviation of the beam-axis occurs, the beam divergence is

increased by refraction. The second beam is launched toward the plasma from below the

symmetry plane to accommodate the viewing optics of the charge exchange recombination

spectroscopy diagnostic. The asymmetrical density gradient sampled by the second beam

causes the beam axis to deviate away from the plasma axis, especially at moderate to high
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plasma densities. Figure 4.6 shows projections of the ray trajectories launched toward the

magnetic axis from the second antenna at an angle of θ = 15◦ in a plasma with a central

density of 8×1018 m-3.

Figure 4.7: Electron temperature and density (left), and calculated power deposition profiles

(right) at four launching angles for a plasma produced and maintained by 50 kW of ECRH

power launched solely from the second antenna.

A launch angle scan with a 1.00T on-axis magnetic field was performed in plasma pro-

duced and maintained solely by 50 kW of ECRH power from the second antenna. Peaked

stored energies were measured while aiming the beam slightly below the magnetic axis.

Thomson scattering measurements of the plasma electron density and temperature are shown

at left in Figure 4.7. The absorbed power profiles calculated from TRAVIS are shown at

right in Figure 4.7. The axis of the beam launched from the second antenna is refracted

away from the core of HSX in plasma with high densities such as those shown in Figure

4.7, resulting in reduced absorption. The absorbed power density drops quickly outside of

the core due to the low electron temperatures and high electron density gradients produced

solely by ECRH power launched from the second antenna.
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Figure 4.8: Electron temperature (left) and plasma density (inset, left) and calculated power

deposition profile for on-axis heating (right) using both ECRH systems from TRAVIS (solid)

and RAYS (dashed).

The electron temperature and plasma density profile for a plasma supported by both

ECRH systems is shown in Figure 4.8. When 50 kW of microwave power is launched from

the second antenna into a target plasma supported by 50 kW launched from the first antenna,

the stored energy, electron temperature and plasma density profiles are comparable to those

of a plasma supported by 100 kW solely from the first antenna. The calculated absorption

is higher and the absorbed power profile is more peaked with a target plasma where higher

stored energies and electron temperatures are observed. Figure 4.8 shows that RAYS and

TRAVIS calculate the same resonance location and absorption efficiencies that differ by less

than 1%.

The on-axis magnetic field strength, plasma density, and electron temperature were var-

ied about the experimental parameters shown in Figure 4.8, and the calculated first-pass

absorption and its profile are shown in Figure 4.9. To facilitate a comparison between the

absorption shapes at different plasma parameters, the absorbed power profiles are normalized

to launched power.
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In the first row of Figure 4.9 the plasma density and temperature are held constant, and

the on-axis magnetic field is varied from 0.96 T to 1.02 T. During the magnetic field scan,

the first-pass absorption efficiency increases as the resonance moves from the high field side

to the low field side of HSX until the resonant plasma volume becomes large, plasma density

and electron temperature drop and the power density decreases above 1.01T. The absorbed

power profile broadens and decreases in magnitude as the resonance moves away from the

magnetic axis.

In the second row of Figure 4.9, the electron temperature and the magnetic field strength

are held constant, and the plasma density is varied from 1018 m-3 to 1019 m-3. Similarly,

in the third row of Figure 4.9, the plasma density and magnetic field strength are held

constant, and the electron temperature is varied from 100 eV to 2000 eV. The first-pass

absorption efficiency increases with electron temperature and plasma density, as expected

for 1st harmonic ordinary mode [88], until the density approaches the cut-off value. In all

three sets of calculations, the power launched from the first antenna (ECRH1) has slightly

lower first-pass absorption than the power launched from the second antenna (ECRH2),

because the second beam has a longer path through the resonance layer.
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Figure 4.9: Predicted single-pass absorption and its profile as a function of main magnetic

field (a), central plasma density (b) and central electron temperature (c).
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4.2.2 Multipass Ray Tracing Calculations and Comparison to

Measurements

The relatively low plasma density in HSX leads to reduced absorption of the launched

power during the first-pass through the plasma. After its first pass through the plasma,

the beam is reflected from the stainless steel vessel wall and undergoes multiple reflections

before it is absorbed by the plasma. Electron cyclotron waves are strongly damped in the

toroidal direction in HSX and an effective reflection coefficient of 0.9 has been previously

been inferred from absorption measurements [98].

Figure 4.10: The ECRH power monitor signal during ECRH turn-off (left). The absorbed

power, Pabs, is measured from the damping rate of the integrated plasma stored energy, WE

(circles), using Thomson scattering (black) measurements after ECRH turn-off (right).

The absorbed power is determined using the difference in energy balance before and

after ECRH turn-off, Pabs =
dWE

dt
|t−t+ , by measuring the change in the plasma stored energy

over a time-scale that is much shorter than the energy confinement time. The microwave

power, shown at left in Figure 4.10, requires 300 µs to completely turn-off, and this is the

time-scale used for total power absorption measurements on HSX. The change in plasma

stored energy is determined by measuring the change in electron temperature and density
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using a 10-channel Thomson scattering diagnostic and then integrating the profiles. The

experimental absorption efficiency is measured to be 45%, which is higher than the 30% first-

pass absorption calculated by the TRAVIS code. The decay of the energy in the integrated

profiles is shown in Figure 4.10, along with the linear fits that is used to determine the

temporal derivative of the stored energy.

Figure 4.11: A projection of the rays launched from ECRH1 into the vertical plane during

their second pass through the plasma (left) and the absorption profiles calculated for each

pass (right).

The emission from the plasma at the second harmonic of the electron cyclotron frequency

is measured by the 16-channel ECE radiometer on HSX, which is described in detail in

Chapter 3. The energy decay rate of the plasma stored energy, determined by using the ECE

temperature and constant plasma density, is the same as that measured through Thomson

scattering. The total absorbed power is measured to be 39± 4 kW. The characteristic decay

rate of the plasma stored energy is representative of the energy confinement time which is
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inferred from energy balance to be τE =WE/Pabs = 1.5 ± 0.1 ms in the QHS configuration

of HSX.

Figure 4.12: A projection of the rays launched from ECRH2 into the vertical plane during

their second pass through the plasma (left) and the absorption profiles calculated for each

pass (right).

Reflection from the HSX vacuum vessel is modeled using the TRAVIS code and higher

multi-pass absorption is calculated for ECRH1 than for ECRH2. Figure 4.11 shows the

projection of the ray trajectories into the vertical plane after their first reflection from the

vacuum vessel wall for the beam launched from the first antenna. The central chord of the

beam is reflected back through the plasma core. Although the beam divergence of the second

pass through the plasma is larger than the beam divergence of the first pass, the majority

of the absorption occurs in the hot, dense core of HSX resulting in high localization of the

absorption. The beam divergence is large, and the absorbed power density is small after the

first pass through the plasma leading to lower multi-pass absorption outside of the core of

the plasma.
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Table 4.1: Launched and absorbed power from multi-pass ray tracing calculations for ECRH1 and

ECRH2 in the QHS configuration.

Plaunched Pabs Total 1st Pass 2nd Pass 3rd Pass

ECRH1 44 kW 19.2 kW 10.9 kW 6.0 kW 2.2 kW

ECRH2 41 kW 15.2 kW 10.9 kW 3.2 kW 1.2 kW

Combined 85 kW 34.4 kW 21.8 kW 9.2 kW 3.4 kW

Figure 4.12 shows the projection of the ray trajectories from the second antenna into

the vertical plane after their first reflection from the vacuum vessel wall. In addition to

a large beam divergence and resulting low density of absorbed power, the central chord of

the second beam travels away from the hot, dense plasma core. These effects result in the

majority of the absorption coming from the first pass through the plasma. There is very

little absorption outside of the plasma core and the absorbed power from the second antenna

remains localized within r/a ≤0.2. The multi-pass absorption calculations shown in Figures

4.11 and 4.12 are summarized in Table 4.1.

Figure 4.13: ECE traces (left) and power deposition profile measured using the change in

ECE (right) after ECRH turn-off during an ECRH modulation experiment with 85 kW of

launched power.
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The time-traces of the ECE electron temperature during ECRH turn-off are shown at left

in Figure 4.13 for an ECRH modulation experiment with 85 kW of launched power. During

this experiment, a 1.00T on-axis magnetic field was used and a 10% modulation of the power

launched from the second antenna was imposed by changing the gun voltage of the second

gyrotron from 26.0 to 25.4 kV at 500 Hz. The electron temperature response is visible

in the time-traces of the ECE in Figure 4.13. The power launched from both antennas

is turned off simultaneously. The absorbed power profile determined from the change in

electron temperature from ECE with a constant plasma density over a 50 µs window after

ECRH turn-off is shown at right in Figure 4.13. The multi-pass ray tracing calculation that

is also shown in Figure 4.13 indicates that the absorption is localized to the core, which is

consistent with the absorption measurements shown in the same figure.

The single-pass ray tracing calculations of Figure 4.9 were repeated using the multi-pass

ray tracing model in Figure 4.14. The peak in the absorption efficiency of both launchers

does not change between the first-pass model and the multi-pass model. The absorption

peaks at an on-axis magnetic field strength of 1.01 T. In multi-pass ray tracing calculations,

the absorption efficiency of ECRH1 increases by more than 15% over the first-pass model,

while that of ECRH2 increases by less than 10% as the on-axis magnetic field varies between

0.96 ≤ |Bo| ≤ 1.04 T.

The absorption efficiency of ECRH1 peaks near the experimental core plasma density

shown in Figure 4.8. Above this density, the beam divergence is large after the first-pass

through the plasma, and the multi-pass component of the absorption decreases. This is

also true for ECRH2; however, the absorption of ECRH2 is dominated by the first-pass

through the plasma and the decrease in multi-pass absorption is not as significant as it is

for ECRH1. The multi-pass absorption efficiency of ECRH1 and of ECRH2 increase with

increasing temperature, as expected for the ordinary wave at the fundamental resonance,
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and this is similar to the first-pass absorption of each system. Although the magnitude of

the multi-pass absorption profile is larger than that of the first-pass profile, the calculated

shape does not change significantly over either the density or the temperature scan presented

in Figure 4.14.

Figure 4.14: Predicted multi-pass absorption and its profile as a function of main magnetic

field (a), central plasma density (b) and central electron temperature (c).
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The present version of the TRAVIS code does not take into account wave polarization

changes upon wall reflection or wave refraction by density gradients outside of the last closed

magnetic surface, so that only a few passes through the plasma are accurately modeled. Ad-

ditionally, the code is not capable of modeling ports in the vacuum vessel. These effects

would result in lower absorbed power density and smaller multi-pass absorption [92]. Previ-

ous measurements have shown that the toroidal damping length is short [98] and these effects

are expected to be negligible in HSX. The absorption profiles shown for ECRH1 in Figure

4.11, and for ECRH2 in Figure 4.12, should be interpreted as upper limits for the absorption

after three passes through the plasma in HSX. The multi-pass ray tracing calculations show

good agreement with the absorbed power and its profile that are inferred from the change

in stored energy and electron temperature after ECRH turn-off.

4.3 Conclusions from ECRH Measurement and Modeling on HSX

A second gyrotron with a hybrid transmission line has been installed and tested on HSX.

The second antenna includes a steerable mirror for off-axis heating, and the output power of

the second gyrotron can be modulated to facilitate heat pulse propagation experiments. Ray

refraction modifies the propagation and absorption of the beam launched from the second

antenna with the beam-axis deviating strongly from straight propagation at high density.

The TRAVIS code predicts 30% single-pass absorption efficiency of the ordinary wave at the

fundamental resonance frequency in HSX, while the subsequent passes through the plasma

increase the total efficiency up to the measured absorption efficiency of 45%. It has been

shown that the heating from the first launcher is reinforced by multi-pass absorption, while

the heating from the second antenna is less sensitive. Modeling shows that rays launched

from the second antenna do not intersect the hot, dense core of HSX after the first reflection
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from the wall, and the reflected beam also has large divergence and low power density. Multi-

pass ray tracing calculations show good agreement with measurements of the absorbed power

determined at ECRH turn-off, and the absorption is localized in the plasma core of HSX.
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Chapter 5

Power Balance and Heat Pulse Propagation: Experi-

mental and Analytic Techniques

The physics goal of this work is to measure the electron heat flux as a function of tem-

perature gradient in the QHS configuration of HSX using steady state and perturbative

techniques, and to compare these experimental results to gyrokinetic simulations of ETG

and TEM turbulence. This chapter introduces the experimental methods used to determine

the heat pulse and power balance electron thermal diffusivities, as well as the steady-state

heat flux that is compared to gyrokinetic simulations in Chapter 6.

Measurements of the diffusivity are introduced in Section 5.1. The experimental method

used to determine the steady-state heat flux is described in Section 5.1, and the standard

analysis used to determine the power balance electron thermal diffusivity is described in Sec-

tion 5.2. The power balance diffusivity depends on the sources and sinks of electron heating

within the plasma, and the multi-pass absorption model used in Chapter 4 is compared to

the power balance diffusivity from the first-pass model in Section 5.2.1. A Monte Carlo

power balance analysis is discussed in Section 5.2.2, where it is used to check the results of

the standard analysis.

The analysis of heat pulse propagation experiments to determine the incremental, or heat

pulse, electron thermal diffusivity is introduced in Section 5.3. The model used to determine

the diffusivity is introduced in Section 5.3.1, and a Green’s function solution to the cylindrical
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heat equation is used to verify that the amplitude and phase of the perturbation are self-

consistent in Section 5.3.2. The sources of systematic error in the analysis are discussed in

Section 5.3.3. Finally, measurements of the heat pulse diffusivity at multiple modulation

frequencies are discussed in Section 5.3.4, and the results from a heat pulse propagation

experiment in a methane plasma are discussed in Section 5.4.

5.1 Thermal Transport Analysis

Steady state analysis of the power balance thermal diffusivity requires knowledge of

the zero-order sources and sinks, as well as any convective contributions. Commonly the

particle flux, which contributes to convection is unknown, and the power balance thermal

diffusivity is an effective thermal diffusivity that includes the particle flux and other off-

diagonal contributions from the transport matrix [44].

The electron energy evolution equation is

3

2
ne

∂Te

∂t
+ ~∇ · ~qe = PECRH(ρ, t) +

∑

sinks

Qe(ρ, t) = Se(ρ, t), (5.1)

where Se(ρ, t) includes all of the sources and sinks of electron heat. In the core of HSX, there

are no significant electron energy sinks. Previous modeling using the DEGAS code [99] has

shown that the ionization profile is peaked in the edge, and although the energy lost through

neutralization can be significant in the edge, the electron energy lost to ionizing the neutral

gas is not significant within r/a < 0.6 [100]. The radiated power is measured by two AXUV

photodiodes that are used as bolometers [101]. One bolometer views the core of the plasma

and has a narrow solid angle, while the other views the entire plasma cross-section. The

radiated power measured during an ECRH modulation experiment with 85 kW of launched

power is approximately 3 kW, shown in Figure 5.1a. The energy lost through electron-ion

drag is calculated using the measured electron temperature and plasma density profiles, and
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the ion temperature fit used in Section 2.4, from

Pei = −Pie = −νe/ine (Te − Ti) , (5.2)

νe/i =
4√
π

4πneZ
2
i e

4 lnλ

memiv3Tei

,

v2Tei =
2Te

me

+
2Ti

mi

.

Here lnλ is the Coulomb logarithm [102], and there are no other sources of ion heating on

HSX. The power collisionally transferred from the electrons to the ions within r/a < 0.6 is

1.1 kW, while the total power transferred to the ions is 1.4 kW. These electron energy sinks

are small in comparison to the 39 kW of absorbed power that was measured in Section 4.2.2.

The source in Equation 5.1 is approximated by the ECRH absorption profile calculated by

ray tracing.

(a) Radiated power measured by two bolometers. (b) Electron-ion energy exchange.

Figure 5.1: Radiated power (a) and electron-ion energy transfer rate (b) during an ECRH

modulation experiment with 85 kW of launched power.

The power balance and heat pulse thermal diffusivities are determined from the linearized

and flux-surface averaged energy equation (Equation 5.1). After integration, Fourier’s law

of conduction is used to yield both a power balance electron thermal diffusivity, χPB
e , at zero
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order in the heating modulation depth, ε = δP
P
, and a heat pulse thermal diffusivity, χHP

e ,

at first order (as is done in Appendix B),

ε0 : 〈~qe · ∇ρ〉 = 1

V ′

∫ ρ

0

〈Se〉V ′dρ, (5.3)

ε1 : 〈δ~qe · ∇ρ〉 = 1

V ′

∫ ρ

0

[

〈δSe〉 −
3

2
〈ne〉

∂〈δTe〉
∂t

]

V ′dρ, (5.4)

χPB
e = − 〈~qe · ∇ρ〉

〈|∇ρ|2〉〈ne〉∂〈Te〉
∂ρ

and χHP
e = − 〈δ~qe · ∇ρ〉

〈|∇ρ|2〉〈ne〉∂〈δTe〉
∂ρ

.

Here 〈...〉 is the flux-surface average operator, δSe is the modulated part of the electron

heating, V is the flux-surface volume and ′ indicates a derivative with respect to the effective

minor radius. The effective minor radius is defined as the square-root of the enclosed flux

normalized to the total flux within the last closed flux surface, ρ =
√

Ψ
Ψlcfs

.

The heat pulse diffusivity determined from the time-domain analysis in Equation 5.4

is prone to large systematic errors from the uncertainty in the spatial and the temporal

derivative of the temperature perturbation. Consequently, a frequency domain analysis is

introduced in Section 5.3 and used to determine the heat pulse diffusivity in Section 5.3.4.

5.2 Power Balance Analysis

The power balance thermal diffusivity is determined by rearranging Equation 5.3 into

∂〈Te〉
∂ρ

=
−1

V ′〈|∇ρ|2〉〈ne〉χPB
e

∫ ρ′

0

〈Se〉V ′dρ′, (5.5)

numerically integrating, and solving the resulting least squares problem using Thomson

scattering data with χPB
e as the variational parameter. The least squares problem is solved

using the Matlab algorithm for least-squares minimization, “lsqnonlin,” which also outputs

the numerical Jacobian of the solution. The residual in the solution and the Jacobian are used

to estimate the scaled covariance of the problem at each radial position. This procedure is

advantageous because it yields a thermal diffusivity across the plasma minor radius, avoids
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evaluating the temperature gradient, and allows rigorous error analysis by including the

variance in the fitting parameters.

During standard power balance analysis on HSX, the diffusivity in Equation 5.5

is parametrized by a 4th order polynomial within an exponential function, χe(r) =

exp [χ0 + χ1r + χ2r
2 + ...]; however, any analytic function that is not under-constrained may

be used to parametrize the diffusivity. An example of this is provided in Appendix A. In

Appendix A, a Heaviside function on a quadratic background is used to parametrize the

diffusivity, and the power balance analysis is used to test whether the change in electron

temperature with an electron internal transport barrier or a region of stochastic magnetic

field lines is measurable in HSX.

The residuals in the least-squares analysis are the weighted difference between the Thom-

son scattering electron temperature measurement and the fit that results from integrating

the electron temperature gradient given by Equation 5.5. Fits for 〈|∇ρ|〉 and 〈|∇ρ|2〉 from

Reference [13] were made using vacuum magnetic field line following, and these functions

vary slowly across the plasma radius. 〈|∇ρ|〉 and 〈|∇ρ|2〉 are approximately 1.2/a and 1.6/a2

respectively, where a is the plasma minor radius.

5.2.1 First-pass versus Multi-pass Absorption

The source used in Equation 5.3 to determine the steady-state electron heat flux, and in

Equation 5.5 to determine the power balance electron thermal diffusivity, is modeled as the

ECRH absorption profile. In Section 4.2.2, Thomson scattering measurements after ECRH

turn-off were used to measure the total absorbed power, and this measurement was 15%

higher than the first-pass ray tracing calculation. A multi-pass model accurately reproduced

the total absorption after three passes through the plasma, and the spatial extent of the

multi-pass absorption profile matched the shape of the profile measured by the ECE after
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heating turn-off. The difference between the first-pass and multi-pass absorption is significant

in the power balance analysis.

(a) Electron temperature and plasma

density fits.

(b) Heat flux from first-pass and

multi-pass ray tracing.

(c) χPB

e
from a standard analysis.

Figure 5.2: Electron temperature and plasma density profiles measured during an ECRH

modulation experiment with 85 kW of launched power from power balance analysis (a), the

heat flux from the first-pass (blue dashed line) and multi-pass ray tracing model (red solid

line)(b), and the power balance electron thermal diffusivity in each case (c).

The electron temperature and density profiles from Thomson scattering measured during

an ECRH modulation experiment with 85 kW of launched power, and the fitted electron

temperature and plasma density profiles from the least-squares analysis are shown in Figure

5.2a. The first-pass and multi-pass ray tracing model of the electron heat flux are shown in

Figure 5.2b, and there is no significant change in electron temperature fit between the two

cases, as can be seen in the nearly overlaid ne and Te profile fits in Figure 5.2a. The first-pass

absorption is 15% lower than the multi-pass absorption, which leads to a smaller peak in the

first-pass absorption case. Additionally, the first-pass absorption is more narrow than the

multi-pass absorption, and the peak in the first-pass absorption occurs slightly closer to the

magnetic-axis.
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5.2.2 Monte Carlo Error Propagation

The standard analysis described in Section 5.2 includes the statistical uncertainty from

plasma density and electron temperature measured by Thomson scattering and the covari-

ance in the analytic fitting parameters. However, there is also systematic uncertainty from

the form of the fitting function used in the analysis. This is tested by using polynomials of

varying order, and the exponential of polynomials of varying order, to determine whether

the standard analysis is sufficient to calculate the power balance electron thermal diffusivity.

Additionally, a Monte Carlo analysis is used to test the sensitivity of the fitting function to

the experimental uncertainties. In the Monte Carlo analysis, the plasma density and electron

temperature are varied within their uncertainties, and the thermal diffusivity is calculated

for each test profile. A test population of 30 densities and temperatures for each spatial

channel are sufficient to reproduce the experimental mean and variance measured by the

Thomson scattering diagnostic.

Figure 5.3 shows the electron temperature and thermal diffusivity profiles that result

from using polynomials of order 2-7 and their exponentials in the power balance analysis. In

the polynomial fitting case, shown in Figure 5.3a and Figure 5.3b respectively, the 2nd and

3rd order fits do not accurately reproduce the experimental electron temperature. Outside of

r/a > 0.2, both fits are consistently higher than the electron temperature. Within r/a < 0.2,

the 2nd order polynomial under estimates the electron temperature, while the 3rd order

polynomial over estimates the electron temperature. The 7th order polynomial fit to the

thermal diffusivity has large variation, and this causes an innacurate electron temperature

gradient calculation.

In the (radially) exponential fit case, the 7th order fit under estimates the core electron

temperature and does not accurately represent the temperature gradient for r/a < 0.2.
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(a) Polynomial fitting. (b) χPB

e
as a polynomial.

(c) Exponential fitting. (d) χPB

e
as an exponential.

Figure 5.3: Power balance analysis sensitivity to fitting functions. The temperature fit (a,c)

and diffusivity (b,d) from using polynomials of order 2-7 (first row), and the exponential of

those polynomials (second row) in the power balance analysis.

Additionally, the 6th and 7th order fits have large variation that lead to innacurate electron

temperature gradient calculations.

The six fitting functions that remain are polynomials of order 4-6, and exponen-

tial functions of order 3-5. In the region that heat pulse propagation data is available
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(0.2 ≤ r/a ≤ 0.4), the results of these six fitting functions are well-represented by the stan-

dard least-squares power balance analysis. The systematic uncertainty from the form of

the fitting function becomes large for r/a > 0.6. This is because the electron temperature

gradient becomes shallow, and the diffusivity becomes large in this region. The steady-state

power balance analysis is limited to within r/a < 0.6 in this work due to uncertainty in the

experimental heat flux outside of this region, and the standard analysis captures the statis-

tical and systematic uncertainty in the analysis sufficiently well for r/a < 0.6. Consequently,

the standard analysis is used for the power balance electron thermal diffusivity throughout

this work.

(a) Temperature, density and fits. (b) χPB

e
. (c) Gradient scale lengths.

Figure 5.4: Electron temperature and plasma density from the Thomson scattering diagnostic

and the Monte Carlo fits for each (a). The power balance diffusivity from a standard and a

Monte Carlo analysis (b). The electron temperature and density gradient scale lengths from

Monte Carlo analysis (red and blue lines respectively) and finite differences (circles) (c).

The electron temperature and plasma density gradients are calculated during the Monte

Carlo analysis, which is advantageous for generating flux-gradient diagrams (used in Chapter

6) and for comparing power balance results to heat pulse propagation experiments. The

final electron temperature and density profile scale lengths calculated from a Monte Carlo

analysis are shown with the scale lengths calculated from finite-differences in Figure 5.4c. The
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Monte Carlo calculation captures the uncertainty in the core electron temperature gradients,

r/a < 0.3, better than the finite differences, and the scale lengths and gradients are calculated

through Monte Carlo analysis throughout this work.

5.3 Heat Pulse Propagation Analysis

Measurements of the incremental thermal diffusivity require more extensive analysis than

power balance measurements and yield additional information about the heat transport. A

modulated heat source or sink causes the plasma temperature and other parameters to evolve.

In the limit of negligible density perturbations, the incremental electron thermal diffusivity

can be solved for from the propagation of heat pulses through the plasma.

Figure 5.5: FFT spectrum of the ECE radiation temperature (left), and the radial amplitude

of the electron temperature perturbation (right).

There is a strong response in the spectral amplitude of the electron temperature measured

by the ECE to square wave ECRH modulation at 500 Hz. This is evident in the FFT

spectrum of the ECE radiation temperature and is shown in Figure 5.5. Harmonics of the

electron temperature perturbation are in the noise level in Figure 5.5 and are not used in

this work. The amplitude of the perturbation is shown for 4 separate plasma discharges

in Figure 5.5, and the signal-to-noise ratio is greater than 5 for the channels shown. The
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amplitude decays outside of the power deposition region (r/a < 0.2), but there is a non-

monotonic feature that appears above the noise level for r/a > 0.4. This non-monotonic

feature is robust, and also appears in the phase of the perturbation. This behavior was also

observed during heat pulse propagation experiments in the standard configuration of the

ECE radiometer, and is discussed further in Section 5.3.3.

The coherence between the modulated ECRH source and each ECE channel at the ECRH

modulation frequency represents the fraction of power output from each ECE channel that

is driven by the ECRH source. The presence of noise or non-linearities in the response

decreases the coherence between the ECE and the chosen reference. The ECE channels

shown in Figure 5.5 and used in the heat pulse propagation analysis have high coherence

and signal-to-noise ratio greater than 3.

Experimentally, the upper limit of the modulation frequency is the inverse energy con-

finement time, fmodτE < 1 [52]. In the QHS configuration, the energy confinement time was

measured to be 1.5 ms during an ECRH modulation experiment with 85 kW of launched

power described in Section 4.2.2. This corresponds to an upper modulation frequency limit

of 650 Hz for perturbative heat transport experiments with 85 kW of launched power. Above

this frequency, the analysis no longer yields information about thermal transport but pro-

vides information about the power deposition. In the limit of high frequency modulation,

where transport occurs on a much longer time-scale than the time-scale of analysis, the

power deposition profile can be determined from the amplitude of the harmonic temperature

perturbation,

Pabs(r) = −3
2
iωne(r)δTe,ω(r). (5.6)

The amplitude of the temperature perturbations decreases with frequency, so that Equation

5.6 is frequency independent in the absence of heat transport.
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Another way to express the upper limit of the modulation frequency is through the

modulation damping length, λ = (4χe/3ω)
0.5. For the experiment shown in Figures 5.5,

during which a 500 Hz ECRH modulation was used, the diffusivity near the core is of order

1 m2/s and λ =2 cm, which is of the same order as the deposition profile width along

the ECRH heating beam. For absorption measurements, the damping length must be much

smaller than the deposition profile width, requiring high ECRH modulation frequencies. The

equivalent bandwidth of the 50 µs window used for profile measurements in Section 4.2.2 is 20

kHz, corresponding to a damping length of 0.3 cm. This damping length is approximately

5% of the QHS minor radius along the ECE view and is sufficient for absorption profile

measurements outside of the core, r/a > 0.1 in HSX.

5.3.1 The Heat Pulse Diffusivity Model

The Fourier transformed homogeneous cylindrical heat equation,

[

r2
∂2

∂r2
+
1

r

∂

∂r
− 3inω

2χe

r2
]

δTn(r) = 0, (5.7)

is a zero-order Bessel equation for the temperature perturbation δT (r, t) = ΣnδTn(r) exp(inωt−

iϕ). The amplitude and the phase of the perturbation are each related to the thermal diffu-

sivity in Equation 5.7, and the thermal diffusivity can be derived from either the amplitude

decay of the perturbation, δTe, or the phase-delay between the perturbation and the source,

δϕ [29]. The amplitude-decay is calculated from the FFT spectrum of each ECE channel,

and the phase-delay is the cross-phase between each ECE channel and a reference signal at

the modulation frequency, ωmod.

As is shown in Appendix B, ECRH modulation experiments are described by the large

argument limit of Equation 5.7. In this limit, the lowest-order phase of the electron tempera-

ture perturbation increases linearly with radius and varies inversely with thermal diffusivity
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[103], ϕn ≈
(

3nω
4χe

)0.5

r. Thus the incremental thermal diffusivity derived from the phase-

delay of the perturbation is proportional to the inverse of the squared radial derivative of

the phase,

χϕ
e =

3nω

4

(

dϕn

dr

)−2

. (5.8)

In the large argument limit, the lowest order contribution to the amplitude of the pertur-

bation is asymptotic to a cylindrical wave, δTn ∼ expx/
√
2√

2πx
, so that the incremental thermal

diffusivity derived from the logarithmic derivative of the amplitude is

χA
e =

3nω

4

(

d ln δTn

dr
+

1

2r

)−2

. (5.9)

The heat transfer occurs between magnetic flux surfaces in the actual experiment, and (in

flux co-ordinates) the surfaces may be represented as a cylinder. The flux-surface averaged

form of Bessel’s equation is solved in Appendix B not only to take into account the flux

surface averaged geometry of the actual experiment, but also to facilitate comparisons with

the power balance electron thermal diffusivity. The effect of the density profile may also

be included to yield the electron thermal diffusivity from the phase and amplitude of the

perturbation,

χϕ
e =

3nω

4
〈

|∇ρ|2
〉

(

dϕn

dρ

)−2

and χA
e =

3nω

4
〈

|∇ρ|2
〉

(

d ln δTn

dρ
+
1

2

d

dρ
lnneV

′
)−2

.

Here V ′ = dV
dρ

is the radial derivative of the flux surface volume, and in the cylindrical limit

d lnV ′

dρ
reduces to ρ−1,

χϕ
e =

3nω

4
〈

|∇ρ|2
〉

(

dϕn

dρ

)−2

and χA
e =

3nω

4
〈

|∇ρ|2
〉

(

d ln δTn

dρ
+

1

2ρ
+
1

2

d lnne

dρ

)−2

. (5.10)

The expressions for the electron thermal diffusivity from the amplitude decay, χA
e , and from

the phase-delay, χϕ
e , in Equation 5.10 are used in the analysis of heat pulse propagation

experiments on HSX.
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5.3.2 Self-Consistency in the Measurements: a Green’s Function

Solution

A Green’s function solution to the inhomogeneous cylindrical heat equation is used to

calculate the electron thermal diffusivity from the amplitude of the electron temperature

perturbation, and the results are used to calculate a numerical phase that is compared to

the experimental measurement. The numerical solution is also used to check the model used

in Section 5.3.4 and Chapter 6 for self-consistency.

The Green’s function solution for the cylindrical heat equation, Equation 5.7, is [104],

3

2
iωG(r, r′)− χe

r

∂

∂r

(

r
∂

∂r
G(r, r′)

)

=
δ(r − r′)

2πr′
,

where

G(r, r′) =











1
2πχe

[

K0(zr)− K0(za)
I0(za)

I0(zr)
]

I0(zr
′), r > r′

1
2πχe

[

K0(zr
′)− K0(za)

I0(za)
I0(zr

′)
]

I0(zr), 0 < r < r′.
(5.11)

In Equation 5.11 K0 is the zero order McDonalds function, I0 is the zero order modified

Bessel function, z2 = 3iω
2χe

is the complex wave-vector in this equation. The Green’s function

solution to the cylindrical heat equation assumes constant plasma density and electron ther-

mal diffusivity profiles, an instantaneous source located at r = r′, with Neumann boundary

condition on the axis dTω

dr
(0) = 0, and Dirichlet boundary condition at the minor radius

Tω(a) = 0.

The superposition principal yields the solution to the inhomogeneous cylindrical heat

equation in terms of the Green’s function solution in Equation 5.11 [105] [64],

3

2
iωTω − χe

r

∂

∂r

(

r
∂Tω(r)

∂r

)

=
Pω

ne

,

Tω(r)e
iϕω(r) = 2π

∫ r

0

G(r, r′)
Pω(r

′)

ne(r′)
r′dr′. (5.12)
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Here the modulated heating source, Pω, is an absorbed power profile from the multi-pass ray

tracing model. The perturbation amplitude and phase are both calculated from the Green’s

function solution, and this is used to check that the experimental phase is self-consistent

with the measured amplitude.

(a) Linear amplitude decay and fit. (b) Time delay and solution. (c) χHP

e
and χPB

e

Figure 5.6: The electron temperature response to 500 Hz ECRH modulation and a least

squares fit to the amplitude (a). The measured time delay and the calculated time delay

(b). χHP
e that results from a least squares fit to the amplitude, from the Green’s function

solution to the cylindrical heat equation (c).

A least squares solution is used to fit the amplitude data while using χHP
e as the fitting

parameter. The analysis is very similar to the power balance analysis discussed in Section

5.2. The amplitude from an ECRH modulation experiment with 66 kW of launched power,

and the numerical fit resulting from Equation 5.12 are shown in Figure 5.6a.

The numerical solution is independent of the measured phase delay (which is cast as

a time delay using ∆t = −ϕω/(2πωmod)), and the experimental time-delay is shown with

the numerical time-delay in Figure 5.6b. The numerical time delay is consistent with the

measured time delay. Additionally, the resulting heat pulse electron thermal diffusivity,

shown in Figure 5.6c, matches the power balance solution, indicating that the plasma is not

stiff and there is no convective electron heat flux in this experiment within r/a < 0.4. The
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Figure 5.7: A pre-generated square-wave reference signal used in the cross-phase calculation.

measured time delay and amplitude decay are non-monotonic outside of r/a > 0.4, and the

numerical time delays reflect this behavior.

5.3.3 Systematic Uncertainty and its Mitigation in the Analysis

There are two primary sources of error in the phase measurement. The first is aliasing

in the phase from under sampling the ECE diagnostic. The measured time delays between

channels are on the order of 30-40 µs, and heat pulse propagation measurements in the

standard ECE configuration (discussed in Chapter 3) were under-sampled. The increased

resolution configuration of the ECE radiometer is limited by the 300 kHz video bandwidth

of the radiometer; however, the sampling time of the increased resolution configuration is

sufficient to accurately measure the phase during heat pulse propagation experiments.

The second source of systematic uncertainty in the cross-phase is due to noise in the

reference signal. The systematic uncertainty arising from the use of a noisy reference, such

as an ECE channel near the core of the plasma, adds systematic covariance to all of the

measurements that is highly correlated and cannot be removed during post-processing.
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(a) Logarithmic Amplitude. (b) Cross-phase (offset removed).

Figure 5.8: Logarithmic amplitude (a) and cross-phase (b) from an ECRH modulation ex-

periment with 66 kW of launched power.

This covariance leads to higher variation in the phase data. If a pre-generated square-

wave signal is used as a reference, then the phase has significantly less variation, because

the offset is uncorrelated. The pre-generated square-wave signal used as a reference for the

phase measurement is shown in Figure 5.7. The mean phase of the ECE channels used in

the heat pulse analysis is subtracted from the cross-phase to remove the arbitrary offset,

resulting in the reproducible cross-phase that is shown in Figure 5.8b.

The logarithmic amplitude for each plasma discharge in the 66 kW launched power en-

semble is shown in Figure 5.8a. There is variation in the spectral amplitude that is measured

between shots; however, the logarithmic gradient remains reproducible. The difference in

amplitude is due to shot-shot variability in the launched ECRH power. The logarithmic gra-

dient is unmodified by removing the average offset between shots resulting in a reproducible

logarithmic gradient.

Due to the limited number of channels outside of the power deposition zone and inside

the point at which the phase becomes non-monotonic, several identical shots are necessary
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to robustly fit the amplitude and phase. The radial location of each channel changes slightly

on each shot because the main current varies within a small margin between shots. Although

ECE channel 15 has non-monotonic phase, its amplitude is consistent with the amplitude

decay of the other channels, and has been included in the analysis below in Section 5.3.4.

The cross-phase of the ECE electron temperature with an artificial reference signal is

reproducible at high sampling frequency, when a constant offset phase is removed. The

offset has no effect on the derivative of the phase, and removing it does not affect the

measured thermal diffusivity.

(a) Cross-phase. (b) Logarithmic Amplitude.

Figure 5.9: Phase delay (a) and amplitude decay (b) of heat pulses during an ECRH mod-

ulation experiment with 66 kW of launched power (with offsets removed).

In Figure 5.9, linear fits are used to determine the derivative of the phase and the deriva-

tive of the logarithmic amplitude after offset removal. Between 0.20 < r/a < 0.35, the

thermal diffusivity from the phase is χϕ
e = 1.8± 0.4 m2/s, and the thermal diffusivity from

the amplitude is χA
e = 1.6± 0.2 m2/s. The diffusivity from the amplitude shows good agree-

ment with the diffusivity from the phase, and this indicates that 500 Hz is high enough

frequency to estimate the heat pulse diffusivity from either measurement with 66 kW of
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launched power. The resulting heat pulse electron thermal diffusivity is χHP
e = 1.7 ± 0.2

m2/s. These results are discussed further in Chapter 6.

5.3.3.1 Systematic Uncertainty due to Low Optical Depth

During modulation experiments in optically thin plasmas, the electron cyclotron emission

diagnostic observes both temperature and density perturbations as a consequence of the finite

optical depth. For modulation experiments neglecting density perturbations, the minimum

optical depth for observation of temperature modulations accepting a 15% relative error in

δTe/Te is τ > 1.0 for a vacuum vessel wall reflectivity of 0.8 and τ > 3.0 for zero reflectivity

[106].

The maximum allowable density perturbation to keep the systematic error in interpreting

δTr/Tr as δTe/Te below 15% is shown as a function of the optical depth and reflectivity in Fig-

ure 5.10. The requirement for interpreting absolute intensity perturbations as temperature

perturbations is less stringent than the requirement for the relative temperature perturba-

tion, which extends the applicability of heat pulse propagation experiments to lower optical

depths. Density perturbations limit the applicability of the ECE as a diagnostic for elec-

tron temperature perturbations to regions where the density perturbation is approximately

less than 5%. Local density measurements are unavailable on HSX, so the interferometer is

used to estimate the level of density perturbations during modulation experiments. With 85

kW of launched power the observed density perturbation is 1.2% at the ECRH modulation

frequency and 2.3% at the neutral gas puffer frequency.

The measurement of interest in heat pulse propagation experiments is the perturbed

electron temperature, δTe, and the requirement for interpreting the perturbed radiation

temperature,δTre, as the perturbed electron temperature is less stringent than that for in-

terpreting the average radiation temperature as the electron temperature. This is also true
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Figure 5.10: Maximum acceptable density perturbation to keep the systematic error less

than 10% while interpreting δTre/Tre as δTe/Te as a function of optical depth and reflectivity

(assuming 15% δTe/Te).

for interpreting the relative perturbation in radiation temperature, δTre/Tre as a relative

perturbation in electron temperature, δTe/Te. Reference [106] showed that the systematic

error in interpreting δTr,e as δTe was below 15% for an optical depth greater than 0.7 with

a wall reflectivity of 0.8. Accepting a 10% systematic error, this limit drops to 0.3 with a

wall reflectivity of 0.9, and the limit drops to very small optical depths for a wall reflectivity

of ρ = 0.999. The disadvantage of high reflectivity walls is that without a viewing dump,

multi-pass emission generally leads to spatial averaging.

Spatial averaging over the resonance would modify the ECRH absorption in a similar

way that it modifies the ECE measurement, and would lead to a broad power deposition

profile if it were significant. Additionally, a measurement of the absorption profile using

the ECE diagnostic would also be modified by spatial averaging and appear broad. The

absorption profile measured using the ECE during ECRH turn-off is presented in Section

4.2.2. The measured absorption is narrow and agrees with calculations of the multi-pass

absorption, indicating that the spatial averaging effect is not significant in HSX at high
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density. As is shown in Section 5.3.2, Section 5.3.4, and Chapter 6, measurable changes in

the perturbation amplitude and phase between closely spaced ECE channels are observed in

heat pulse propagation experiments on HSX.

For the data shown in this work, the optical depth is greater than 0.3, unless the signal-

to-noise ratio and coherence in the data are high and the low-optical depth channels follow

the same trend as the high-optical depth channels. The more significant limitation on the

range of heat pulse propagation experiments in HSX is the non-monotonic phase feature that

occurs for r/a > 0.35.

5.3.3.2 Non-Monotonic Features in the Amplitude and Phase

Measurements

The amplitude-decay and time-delay (or equivalently the phase delay) in Figure 5.6 is

non-monotonic. The non-monotonic phase feature has also been observed on TJ-II [64]

and on W7-AS [51] during ECRH modulation experiments and has not been completely

explained. An ECRH driven flux of fast trapped particles was invoked to explain the non-

monotonic phase profile on TJ-II, and down-shifted emission from fast particles located in

the ECRH resonance was used to explain the non-monotonic phase profile in W7-AS.

One possibility for the non-monotonic phase profile in HSX is out-gassing from the wall

due to incomplete first-pass absorption of the launched ECRH, seeding cold pulses at the

edge. Another source of cold pulses in HSX is from the neutral gas puffer. To decrease

the possible impact of cold pulses generated by the neutral gas puffer, the frequency of the

fueling puffer was increased from a value close to the ECRH modulation frequency, 650 Hz,

up to 1111 Hz; however, no change in the non-monotonic phase feature was observed during

heat pulse propagation experiments.
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Finally, the non-monotonic phase profile may also be due to the presence of an internal

transport barrier. Experiments on the JET tokamak [68] showed that the propagation of

heat pulses was strongly affected by the presence of an Internal Transport Barrier (ITB).

Heat pulses sourced from either side of the barrier in JET were strongly damped, and the

electron thermal diffusivity was significantly reduced within the ITB layer. Experiments

with two modulated electron heating sources (one inside and one outside of the ITB layer)

showed that the amplitude of the heat wave was strongly damped within the ITB layer, and

that the phase measured on either side of the ITB layer was discontinuous [68]. As discussed

in Section 5.4, it is possible that an electron internal transport barrier exists in the region

of heat pulse propagation experiments, and further studies are proposed in Section 7.2.4.

Simulations of the coupling between plasma density and temperature transport with

ECRH modulation were performed at W7-AS with the coupling of temperature pertur-

bations into the particle flux up to 20% of the thermal diffusivity, D1,2 = 0.2χe. These

simulations determine that the highest coupling coefficient yielded a maximum relative den-

sity perturbation of 1% for this experiment and generated a maximum error of 10% in the

measurement of the thermal diffusivity. The measured perturbation to the line-integrated

electron density from the interferometer measurement was 2% [51].

During heat pulse propagation experiments on HSX, the perturbation to the central chord

of the interferometer at the ECRH modulation frequency was measured to be 1.2%. The

measured perturbation to the central chord of the interferometer is smaller on HSX than

that measured on W7-AS, and a systematic error of 10% in the measurement of the thermal

diffusivity is acceptable for this work.
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5.3.3.3 Damping Terms in the Heat Transport Equation

In the cylindrical heat equation, the terms that are proportional to the perturbed electron

temperature are not accounted for in the analysis of heat pulse propagation experiments [105]

(see Equation B.4 for a general heat equation in a plasma). Damping terms cause χA
e to

under-predict and χϕ
e to over-predict the thermal diffusivity [105]. This effect cancels in the

geometric mean so that the incremental thermal diffusivity is more accurately determined

by χHP
e =

√

χϕ
eχA

e . Some unavoidable terms that contribute to damping in magnetically

confined plasma are inhomogeneities in the thermal diffusivity and density profiles [29], but

other terms, such as electron-ion drag and neutral ionization, can also contribute.

As the modulation frequency increases and the separation in time-scales between damping

and modulation increases, the effect of damping becomes less important and both χA
e and χϕ

e

approach χHP
e . In this limit, either may be used to estimate the electron thermal diffusivity.

This was observed in Section 5.3.2 and Section 5.3.3, where the diffusivity from the amplitude

and from the phase agreed in a plasma supported by 66 kW of launched ECRH power.

Table 5.1: The thermal difusivity from the amplitude, the phase, and the total heat pulse diffusivity

for three launched powers.

P0 χA
e m2/s χϕ

e m
2/s χHP

e m2/s

66 kW 1.6± 0.2 1.8± 0.4 1.7± 0.2

78 kW 1.4± 0.2 2.5± 1.1 1.9± 0.4

85 kW 0.6± 0.1 6.8± 2.6 2.1± 0.4

The heat pulse diffusivity, as well as the diffusivity from the amplitude and phase, are

shown in Table 5.1 for the launched power scan discussed in Chapter 6. The heat pulse

diffusivity does not vary significantly, but the diffusivity from the amplitude and phase are

different in the 78 kW and 85 kW cases. The effective damping time necessary to drive the
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difference observed in the 78 kW case is on the order of 1 ms (using formulas in Reference

[105]). In the 85 kW case, the effective damping time is on the order of 150 µs.

It is unclear what is driving the divergence between the amplitude and the phase mea-

surement. The heat pulse diffusivity measured in both cases is very similar, and in agreement

with the power balance analysis. Multiple frequency measurements are used to investigate

the damping, and the effect of a convective heat flux on the analysis is also dicussed in

Section 5.3.4.

5.3.4 Multi-Frequency Measurements

In general, the electron heat flux contains contributions from conduction and convection.

Convection affects the amplitude decay of the perturbation, but to first order has no effect

on the phase, leading to a decay length that is asymmetric. The decay length is longer in the

direction of convection and shorter in the opposite direction. As the frequency of the per-

turbation increases the decay length of the perturbation decreases, so that the contributions

from conduction and convection can be separated using multiple frequency measurements

[105], if a difference is measured.

Table 5.2: The heat pulse diffusivity determined during a modulation frequency scan with 78 kW

of launched power.

fmod χA
e m2/s χϕ

e m
2/s χHP

e m2/s

200 Hz 0.4± 0.1 5.3± 2.8 1.5± 0.4

500 Hz 1.4± 0.2 2.5± 1.1 1.9± 0.4

1000 Hz 1.9± 0.7 1.1± 0.5 1.5± 0.4

A modulation frequency scan is summarized in Table 5.2. There is not a measurable

difference in the heat pulse thermal diffusivity, and no convective heat transport is measured
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in the range that heat pulse propagation data is available 0.2 ≤ r/a ≤ 0.4 during this ex-

periment. This is consistent with measurements presented in Section 5.3.2 in which the heat

pulse electron thermal diffusivity agreed with the power balance electron thermal diffusivity.

5.4 Heat Pulse Propagation and Low Stiffness with Methane

Peaked electron temperature profiles with core temperatures of up to 2.5 KeV have

been measured in with 100 kW of launched power in the QHS configuration when plasmas

were formed with methane (CH4) fueling. An electron internal transport barrier (eITB)

has been invoked to explain the strong increase in electron temperature in these profiles

[13]. These profiles have a large temperature gradient between 0.10 < r/a < 0.30, and

neoclassical modeling indicates that there is strong shear in the ambipolar radial electric

field in this region. The shear results from rapid transition from edge ion root confinement

to core electron root confinement and is thought to drive strong flow shear, which has been

observed to stabilize trapped electron mode turbulence, and lead to an eITB [4].

Thomson scattering measurements of the electron temperature and density during an

ECRH modulation experiment in methane plasmas supported by 85 kW of launched power

are shown in Figure 5.11a. The absorption profile calculated using the multi-pass ray tracing

model and the power balance electron thermal diffusivity are shown in Figure 5.11b, and

the heat pulse amplitude decay and phase delay are shown in Figure 5.11c and Figure 5.11d

respectively.

The volume average power balance diffusivity in the region between 0.2 ≤ r/a ≤ 0.4

is χPB
e = 1.7 ± 0.2 m2/s, and the heat pulse diffusivity measured in this region is χHP

e =
√

χA
e χ

φ
e = 0.7±0.2 m2/s. The resulting stiffness in the electron heat flux is S = χHP

e /χPB
e =

0.4 ± 0.1, which is indicative of an eITB. These results are consistent with the neoclassical

eITB predicted in [4], and they are also consistent with the ITB studies on JET [68] referenced
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(a) Electron temperature and plasma density. (b) Power balance analysis.

(c) Heat pulse amplitude decay. (d) Heat pulse phase delay.

Figure 5.11: Electron temperature and plasma density (a), the multi-pass power deposition

profile and power balance electron thermal diffusivity (b), the heat pulse amplitude decay

(c), and the heat pulse phase delay (d) from an ECRH modulation experiment in a methane

plasma.

in Section 5.3.3.2. Core radial electric field measurements are necessary to confirm the

existence of an eITB and additional measurements are proposed as future work in Section

7.2.4.
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5.5 Summary

Power balance analysis is used to characterize the steady-state electron heat transport,

and a least squares analysis is used to determine the effective thermal diffusivity of the

electrons in HSX. This quantity is compared to the electron thermal diffusivity determined

from heat pulse propagation experiments to yield the stiffness in the electron heat flux

and the convective heat velocity. The heat pulse diffusivity is inferred using a frequency

domain analysis based on measurements of the amplitude and phase of electron temperature

perturbations from the ECE diagnostic. Low first-pass optical depth can lead to large

systematic errors in heat pulse propagation experiments; however, with high wall reflectivities

the systematic error is small. The effective wall reflectivity to the ECE diagnostic is between

0.9-1, and this sets a condition for the optical depth, τ > 0.3, to keep the systematic error

below 10%. The measured amplitude and phase are reproducible, and the results from several

plasma discharges are combined to increase the spatial resolution of the diagnostic. There

is a non-monotonic feature in the heat pulse propagation that limits the region of analysis;

however, a numerical solution indicates that the amplitude and the phase of the heat pulses

are self-consistent. This analysis also yields a heat pulse diffusivity that is consistent with

the power balance value within r/a ≤ 0.4. This indicates that the transport is diffusive

in this region, it has little to no convective component, and that the stiffness in the core

of the plasma is χHP
e /χPB

e ≈ 1. Multi-frequency heat pulse measurements of the thermal

diffusivity also indicate a lack of convective transport. Peaked electron temperatures of up

to 2.5 keV have been measured in methane plasma, and heat pulse propagation experiments

have measured low stiffness between 0.2 ≤ r/a ≤ 0.4; χHP
e /χPB

e = 0.4 ± 0.1, where the

heat pulses are strongly damped. A neoclassical electron internal transport barrier has been
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previously predicted to exist in the core of the plasma [5], and the measured stiffness and

strong damping of heat pulses are consistent with a transport barrier [68].
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Chapter 6

Stiffness Measurements and Comparisons to Gyroki-

netic Simulations

It has been observed in tokamaks that temperature profiles are resilient to changes in

the heating deposition profile, i.e. large changes in the electron heat flux lead to only

small changes in the electron temperature gradient [48]. This effect has not been observed

in conventional stellarators. In W7-AS, it has been shown that the electron temperature

profile can vary over a broad range with different heating methods, deposition profiles and

confinement regimes [107]. The ratio of the electron thermal diffusivity from transient heat

transport experiments to the steady-state diffusivity from power balance is a measure of the

stiffness in the electron heat flux. In tokamaks with profile resiliency, the thermal diffusivity

obtained from heat pulse propagation is typically much larger than the thermal diffusivity

from steady state power balance. In contrast, experiments in LHD [58], W7-AS [108] and

TJ-II [64] have shown that heat pulse and power balance diffusivities are comparable.

Electron heat transport experiments in tokamaks have been compared to gyrokinetic

calculations [47]. This chapter reports the first comparisons between non-linear gyrokinetic

calculations and experimental measurements in a stellarator. The saturated electron heat

flux driven by the Trapped Electron Mode (TEM) and the Electron Temperature Gradient

(ETG) mode are compared to the experimental electron heat flux.
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These experiments were performed in the Helically Symmetric eXperiment [30] (HSX),

which has a direction of symmetry in the magnetic field strength along the helical direction.

Previous experimental results have shown that the neoclassical transport is reduced so that

the electron heat diffusivity is dominated by anomalous transport [3]. The low neoclassical

transport in HSX allows for a study of profile resiliency and stiffness in the electron heat

flux in an optimized stellarator.

Experimental measurements of the electron heat flux are introduced in Section 6.1, and

linear and non-linear gyrokinetic calculations are compared to these measurements in Section

6.2.

6.1 Electron Heat Transport Measurements

The steady state thermal diffusivity is the ratio of the normalized heat flux with respect to

temperature gradient, χPB
e = −qe/(ne∇Te), while the transient diffusivity is a measure of the

local gradient of the heat flux with respect to temperature gradient, χHP
e = −∂qe/(ne∂∇Te)

[109]. The stiffness in the electron heat flux is parametrized by the logarithmic gradient of the

heat flux with respect to the temperature gradient. The stiffness is experimentally quantified

by the ratio of thermal diffusivities measured using transient and steady-state techniques,

∂(ln qe)/∂(ln∇Te) = χHP
e /χPB

e [27]. Steady-state and transient transport analysis techniques

are used concurrently to determine the experimental stiffness in the electron heat flux and

to investigate anomalous heat transport in HSX.

To measure the stiffness, two sets of Electron Cyclotron Resonance Heating (ECRH) ex-

periments have been conducted. In the first experiment, the ECRH resonance location was

moved across the plasma minor radius to change the temperature gradient in the region be-

tween 0.2 ≤ r/a ≤ 0.4. In the second experiment, the launched ECRH power was modulated
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with on-axis heating to facilitate measurements of the transient electron thermal diffusivity

in the same region. The plasma density profiles were matched between both experiments.

Figure 6.1 shows the electron temperature and plasma density measured by a 10 spatial

channel Thomson scattering diagnostic during the ECRH resonance scan. The resonance

location was moved from r/a = 0.3 on the inboard side of the plasma to r/a = 0.2 on

the outboard side of the plasma by changing the on-axis magnetic field from |Bo| = 0.96T

to |Bo| = 1.02T. The core electron temperature measured by Thomson scattering varied

between 400 and 1200 eV. Three of the electron temperature profiles are shown in color for

easy comparison with the absorbed power profiles shown in Figure 6.2.
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Figure 6.1: Eight Thomson scattering profiles of the electron temperature and plasma density

measured during an ECRH resonance scan (gray). Heating on-axis (r/a ≈ 0, Black), off-axis

(r/a ≈ 0.3, brown), and an intermediate point (r/a ≈ 0.1, red).

Two ECRH antennas are used on HSX. Measurements with on-axis heating, discussed

in Chapter 4, show that the absorption of the ordinary wave is localized within r/a ≤ 0.2

for both ECRH antennas. The profile shape and total absorption are reproduced by a

multi-pass ray tracing model using the TRAVIS code [89] in Section 4.2.2. The absorbed

power profile for each of the cases in Figure 6.1 are shown in Figure 6.2. As the cyclotron
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resonance is moved away from the magnetic axis, the electron temperature becomes less

peaked and flattens inside the radius of the peak absorption. The temperature gradient

within 0.2 ≤ r/a ≤ 0.4 decreases with off-axis heating, while the volume average electron

temperature across this region varies by less than 100 eV.
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Figure 6.2: Multi-pass ray tracing calculations of the absorbed power profile from an ECRH

resonance scan (gray) shown in Figure 6.1. Heating on-axis (r/a ≈ 0, black), off-axis (r/a ≈

0.3, brown), and an intermediate point (r/a ≈ 0.1, red).

There are no significant electron energy sinks in the region of the plasma considered

during these experiments. The total radiated power is less than 5 kW and is localized to the

outer half-radius, and the collisional coupling to ions is small, because the plasma density in

HSX is limited by the cut-off density of the ordinary wave, 1 × 1019m-3. Consequently, the

experimental heat flux is estimated by the integrated energy deposition during the ECRH.

During the ECRH modulation experiment, the power launched from the first antenna

was scanned from 25 to 50 kW, while the power launched from the second antenna was

held at 50 kW and modulated by 10%. This range of powers correspond to the power

scan introduced in Section 3.5. The power deposition profile shape did not change during

this second experiment, but the total absorbed power increased with the launched ECRH
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power. The volume average heat flux over the region that heat pulse propagation data is

available, 0.2 ≤ r/a ≤ 0.4 (the foot of the steep electron temperature gradient region), is

plotted as a function of electron temperature gradient scale length, a/LTe = −a∇Te/Te,

for both experiments in Figure 6.3. The heat flux scales linearly with temperature gradient

between 1.8 ≤ a/LTe ≤ 3, and the average density gradient scale length was held constant

at a/Lne = 2.5± 0.1 in both experiments.

Figure 6.3: Volume average normalized heat flux versus temperature gradient scale length

between 0.2 ≤ r/a ≤ 0.4 in ECRH power and resonance location scans.

The power balance thermal diffusivity is determined through a non-linear least-squares

fit to the electron temperature measured by Thomson scattering, by using χPB
e as the fitting

parameter. The power balance analysis is described in Section 5.2. The electron temperature

and density profiles measured by Thomson scattering for on-axis heating during the ECRH

modulation experiment are shown in Figure 6.4, along with the fits that result from the

power balance analysis. The core electron temperature increases from 600 eV to 1200 eV as

the absorbed power is increased from 19 kW to 34 kW.
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Figure 6.4: Electron temperature and density profiles measured by Thomson scattering for

on-axis heating at three absorbed powers: 19 kW (blue), 29 kW (magenta), and 34 kW

(red). The lines are the fits that result from power balance analysis.

The χPB
e profiles corresponding to the fits of Figure 6.4 are shown in Figure 6.5. The

power balance thermal diffusivities between 0.2 ≤ r/a ≤ 0.4 are similar and the volume

average diffusivity across this region is tabulated versus absorbed power in Table 6.1. The

uncertainty in the power balance diffusivity is determined through a Monte Carlo calculation

by varying the plasma density and temperature within their experimental uncertainties, and

varying the analytic form of the trial diffusivity. Within r/a ≤ 0.4, the thermal diffusivity

profile is almost the same, which indicates that of electron heat transport is not stiff.

Heat pulse propagation measurements of the transient electron thermal diffusivity require

a high resolution electron temperature diagnostic. The temporal evolution of the electron

temperature is measured using an absolutely calibrated Electron Cyclotron Emission (ECE)

diagnostic that is described in Chapter 3. Although the Low Field Side (LFS) and the

High Field Side (HFS) channels are symmetric across the plasma, and in good agreement

with Thomson scattering measurements of the electron temperature at moderate heating

powers, the LFS channels sample relativistically down-shifted emission from the core in the
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Figure 6.5: Electron thermal diffusivity from a power balance analysis for on-axis heating at

three absorbed powers: 19 kW (blue), 29 kW (magenta), and 34 kW (red).

hot plasma analyzed in this work. Consequently, only the HFS channels are used in heat

pulse propagation experiments.

The temporal response of the electron temperature to modulated heating carries heat

transport information at the modulation frequency in the amplitude, Tω, and phase, ϕω, be-

tween radially separated channels of the ECE radiometer. The heat pulse thermal diffusivity

is determined using methods that are described in detail in Section 5.3 from the logarithmic

amplitude and the phase in cylindrical geometry through

χHP
e = −3

4

ωmod
〈

|∇ρ|2
〉

[

dϕω

dρ

(

d lnTω

dρ
+

1

2ρ
+
1

2

d lnne

dρ

)]−1

. (6.1)

Equation 6.1 is the cylindrical model from [105] with the radial coordinate replaced by the

effective radius and the heat pulse diffusivity replaced by the effective heat pulse diffusiv-

ity, 〈|∇ρ|2 χHP
e 〉 ≈ χHP

e 〈|∇ρ|2〉. Equation 6.1 is derived in Appendix B, and is discussed

in Section 5.3.1. The logarithmic amplitude and phase of the electron temperature per-

turbation are determined from Fourier analysis of the pulse propagation at the modulation

frequency, ωmod, and the background density gradient scale length from Thomson scattering

measurements of the electron density profile.
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The phase of the radially separated ECE channels is measured with respect to the ECRH

modulation reference signal. The ECE channels used to determine the amplitude and phase

of the heat wave have high coherence with the reference. The ECE data is shown in Figure

6.6. The inner limit for the analysis region is set by the radial extent of the modulated source

calculated from ray tracing, r/a ≥ 0.2 (Chapter 4), and a requirement on the systematic

error from low optical depth, τ > 0.3, and a non-monotonic feature in the phase, set the

outer limit for the analysis region, r/a ≤ 0.4 (Chapter 5).

Multiple shots with similar parameters are combined to increase the spatial resolution

of heat pulse propagation experiments; however, the perturbation amplitude and phase are

offset by a small amount between shots. The heat pulse diffusivity is dependent on the radial

derivative of these quantities, which is independent of the offset. The amplitude and phase

used in the analysis and shown in Figure 6.6 have the offset removed.
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Figure 6.6: Phase delay (left column) and logarithmic amplitude (right column) at the ECRH

modulation frequency for three heat pulse propagation experiments with different absorbed

powers: 19 kW (1st row), 29 kW (2nd row), and 34 kW (3rd row).
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The derivative of the fits in Figure 6.6 are used in Equation 6.1 to determine the heat

pulse diffusivities shown in Table 6.1. The stiffness is approximately unity for all three

powers.

Table 6.1: Power-balance and heat-pulse diffusivities, and the resulting stiffness, are tabulated

versus absorbed power.

Pabs χPB
e χHP

e χHP
e /χPB

e

19 kW 2.3± 0.1 1.7± 0.2 0.7± 0.1

29 kW 2.1± 0.1 1.9± 0.4 0.9± 0.2

34 kW 1.9± 0.1 2.1± 0.4 1.1± 0.2

6.2 Comparison to Gyrokinetic Calculations

HSX is optimized for neoclassical transport, but HSX is not optimized for anomalous

transport driven by turbulent microinstabilities. The non-planar magnetic axis and high

effective transform of HSX lead to large normal curvature and short connection lengths

in comparison to other stellarators like LHD [110]. The regions of bad normal curvature

and particle trapping are highly correlated, and previous linear gyrokinetic modeling has

indicated that the Trapped Electron Mode (TEM) is highly localized in the bad curvature

region of HSX [5]. Combined with temperature or density gradients, there is strong drive

for curvature driven modes such as the TEM [8].

The gyrokinetic calculations presented in this section were performed by Benjamin Faber,

for comparison with this experimental work. Figure 6.7 shows the normal curvature and

magnetic field strength in normalized units as a function of helical angle for the most and

least unstable flux tubes in HSX (each flux tube samples a full field period of the device). The

most unstable flux tube samples the region of low magnetic field strength at the outboard
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mid-plane of HSX. The least unstable flux tube samples the region of low magnetic field

strength on the inboard side of the device. In both flux tubes, the regions of bad normal

curvature and particle trapping overlap significantly.
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Figure 6.7: Normal curvature and magnetic field strength (normalized units) for the most

(1, left) and least (2, right) unstable flux-tubes in HSX as a function of helical angle. A plan

view of the magnetic field strength (high field in red, low field in blue) at the half-radius is

also shown.

The Gyrokinetic Electromagnetic Numerical Experiment (GENE) [111] is used to model

micro-instabilities in HSX. GENE solves the Vlasov-Maxwell system of equations for the

change in the perturbed distribution function due to gyro-radius scale instabilities. Simu-

lations of micro-instabilities on HSX are collisionless, electrostatic (β ≪ 1) calculations in

the three-dimensional flux-tube geometry calculated by the GIST code [112]. The TEM is

simulated using kinetic electrons and ions, while the Electron Temperature Gradient (ETG)

mode is simulated using kinetic electrons and adiabatic ions.

Linear gyrokinetic calculations at TEM and ETG scales indicate that the TEM is linearly

unstable for all accessible parameters in HSX. For a density gradient scale length of a/Lne =

1.5 and the experimental temperature gradients, the ETG mode is unstable. At the higher

density gradient scale length, a/Lne = 2.5, the TEM is only weakly dependent on the
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Figure 6.8: Linear growth rates of the TEM and the ETG mode versus normalized wave

number in the most unstable flux tube at low (left) and high (right) density gradient scale

length.

temperature gradient, and is primarily driven by the density gradient. In this case, the

ETG mode is stabilized by the increased density gradient and a linear critical gradient exists

between 0.4 ≤ ηe,c ≤ 0.8, where ηe = Lne/LTe. HSX has very low magnetic shear, and this

calculation is consistent with previous estimates of the critical gradient for ETG modes in a

shearless slab, ηe,c = 2/3 [38].
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Figure 6.9: Experimental density (black) and temperature gradients at three launched pow-

ers: 19 kW (blue), 29 kW (purple), 34 kW (red). The growth rate of the TEM and ETG

modes at the maximum quasi-linear heat flux for a/Lne = 1.5 (middle), and a/Lne = 2.5

(right).
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At left in Figure 6.9 are the experimental temperature and density gradient scale lengths

for the three heat pulse propagation experiments described in Section 6.1. The temperature is

peaked in the core, and the temperature gradient scale length increases with heating power.

From quasi-linear estimates, the ETG mode is expected to drive significant transport in

nonlinear simulations when the ratio of the ETG to TEM growth rate in linear simulations

is comparable to the separation in scales between the modes. This is true in the low-

density gradient case (a/Lne = 1.5), but this is not true in the high-density gradient case

(a/Lne = 2.5). The growth rates of the TEM and ETG modes at the maximum in the quasi-

linear heat flux for the two density gradients are shown in Figure 6.9 versus normalized

temperature gradient. In the low-density gradient case, the growth rate of the ETG mode is

the square-root of the ion to electron mass ratio larger than the TEM growth rate. This case

is representative of the inner 20% of the HSX minor radius, where the ETG mode may be

important, and the simulated density gradient is comparable to experiment; however, this

is not true at the foot of the steep electron temperature gradient region where the average

density gradient scale length is a/Lne = 2.5, and the TEM is the dominant microinstability.

The high density gradient scale length case is representative of the experimental parameters

in the region that heat pulse propagation data is available.

The saturated heat flux driven by the TEM is significantly higher than the saturated

heat flux driven by the ETG mode in non-linear simulations of the most unstable flux tube

of HSX. At left in Figure 6.10, the electron heat flux normalized by the gyro-Bohm heat flux

in hybrid units, QGB
e = neTecs(ρs/a)

2, is shown for the most and least unstable flux tubes in

HSX. At right in Figure 6.10, the saturated electron heat flux driven by the ETG mode is

shown in electron units, QGB
e = neTece(ρe/a)

2. To change the heat flux driven by the ETG

mode into hybrid units, the ETG result should be divided by the square root of the mass
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Figure 6.10: Non-linear simulations of the electron heat flux driven by the TEM in two flux

tubes at two temperature gradients (left), and non-linear simulations of the electron heat

flux driven by the ETG mode in the most unstable flux tube (right).

ratio. This results in significantly smaller heat flux from the ETG mode than is calculated

for the TEM.

The saturated heat fluxes are compared to the experimental heat flux normalized by the

gyro-Bohm heat flux (hybrid units) in Figure 6.11. In Figure 6.11, the experimental heat

flux (from both the resonance and power scan) is shown in black. Although the volume

average electron temperature changed by less than 100 eV in the region considered, the

strong temperature scaling of the gyro-Bohm heat flux (QGB
e ∝ T

5/2
e ) alters the scaling

of the experimental heat flux between Figure 6.3 and Figure 6.11. The non-linear ETG

calculation drives a very small level of transport, but it does reproduce the critical gradient

that was predicted by the linear model. The saturated heat flux driven by the TEM in both

flux tubes is comparable to the experimental level.

6.3 Conclusions

The first comparisons of non-linear gyrokinetic calculations and experimental heat flux

measurements are presented in the quasihelically symmetric experiment HSX. The amplitude
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Figure 6.11: The heat flux driven by the ETG mode (scaled to hybrid units in purple) in the

most unstable flux tube, and the heat flux driven by the TEM in the most (red) and least

(blue) unstable flux tube are compared to the experimental heat flux in HSX (black).

and phase of the perturbation through the foot of these steep electron temperature gradient

region of the plasma are used to determine a transient electron thermal diffusivity and it

is equal to the steady-state diffusivity. The low stiffness between 0.2 ≤ r/a ≤ 0.4 agrees

with the linear scaling of the steady-state heat flux with temperature gradient in this region.

These experimental results have been compared to gyrokinetic calculations (performed by

Benjamin Faber for the plasma parameters from this work) using the GENE code with two

kinetic species. Linear calculations demonstrate that the Trapped Electron Mode (TEM)

is the dominant long-wavelength microturbulence instability across most of the HSX minor

radius, and that the TEM is primarily driven by the density gradient. The saturated heat flux

driven by the TEM is comparable to the experimental heat flux. Although linear simulations

show that the Electron Temperature Gradient (ETG) mode may be experimentally relevant

within r/a ≤ 0.2, the saturated heat flux driven by the ETG mode in non-linear simulations

is not experimentally relevant outside of this region.
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Chapter 7

Summary and Suggestions for Future Work

7.1 Summary

It has been observed in tokamaks that temperature profiles are resilient to changes in

heating, and that this effect has not been observed in conventional stellarators. Electron

temperature profile resiliency in tokamaks is attributed to anomalous transport driven by

turbulent micro-instabilities, and the resulting stiffness in the electron heat flux is mea-

sured using a combination of steady-state and perturbative heat transport experiments. The

measured stiffness has been compared to gyrokinetic calculations in tokamaks, but not in

stellarators. In this dissertation, stiffness measurements have been presented in the quasihe-

lically symmetric configuration of the Helically Symmetric eXperiment (HSX), in which the

neoclassical transport is comparable to that in a tokamak and turbulent transport dominates

throughout the plasma.

To facilitate heat pulse propagation experiments, a second gyrotron with a hybrid trans-

mission line has been installed and tested on HSX. The second antenna includes a steerable

mirror for off-axis heating, and the output power of the second gyrotron can be modulated.

The ray tracing code TRAVIS is used to model the single- and multi-pass absorption of

microwave power in the real three-dimensional geometry of the device. Ray refraction mod-

ifies the propagation and absorption of the beam launched from the second antenna with

the beam-axis deviating strongly from straight propagation at high density. The TRAVIS
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code predicts 30% single-pass absorption efficiency of the ordinary wave at the fundamental

resonance frequency in HSX, while the subsequent passes through the plasma (up to 3) in-

crease the total efficiency up to the measured absorption efficiency of 45%. Multi-pass ray

tracing calculations show good agreement with experimental measurements of the absorbed

power determined by ECRH turn-off, and the absorption is localized in the plasma core of

HSX. It has been shown that the heating from the first launcher is reinforced by multi-pass

absorption, while the heating from the second antenna is less sensitive. Modeling shows that

rays launched from the second antenna intersect the hot, dense core of HSX during their

first pass through the plasma; however, on subsequent passes through the plasma, after their

first reflection from the vessel wall, the rays do not intersect the plasma core. Additionally,

after the first reflection from the wall the reflected beam has large divergence and low power

density.

An absolutely calibrated 16 channel ECE radiometer is used to measure the electron tem-

perature and its response to modulated heating in HSX plasmas. The radiation temperature

is in good agreement with the blackbody electron temperature measured through Thomson

scattering, and it is significantly larger than the first pass radiation temperature calculated

using an analytic model, implying an effective wall reflectivity close to 1. The antenna

pattern of the ECE diagnostic has a significant impact on the measured radiation temper-

ature, and modeling of the emission sampled by the diagnostic is necessary to determine

the radiation temperature. An iterative procedure is used to self-consistently determine the

electron temperature from the measured radiation spectrum. Relativistically down shifted

emission causes asymmetry in the ECE radiation temperature across the magnetic-axis at

high ECRH power density in HSX; however, the channels on the high field side of the mag-

netic axis remain thermal. The spatial and temporal resolution of the ECE radiometer have

been increased for use in heat pulse propagation experiments, and the ECE channels that are
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on the high field side of the magnetic-axis are used in the analysis of heat pulse propagation

experiments on HSX.

The electron temperature perturbation from modulated ECRH propagates through the

foot of the steep electron temperature gradient region of the plasma, 0.2 ≤ r/a ≤ 0.4,

and measurements of the amplitude and phase of the perturbation are used to determine

a transient electron thermal diffusivity that it is equal to the steady-state diffusivity. The

low stiffness between 0.2 ≤ r/a ≤ 0.4 agrees with the linear scaling of the steady-state

heat flux with temperature gradient in this region. These experimental results have been

compared to gyrokinetic calculations using the GENE code with two kinetic species. Linear

calculations demonstrate that the Trapped Electron Mode (TEM) is the dominant long-

wavelength microturbulence instability across most of the HSX minor radius, and the TEM is

primarily driven by the density gradient. Although linear simulations show that the Electron

Temperature Gradient (ETG) mode may be experimentally relevant within r/a ≤ 0.2, the

saturated heat flux driven by the ETG mode in non-linear simulations is not experimentally

relevant outside of this region. The measured heat flux is comparable to the saturated heat

flux driven by TEM in non-linear calculations.

7.2 Suggestions for Future Work

Over the course of this research, several interesting phenomena have been observed that

were not directly related to this dissertation. Additionally, there are several avenues for

continuing and expanding upon this research. Turbulence optimization studies in multiple

magnetic configurations are proposed, and three diagnostics are suggested for use in this

project in Section 7.2.1. Kinetic modeling of the ECRH power deposition and the neoclassical

transport of high energy trapped electrons is proposed in Section 7.2.2. This modeling

can be compared to absorbed power profile measurements from ECRH experiments with
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high frequency power modulation. Measuring the change in distribution function due to

ECRH at low plasma density through an integrated data analysis is separately proposed in

Section 7.2.3. Finally, heat pulse propagation measurements in methane plasma indicate

very low stiffness, and core radial electric field measurements are necessary to investigate

the existence of a neoclassical electron Internal Transport Barrier (eITB). An eITB has been

predicted to form in HSX through core electron root confinement [13]. Further heat pulse

propagation measurements and stiffness studies in methane plasma, and comparisons to core

radial electric field measurements are proposed in Section 7.2.4.

All of the work proposed in this section incorporates the ECE diagnostic, and to maintain

flexibility for future experiments a diagnostic upgrade is suggested. The increased resolution

configuration of the ECE radiometer, discussed in Section 3.4, and the standard configuration

of the ECE radiometer, discussed in Section 3.1, can be combined to form a 24-channel

radiometer. The 24 channel diagnostic can be used for core heat pulse propagation and

correlated ECE studies, as well as edge distribution function modeling. One channel with

a tunable IF filter can be used as a correlation ECE diagnostic by varying the overlap

between the other 23 channels. This configuration also allows 23 channels to operate as a

time-resolved and electron temperature diagnostic with high spatial resolution.

7.2.1 Turbulence Measurements and Stellarator Optimization

There is strong interest in understanding turbulence in stellarators [110] [113] and turbu-

lence optimization in neoclassically optimized stellarators [114] [115] [116]. There is a lack

of turbulence diagnostics on the HSX stellarator, and a turbulence diagnostic is necessary

to participate in turbulence optimization studies. The viability of three core turbulence

diagnostics should be investigated on HSX: a radial correlation reflectometer [117] to mea-

sure the radial correlation length and density fluctuation level driven by turbulence [118]
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(and possibly the wave number spectrum of the turbulence [119]), a Doppler reflectometer

to measure the wave number spectrum of the turbulence [120], and a correlation electron

cyclotron emission radiometer to measure the radial correlation length and temperature fluc-

tuation level of the turbulence [121]. One or more of these diagnostics should be implemented

to measure turbulent quantities that can be directly compared to the result of non-linear

gyrokinetic calculations. These comparisons are necessary to develop proxy functions for

stellarator optimization [114].

7.2.2 Modeling the Kinetic Relaxation of the Distribution Func-

tion at High ECRH Power Density

Bursty behavior is observed in the electron cyclotron emission at high ECRH power den-

sity in the core, and this phenomenon is also measured at the half-radius. This meaurement

was introduced in Section 2.4 and presented in Figure 2.5 (reproduced in Figure 7.1).

(a) Low P/n: 44 kW, 4.3×1012cm-3 (b) High P/n: 96 kW, 2×1012cm-3

Figure 7.1: Edge (blue), half-radius (green), and core (red) ECE radiation temperature for

two ECRH power densities.
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This bursty behavior was also observed on the W7-AS stellarator in plasma with high

ECRH power density. In the W7-AS experiment, the measurement was attributed to local

degradation of the ECRH power absorption due to flattening of the distribution function,

which was followed by increased absorption by collisionless ripple trapped electrons that

were resonant at high energies. The bursty behavior changed as the ECRH heating location

was moved from magnetic field ripple bottom to the magnetic field ripple top [76], and HSX

can produce similar magnetic configurations.

Figure 7.2: Magnetic field strength along the magnetic axis in three realizable magnetic

configurations on HSX: the QHS, 10% Flip-14 Mirror, and 10% Flip-36 Mirror configurations.

The QHS, 10% Flip-14 Mirror, and 10% Flip-36 Mirror configurations are similar to the

magnetic configurations tested onW7-AS, and the magnetic field strength along the magnetic

axis is shown versus helical angle in each configuration in Figure 7.2. The measurement on

HSX may be investigated by determining the threshold at which the bursty behavior begins,

and by measuring the rate of trapped particle losses in each of these configurations. The

absorption may be determined from the toroidal array of absolutely calibrated microwave

diodes. The fast radial drift of trapped particles leads to broadening of the ECRH absorption

profile, which may be modeled using a 5-dimensional Fokker-Planck code as in reference [76].
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High frequency ECRH modulation experiments can be used to measure the broadening of

the absorption, and this effect can be used as another test of the quality of neoclassical

optimization in the quasi-helically symmetric configuration of HSX.

7.2.3 Modeling the Change in Distribution Function

A measurable fraction of the total plasma stored energy is carried by nonthermal particles

in HSX at low plasma density. The energy carried by fast particles is inferred from the dif-

ference between the kinetic stored energy and the diamagnetic stored energy measurements,

which were introduced in Section 2.4 and presented in Figure 2.10 (reproduced in Figure

7.3).

Figure 7.3: Total stored energy measurement (W diam
E , black circles), electron stored energy

measurement (WE,e, blue asterisks), an estimate of the energy carried by the ions (WE,i,

green asterisks), and the kinetic stored energy (W kin
E = WE,e +WE,i, red circles).

An Integrated Data Analysis (IDA) including multiple diagnostics is proposed to model

the experimental distribution function on HSX. The plasma density and electron temperature

from the thermal part of the distribution function are measured by Thomson scattering, and

the non-thermal electron temperature can be measured using a combination of soft and hard
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X-ray diagnostics. The non-thermal electron density is then constrained by the difference in

kinetic and diamagnetic stored energy.

The TRAVIS ray tracing code includes a module for modeling the ECE from a 3D plasma

and is capable of modeling single- and multi-pass electron cyclotron emission by including

a vacuum vessel of finite reflectivity in the ray tracing calculation [92]. Numerical modeling

of the ECE radiation spectra in a nonthermal plasma can be calculated using TRAVIS, and

this result can be compared to the measured ECE spectra at high ECRH power density to

test the result of the integrated data analysis.

The change in the distribution function due to ECRH can also be modeled using a code

such as the relativistic Collisional/QuasiLinear 3D (CQL3D) code, which solves the bounce

averaged Fokker-Planck equation in a toroidal geometry, or by using the GNET code [16],

which solves the 5D drift kinetic equation in a general stellarator geometry. The ECE

spectra can then be calculated from the modeled distribution function using a code such as

the GENral RAY tracing code (GENRAY) [122] or TRAVIS.

7.2.4 Stiffness and Core Radial Electric Field Measurements in

Methane Plasma

Low stiffness is measured in plasma with a significant fraction of methane, and this is

consistent with previous predictions of a neoclassical electron Internal Transport Barrier

(eITB) in HSX [4]. This measurement was introduced in Section 5.4 and presented in Figure

5.11 (reproduced in Figure 7.4).

Peaked electron temperatures of up to 2.5 KeV have been measured during ECRH modu-

lation experiments, and Thomson scattering measurements of the electron temperature and

density are shown in Figure 7.4a. In this experiment, 85 kW of power was launched into

the plasma, and 10% of the power launched from the second antenna was modulated. The
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(a) Electron temperature and plasma density. (b) Power balance analysis.

(c) Heat pulse amplitude decay. (d) Heat pulse phase delay.

Figure 7.4: Electron temperature and plasma density (a), the multi-pass power deposition

profile and power balance electron thermal diffusivity (b), the heat pulse amplitude decay

(c), and the heat pulse phase delay (d) from an ECRH modulation experiment in a methane

plasma.

absorption profile calculated using the multi-pass ray tracing model and the power balance

electron thermal diffusivity are shown in Figure 7.4b, and the heat pulse amplitude decay
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and phase delay are shown in Figure 7.4c and Figure 7.4d respectively. The volume aver-

age power balance diffusivity in the region between 0.2 ≤ r/a ≤ 0.4 is χPB
e = 1.7 ± 0.2

m2/s. The heat pulse diffusivity measured in this region is χHP
e =

√

χA
e χ

φ
e = 0.7± 0.2 m2/s.

The resulting stiffness in the methane plasma is S = χHP
e /χPB

e = 0.4 ± 0.1, which can be

interpreted as evidence for an eITB.

The radial electric fields measured through CHarge Exchange Recombination Spec-

troscopy (CHERS) on HSX are much smaller than the neoclassically predicted radial electric

field in the core of the plasma, but they are consistent with the radial electric field predicted

across most of the plasma effective radius. The CHERS diagnostic on HSX cannot currently

resolve the core of the plasma [31], and measurements of the core radial electric field are

necessary to confirm the existence of an eITB.

If the eITB exists, further measurements are necessary to determine the neoclassical

transition to core electron root confinement. In this case, high frequency ECRH modulation

can be used to change the time-average launched power by varying the duty cycle and depth

of the modulation. This technique can be used to produce a fine scale heat flux scan and

determine the power threshold for transition into core electron root confinement. The heat

pulses are strongly damped in Figure 7.4c, leading to low χA
e , which is indicative of an eITB

when accompanied by a thermal diffusivity with a negative temperature scaling.

Experiments on the LHD stellarator showed that the thermal diffusivity required a neg-

ative scaling with electron temperature for the eITB to form, and that there was a strong

positive scaling with the electron temperature when no ITB was present (also outside of the

ITB layer) [65]. Experiments also showed that the heat flux undergoes hysteresis during the

transition to an eITB [17] [123]. Hysteresis in the electron heat flux is indicative of a transi-

tion into and out of an eITB and should be observable during heat flux scans in concurrent
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heat pulse propagation experiments if an eITB is present. Heat pulse propagation experi-

ments are proposed with on-axis and off-axis ECRH modulation to investigate the existence

of an eITB in plasma with strongly peaked electron temperature profiles. Additionally, the

scaling of the electron thermal diffusivity with electron temperature should be investigated

during heat flux scans in methane plasma for comparison with the LHD result.
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Appendix A: Power Balance Analysis with a Transport

Barrier or a Magnetic Island

A neoclassical eITB has been predicted to exist in the QHS configuration due to the

transition between electron-root and ion-root radial electric fields using the PENTA code [4].

For the plasma density and electron temperature profiles shown in Figure A.1a, the transition

region is between 0.16 ≤ r/a ≤ 0.27. Separately, magnetic field errors can result in the break-

up of magnetic flux surfaces and regions of stochastic magnetic field lines. The parallel heat

transport along the magnetic field line is very fast, and the effective perpendicular thermal

diffusivity in a region of stochastic magnetic field lines is large.

These two effects are practical and interesting examples in which the sensitivity of power

balance analysis to the fitting function can be demonstrated. Power balance analysis alone

is insufficient for determining whether an eITB or a region of stochastic magnetic field lines

exist in HSX or not. The thermal diffusivity in this section is parameterized by a Heaviside

function on a quadratic polynomial to estimate the effect that these two phenomena have

on the electron temperature profile.

In the eITB case, the Heaviside function is initialized near the predicted eITB region,

and the least square algorithm used in the standard power balance analysis, discussed in

Chapter 5, adjusts its spatial extent and magnitude(including the sign) until the fitted

electron temperature profile is consistent with that measured by Thomson scattering. The

final fit has a region of suppressed transport between 0.15 ≤ r/a ≤ 0.31, which matches

the predicted region of decreased transport. For comparison, the power balance diffusivity

calculated using the Monte Carlo analysis is also shown in Figure A.1b. The change in the

electron temperature due to a small region of suppressed electron thermal transport, shown

in Figure A.1a, is not experimentally measureable on HSX. Additionally, the calculated
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electron thermal diffusivity lies within the uncertainty of the Monte Carlo analysis across

most of the plasma, which is shown in Figure A.1b.

(a) Electron temperature and plasma density fits. (b) Power balance analysis.

(c) Electron temperature and plasma density fits. (d) Power balance analysis.

Figure A.1: Electron temperature and plasma density measured through Thomson scatter-

ing, and fits from power balance analysis allowing for an eITB (a) and a region of stochastic

magnetic field lines (c). The diffusivity resulting from a Monte Carlo analysis (black), and

an analysis allowing for an eITB (red) (b) and a stochastic field (d).
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Similarly, a region of stochastic magnetic field lines is not detectable on HSX using

the Thomson Scattering diagnostic. In this example, the Heaviside function is initialized

between 0.30 ≤ r/a ≤ 0.35, and the algorithm adjusts its spatial extent and magnitude

(including its sign). The resulting electron temperature fit has a flat gradient region between

0.33 ≤ r/a ≤ 0.44 in Figure A.1c. The corresponding power balance diffusivity is shown in

Figure A.1d.
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Appendix B: Power Balance Analysis and the Heat

Pulse Thermal Diffusivity

B.1 The Heat Transport Equation

The electron heat transport equation is derived by including known sources and sinks

in Equation 1.2, and splitting the divergence of the pressure tensor into convective flows,

~us · ~∇ps, compressible flows, ~∇·~us, and a term due to the non-diagonal pressure components,

π : ∇~us. Including electron-ion drag, Qe,i, and heating power, Qe, yields an equation for the

pressure evolution, Equation B.1. Defining the scalar electron pressure, pe = neTe, and the

convective flow, ~ue =
~Γe

ne
, allows Equation B.1 to be put in terms of electron temperature,

plasma density, and electron heat flux, ~qe, and particle flux, ~Γe,

3

2

∂pe
∂t

+
3

2
~ue · ~∇pe +

5

2
pe~∇ · ~ue = −~∇ · ~qe + π : ∇~ue −Qe,i +Qe −

∑

sinks

Q, (B.1)

3

2
~ue · ~∇pe +

5

2
pe~∇ · ~ue = −~Γe ·

∇pe
ne

+ ~∇ · 5
2
Te
~Γe,

3

2

∂

∂t
(neTe) + ~∇ · [~qe +

5

2
Te
~Γe] = PECRH(r, t) + ~Γe ·

∇(neTe)

ne

+
∑

Q. (B.2)

Here
∑

Q represents all other energy sources and sinks, and PECRH represents the HSX

specific contribution from Electron Cyclotron Resonance Heating (ECRH).

The plasma density evolution is included by using the continuity equation, Equation B.3,

to determine ∂ne

∂t
in Equation B.2, to yield the temperature evolution equation for arbitrary

sources, sinks, heat and particle flux B.4,

∂ne

∂t
=

∑

part.

Se − ~∇ · ~Γe, (B.3)

3

2
ne

∂Te

∂t
+ ~∇ · (~qe + ~ΓeTe) =

∑

heat

Qe −
3

2
Te

∑

part.

Se + ~Γe · [∇(
5

2
Te) + Te

∇ne

ne

]. (B.4)

Combining the terms on the right hand side of Equation B.4, into an effective source term,

Se, and using the total heat flux, qe = −neχe∇Te + qconv, makes the problem tractable.
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In cylindrical geometry, the heat transport equation is expanded in the ECRH modulation

depth, ε = δSe/Se, while assuming the source drives heat flux perturbations that are first

order in ε, and density perturbations that are second order in ε, and solving for the effective

thermal diffusivity within the ordered expansion,

3

2

∂

∂t
(neTe) + ~∇ · ~qe = Se, Se(r, t) = Se,o(r) + δSee

−iωt,

qe = qe,o(r) + δqe(r, t), qe,o(r) = ne,oχe∇Te,o, δqe(r, t) = ne,oχe∇δTe,

ε0 : ~∇ · ~qe,o = Se,o, χpb
e = − 1

rne,o
∂Te,o

∂r

∫ r′

0

Se,or
′dr′,

ε1 : ~∇ · δqe = δSe −
3

2
ne,o

∂δTe

∂t
χinc
e =

1

rne,o
∂δTe

∂r

∫ r′

0

[
3

2
ne,o

∂δTe

∂t
− Ŝe]r

′dr′.

This calculation is reproduced in flux coordinates to yield the appropriate geometry factors,

where ρ is the square root of normalized toroidal flux, V ′ is the derivative of the plasma

volume with respect to ρ, and 〈〉 represents flux surface averaging [41],

ε0 :
1

V ′
∂

∂ρ
〈qe〉 = 〈Se〉, χPB

e =
−1

V ′〈|∇ρ|2〉no
∂To

∂ρ

∫ ρ′

0

〈Ŝo(t)〉V ′dρ′,

ε1 :
1

V ′
∂

∂ρ
δqe = δSe −

3

2
no

∂δTe

∂t
, χINC

e =
−1

V ′〈|∇ρ|2〉no
∂δTe

∂ρ

∫ ρ′

0

[
3

2
no

∂δTe

∂t
− Ŝe(t)]V

′dρ′.

B.2 Fourier Analysis of Heat Pulse Propagation

The incremental electron thermal diffusivity is determined from the temporal response of

the electron temperature to changes in heating. The amplitude and phase of the perturbation

with respect to the source are used to determine the diffusivity by applying models for the

response from solutions to the heat equation. The following sections derive and describe the

common models for the propagation of heat pulses in terms of the amplitude and phase of

the perturbation.
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B.2.1 Historical Solutions to the Cylindrical Heat Equation for

Heat Pulse Propagation Experiments

The homogeneous cylindrical heat equation, using Fourier’s law of conduction for the

heat flux, is

∂

∂t

3

2
nT − 1

r

∂

∂r
rnχ

∂T

∂r
= 0. (B.5)

For constant density and thermal diffusivity profiles, the homogeneous cylindrical heat equa-

tion for a time-harmonic temperature perturbation, δTn, is

[

3

2

inω

χ
− 1

r

∂

∂r
r
∂

∂r

]

δTn = 0. (B.6)

Replacing the partial derivatives with total derivatives and expanding yields Bessel’s equa-

tion,

[

d2

dr2
+
1

r

d

dr
+
3

2

inω

χ

]

δTn = 0, (B.7)

[

r2
d2

dr2
+ r

d

dr
+
3

2

inω

χs

r2
]

δTn = 0.

The solution to Bessel’s equation for the nth Fourier harmonic are zero-order (Kelvin) Bessel

functions of argument x =
(

3
2
nω
χ
r2e

iπ
2

) 1

2

=
(

3nω
2χ

) 1

2

re
iπ
4 . Note that the phase factor in the

argument of the Bessel function turns them into Kelvin functions (real and imaginary parts

of Jν

[

xe
3πi
4

]

= Berν (x) + iBeiν (x)). For real x,

δTn (r) = CJ0 [x] = C (Ber0 [x] + iBei0 [x]) .

The magnitude and the phase of the perturbation are then

δTn (r) = M0 (x) e
iϕn(x), where M0 (x) = |CJ0| and ϕn (x) = atan

(

Bei0
Ber0

)

.

The small argument series expansions of Ber0(x) and Bei0(x) are

Ber0 [x] = 1 + Σk≥1

(−1)k
(

x
2

)4k

[(2k)!]2
, Bei0 [x] = Σk≥0

(−1)k
(

x
2

)4k+2

[(2k + 1)!]2
. (B.8)
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Applying these expansions to the phase of the perturbation, and taking the lowest order

term in the expansion gives the phase in terms of the electron thermal diffusivity,

tan [ϕn (x)] =
(x

2

)2 Σk≥0
(−1)k

[(2k+1)!]2

(

x
2

)4k

1 + Σk≥1
(−1)k

[(2k)!]2

(

x
2

)4k
≈
(x

2

)2

=

[

1

2

(

3nω

2χ

) 1

2

r

]2

,

tan [ϕn (x)] ≈ 3nω

2χ

1

4
r2 =

3nω

8χ
r2.

The phase of the perturbation is related to the thermal diffusivity and the squared dis-

tance from the axis. If the perturbation were generated off-axis this would result in a linear

shift of the argument, and r → r−rs = ∆r. Using the time-delay, td = −ϕn

nω
, the incremental

electron thermal diffusivity can be determined purely from the phase delay of a perturbation,

χinc
e ≈ 3

8

∆r2

td
. (B.9)

This is the original model used to determine the thermal diffusivity from analysis of sawteeth

perturbations on the Oak Ridge Tokamak (ORMAK). This model was determined by solving

the cylindrical heat equation using Laplace transform techniques with an experimentally

determined heat-pulse boundary condition [124]: neχe
∂∆Te

∂r
|r=ad = −∆QΣnδ (t− nto). Here

∆Q is the electron energy density within a heat pulse generated by a sawtooth crash, to is

the saw-tooth repetition time, and ad is referenced as the “disruption radius” or saw-tooth

inversion radius. This is effectively a delta-function initial condition to the cylindrical heat

equation.

The result, χe ≈ 3
8
∆r2

td
, is contrary to the result found in Reference [125] on heat pulse

propagation from saw-teeth on ORMAK, which used a dipole initial condition in a Green’s

function solution to the cylindrical heat equation to yield χe ≈ 1
8
∆r2

td
. This factor of 3 differ-

ence comes from the initial condition used in the solution. Both solutions were found using a

small-parameter expansion of the Bessel function solution for the temperature perturbation.
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This problem was revisited for application to TFTR data where a large argument ex-

pansion yielded χe ≈ 1
9
∆r2

td
. The magnitude of the argument is large at the time of the peak

in the perturbation [103]. The difference between the 1/9 and 1/8 solution is only about

10% and so the authors chose to use the 1/8 solution for simplicity in comparing with other

experiments.

The normalized scale length of the diffusivity is the expansion parameter of Section

B.2, x = 2π r
λ
= kr, where λ is the characteristic damping length of a heat pulse due to

thermal diffusion at the modulation frequency, and k =
(

3nω
2χ

)0.5

. This parameter isn’t small

compared to unity across most of the minor radius of HSX, and it cannot be used to make

a small argument expansion of the solution to the heat equation for HSX parameters.

Figure B.1: Scale length of the diffusivity, k, versus effective radius. Boundary effects in the

solution to Bessel’s equation may be neglected when kr ≫ 1, ka ≫ 1, and k(a− r) ≫ 1.

A representative value for the scale length at a modulation frequency of 500 Hz is 70 m-1.

The scale length, k, is plotted for 500 Hz modulation in Figure B.1 versus plasma effective

radius. Boundary conditions in the solution to Bessel’s equation (zero flux through the axis,
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δT ′(0) = 0, and zero perturbation at the minor radius, δT (a) = 0) may be neglected and

the asymptotic form of the solution may be used when ka ≫ 1, k(a− r) ≫ 1, and kr ≫ 1.

The Bessel function argument is not small, x ≪ 1 in HSX. For a large argument ex-

pansion of the zero-order Bessel equation, x ≫ 1, the zero-order Kelvin-Bessel functions are

asymptotic to

Ber0 [x] ∼
exp

(

x√
2

)

√
2πx

cos

(

x√
2
− π

8

)

, (B.10)

Bei0 [x] ∼
exp

(

x√
2

)

√
2πx

sin

(

x√
2
− π

8

)

.

The magnitude of each term in the large argument expansion are identical, but each term

has a different phase. The phase difference between the source and the perturbation is

asymptotic to the argument of the trigonometric functions. The phase of the temperature

perturbation relative to the source is

ϕn (x) ∼ atan







exp
(

x√
2

)

√
2πx

sin
(

x√
2
− π

8

)

exp
(

x√
2

)

√
2πx

cos
(

x√
2
− π

8

)






=

x√
2
− π

8
=

1√
2

(

3nω

2χ

) 1

2

r − π

8
. (B.11)

Similarly, the amplitude of the temperature perturbation is

δTn (r) ∼ C
exp

(

x√
2

)

√
2πx

= C exp

(

(

3nω

4χ

) 1

2

r

)

(

6π2nω

χ
r2
)− 1

4

.

In the large argument limit, the incremental thermal diffusivity can be determined purely

from the amplitude of the temperature perturbation, or purely from the phase between the

temperature perturbation and the source. The logarithmic derivative of the perturbation

amplitude reduces the problem, and removes the constant, so that the incremental thermal
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diffusivity determined from the perturbation amplitude is

dδTn

dr
∼

[

(

3nω

4χ

) 1

2

− π23nω

χ
r

(

6π2nω

χ
r2
)−1

]

δTn,

d ln δTn

dr
∼

(

3nω

4χ

) 1

2

− 1

2r
→

(

d ln δTn

dr
+

1

2r

)2

∼ 3nω

4χ
,

χinc
e ∼ 3nω

4

(

dln δTn

dr
+

1

2r

)−2

.

Similarly, taking the derivative of the phase removes the dependence on the distance from

the source, and solving for the diffusivity yields

dϕn

dr
∼ 1√

2

(

3nω

2χ

) 1

2

→ 2

(

dϕn

dr

)2

∼ 3nω

2χ
→ χ ∼ 3nω

4
(

ϕn

dr

)2 . (B.12)

In the large argument limit, the incremental thermal diffusivity can be determined purely

from the derivative of the phase of a time-harmonic temperature perturbation,

χinc
e ∼ 3nω

4

(

dϕn

dr

)−2

. (B.13)

This is the model used for analysis of TFTR data [103]. There are several advantages

to this analysis technique. One advantage is that the analysis is independent of the origin

of the heat pulse; the analysis does not depend on the spatial variable, r, or the distance

between a diagnostic channel and the source position, ∆r. Additionally, this technique is

insensitive to the shape of the heat pulse, which is in contrast to the time-to-peak analysis

that was originally derived from the magnitude of the heat pulse generated by a sawtooth

crash.

B.2.2 Solutions to the Time-Harmonic Heat Equation

The flux-surface averaged time-harmonic energy equation is

3

2
iωneTω − 1

V ′
d

dρ
V ′ne

[

〈χe|∇ρ|2〉dTω

dρ

]

=
∑

〈δPω〉, (B.14)
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where 〈Pω〉 is the flux-surface averaged source of the time-harmonic perturbation, and Tω

is the electron temperature response at the perturbation frequency. The inhomogeneity in

Equation B.14 is most easily dealt with by dividing through by the temperature perturbation,

the density (ne), and the thermal diffusivity (〈χe|∇ρ|2〉), so that the heat-flux term can be

written as the sum of logarithmic gradients,

3

2
iωneTω − 1

V ′
d

dρ
V ′neTω

[

〈χe|∇ρ|2〉d lnTω

dρ

]

=
∑

〈 Pω〉,

−3
2

iω

〈χe|∇ρ|2〉 −
1

V ′neTω〈χe|∇ρ|2〉
d

dρ
neTωV

′〈χe|∇ρ|2〉d lnTω

dρ
=

∑ 〈 Pω〉
neTω〈χe|∇ρ|2〉 ,

3

2

iω

〈χe|∇ρ|2〉 +
d lnTω

dρ

d

dρ
lnneTωV

′〈χe|∇ρ|2〉+ d

dρ

d lnTω

dρ
= −

∑ 〈Pω〉
neTω〈χe|∇ρ|2〉 ,

3

2

iω

〈χe|∇ρ|2〉 +
d lnTω

dρ

d

dρ
lnneV

′〈χe|∇ρ|2〉+
(

d lnTω

dρ

)2

+
d

dρ

d lnTω

dρ
= −

∑ 〈 Pω〉
neTω〈χe|∇ρ|2〉 .

Following the solution for a cylindrical geometry and representing the logarithmic gradients

by the scale length ρg,

1

ρg
=

1

ρn
+

1

ρV ′
+

1

ρ〈χe|∇ρ|2〉
= − d

dρ
ln

(

neV
′〈χe|∇ρ|2〉

)

, (B.15)

the flux-surface averaged heat equation as

3

2

iω

〈χe|∇ρ|2〉 +
[

d

dρ

d lnTω

dρ
+

(

d lnTω

dρ

)2

− 1

ρg

d lnTω

dρ

]

= −
∑ 〈 Pω〉

neTω〈χe|∇ρ|2〉 .

To check this formulation, it can be converted into a cylindrical, zero-order Bessel equation,

which is the well-known solution for the simplified situation, by using

[

d

dρ

d lnTω

dρ
=

1

Tω

d2Tω

dρ2
−

(

d lnTω

dρ

)2
]

,

[

d2

dρ2
− 1

ρg

d

dρ
+
3

2

iω

〈χe|∇ρ|2〉

]

Tω = −
∑ 〈 Pω〉

ne〈χe|∇ρ|2〉 .
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Outside of the power deposition zone,
∑ 〈 Pω〉 = 0, and for a flat thermal diffusivity and a

flat density profile in cylindrical coordinates, 〈χe|∇ρ|2〉 = χe,
d lnV ′

dρ
= 1

ρ
, ρ → r

a
, so that

[

d2

dρ2
+

(

d lnV ′

dρ
+

d lnne

dρ
+

d lnχe

dρ

)

d

dρ
+
3

2

iω

χe

]

Tω = 0 →
[

d2

dr2
+
1

r

d

dr
+
3

2

iω

χe

]

Tω = 0,

[

r2
d2

dr2
+ r

d

dr
+
3

2

iω

χe

r2
]

Tω = 0.

This is identical to the zero-order Bessel equation solved in Section B.2.1.

The flux-surface averaged heat equation used to determine the thermal diffusivity from

the phase and amplitude of the temperature perturbation from

3

2

iω

〈χe|∇ρ|2〉 +
[

d

dρ

d lnTω

dρ
+

(

d lnTω

dρ

)2

− 1

ρg

d lnTω

dρ

]

= −
∑ 〈 Pω〉

neTω〈χe|∇ρ|2〉 .

For under-damped plane wave solutions in a slab-like geometry, 〈χe|∇ρ|2〉 → χe,

Tω = Ae−αxei(kx−ωt),
d lnTω

dx
= − (α− ik) ,

d

dx

d lnTω

dx
=

1

Tω

d

dx

[

− (α− ik)Ae−αxei(kx−ωt)
]

− (α− ik)2 = − d

dx
(α− ik) ,

[

− d

dx
(α− ik) +

1

ρg
(α− ik) + (α− ik)2 +

3

2

iω

χe

]

= −
∑ 〈Pω〉

neTωχe

.

This equation can be expanded outside of the power deposition zone,

[

− d

dx
(α− ik) + α2 +

1

ρg
α− k2 − (2α +

1

ρg
)ik +

3

2

iω

χe

]

= 0,

then split into real and imaginary parts to yield a thermal diffusivity and a constraint on

the damping

Real Part: α2 − dα

dx
+

1

ρg
α− k2 = 0,

Imaginary Part:

(

2α +
1

ρg

)

k − dk

dx
− 3

2

ω

χe

= 0.

The thermal diffusivity comes from the imaginary part

χe =
3

2

ω
(

2α + 1
ρg

)

k − dk
dx

.
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The damping rate and wave-vector can be written in terms of experimentally observable

quantities by taking the amplitude decay to be the real part of the Fourier transformed

temperature perturbation, α = Re[−d lnTω

dx
], and using the relationship between the wave-

vector and the phase of the perturbation, ϕ =
∫

kdx, to write k = dϕ
dx
= ϕ′. The incremental

thermal diffusivity in this slab-like geometry with profile variation contained in ρg is then

χinc
e =

3

4

ω

−ϕ′
(

δT ′
e

Tω
− 1

2ρg

)

− 1
2
ϕ′′

. (B.16)

This is the exact model from Reference [105] in the absence of a heat pinch. If the heat

pinch were included, ρ−1
g = ρ−1

n + ρ−1
χ − U

χe
, the thermal diffusivity would be

χinc
e =

3

4

ω

−ϕ′
(

δT ′
e

Tω
− 1

2ρn
+ χ′

e

2χe
+ U

2χe

)

− 1
2
ϕ′′

. (B.17)

The constraint for neglecting the 1
2
ϕ′′ term in Equation B.17 is ϕ′′ ≈ −( χ′

e

2χe
)ϕ′. Finite ϕ′′

appears whenever χ′
e is not negligible or damping is large. The reduced model of Reference

[105] neglects the 1
2
ϕ′′ using this balance to leave

χinc
e =

3

4

ω

−ϕ′
(

δT ′
e

Tω
− 1

2ρn
+ χ′

e

4χe
+ U

2χe

) . (B.18)

Neglecting ϕ′′ and using the reduced model leads to a maximum relative error of 10%

when kr > 2 and k(a − r) > 2.5 [105]. The reduced form of the thermal diffusivity is valid

between 20% and 50% of the effective plasma radius in HSX for a 500 Hz modulation in the

absence of damping. This region expands with increasing frequency, and is valid between

10% and 60% for a 1kHz modulation in the absence of damping. The effect of damping is

to extend the minor radial range of applicability of the reduced model.

In the absence of a heat pinch, the thermal diffusivity can be determined by neglecting

the χ′
e

4χe
term in Equation B.18 for simplicity, and applying the reduced model; however, the

convective contribution to the heat flux measured by modulation experiments is frequency
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Figure B.2: Requirement on the damping rate of the scale length to neglect the effects of ϕ′′

at 500 Hz modulation.

dependent, and multiple frequency measurements are necessary to reconstruct the diffusivity

profile. This can be done by defining

1

χg

=
1

χe

(

1 +
β

vϕ

)

, vϕ = − 3ω

2ϕ′ , β = U +
χ′
e

2
and χg =

3

4

ω

−ϕ′
(

δT ′
e

Tω
− 1

2ρn

) ,

then fitting multiple frequency measurements of 1
χg

against 1
vϕ
. The intercept yields the

electron thermal diffusivity, 1
χe
, and the slope indicates the heat pinch velocity [105]. An

example is shown in Figure B.3, where modulation data at various frequencies is simulated

and the exact model Equation B.17, and the reduced model, Equation B.18, are used to

interpret the results. Inward convective velocity corresponds to a positive slope, and outward

convective velocity corresponds to a negative slope in Figure B.3.
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Figure B.3: Simulated modulation data at various frequencies, for different radial positions,

and for inward (open symbols) and outward (full symbols) heat velocities U. Solid lines refer

to the exact model while the dashed one refers to the reduced model. Reproduced from

[105].

In the absence of multiple frequency measurements, neglecting the possibility of a heat

pinch and taking χ′
e

4χe
small leaves the commonly used expression for the thermal diffusivity

χinc
e =

3

4

ω

−ϕ′
(

d lnTω

dρ
− 1

2ρg

) . (B.19)

Equation B.19 can be written as the geometric mean of the contributions from the

amplitude decay, and the phase delay as χinc
e =

√

χA
e χ

ϕ
e . Here χA

e = 3ω
4

(

δT ′
e

Tω
− 1

2ρg

)−2

,

χϕ
e = 3ω

4
(ϕ′)−2, and ρ−1

g = ρ−1
n + ρ−1

χe
≈ ρ−1

n . This is a general solution that includes the

effects of damping, as the contribution to the phase and amplitude terms cancel [105].

To obtain the cylindrical geometry solution for the thermal diffusivity, the under-damped

plane-wave solution must be replaced by an under-damped cylindrical wave solution, Tω =

1√
ρ
Ae−αρei(kρ−ωt), so that

d lnTω

dρ
=

1

Tω

dTω

dρ
= − 1

2ρ
− (α− ik) ,

d

dρ

d lnTω

dρ
=

1

2ρ2
− d

dρ
(α− ik) ,

1

Tω

d2Tω

dρ2
= − 1

Tω

d

dρ

[(

1

2ρ
+ (α− ik)

)

1√
ρ
Ae−αρei(kρ−ωt)

]

,
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1

Tω

d2Tω

dρ2
= − d

dρ

[(

1

2ρ
+ (α− ik)

)]

+

(

1

2ρ
+ (α− ik)

)2

.

Now α = −Re
[

d lnTω

dρ
+ 1

2ρ

]

, in place of α = −Re
[

d lnTω

dρ

]

, and the extra term can temporarily

be folded into α, as α = α + 1
2ρ
,

d lnTω

dρ
=

1

Tω

dTω

dρ
= − (α− ik) ,

d

dρ

d lnTω

dρ
= − d

dρ
(α− ik) ,

and the equation has the same form as the slab case. There are no other cylindrical cor-

rections to be made, except in the ρ−1
g term. In the slab case ρ−1

g = ρ−1
n + ρ−1

χe
, and in the

cylindrical case ρ−1
g = ρ−1 + ρ−1

n + ρ−1
χe
. In the cylindrical model,

[

d

dρ

d lnTω

dρ
− 1

ρg

d lnTω

dρ
+

(

d lnTω

dρ

)2

+
3

2

iω

χe

]

= 0.

The incremental thermal diffusivity in the cylindrical model is obtained by replacing δT ′
e

Tω
=

δT ′
e

Tω
+ 1

2ρ
, and ρ−1

g = ρ−1
n + ρ−1

χ = − d
dρ
ln (neχ) ,

χinc
e =

3

4

ω

−ϕ′
(

d lnTω

dρ
+ 1

2ρ
− 1

2ρn
− 1

2ρχe

) . (B.20)

If the scale length of the diffusivity is neglected, Equation B.20 is the reduced model of

Reference [105] in cylindrical geometry with no heat pinch. This is the model used in the

analysis of ASDEX Upgrade measurements in Reference [54] .

The flux-surface averaged solution for the experimental geometry is approximated as a

cylinder with flux-surface shaping. The flux-surface averaged incremental thermal diffusivity

is an effective diffusivity χinc
e,eff = 〈χe|∇ρ|2〉

〈|∇ρ|2〉 , because of the flux surface average. The flux-

surface shaping effect is retained by using ρ−1
g = ρ−1

n + ρ−1
V ′ + ρ−1

χe
= − d

dρ
ln (neV

′〈χe|∇ρ|2〉),

so that in the cylindrical limit the ρ−1
V ′ term reduces to −ρ−1, and in the slab limit the ρ−1

V ′

term reduces to 0. The full geometry including profile shapes and flux-surface shaping is

d

dρ

d lnTω

dρ
− 1

ρg

d lnTω

dρ
+

(

d lnTω

dρ

)2

+
3

2

iω

〈χe|∇ρ|2〉 = 0,
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and the resulting effective incremental thermal diffusivity is

χinc
e,eff =

〈χe|∇ρ|2〉
〈|∇ρ|2〉 =

3

4〈|∇ρ|2〉
ω

−ϕ′
(

d lnTω

dρ
+ 1

2
d
dρ
ln [neV ′〈χe|∇ρ|2〉]

) ,

χinc
e,eff =

3

4〈|∇ρ|2〉
ω

−ϕ′
(

d lnTω

dρ
− 1

2ρg

) .

Additionally, if a heat pinch is allowed, it should be interpreted as a flux-surface averaged

heat pinch 〈U
∣

∣

∣

~∇ρ
∣

∣

∣
〉, so that the effective heat pinch is Ueff =

〈U|~∇ρ|〉
〈|∇ρ|2〉 .
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Appendix C: Quasi-optical Beams

Quasi-optical (QO) techniques were used in the design of the hybrid quasi-optical beam

lines that transmit power from the gyrotrons to the plasma in HSX. Quasi-optical techniques

are also used to model the antenna pattern of the ECE diagnostic on HSX. Quasi-optics

makes use of the paraxial approximation to model the propagation of approximately Gaussian

beams in the limit of finite wavelength [83].

C.1 The Gaussian Solution to the Paraxial Wave Equation

The paraxial wave equation describes the propagation of a wave with a well-defined

direction of propagation, but slow (on the scale of the wavelength) transverse variation. The

paraxial approximation is valid as long as the angular divergence of the beam is confined to

0.5 radians (30 degrees) [83],

∂2u

∂r2
+
1

r

∂u

∂r
− 2jk

∂u

∂z
= 0, (C.1)

u(r, z) =
wo

w
exp

(−r2

w2
− jπr2

λR
+ jφo

)

. (C.2)

In cylindrical coordinates (r,ϕ,z), an axially symmetric wave of magnitude, u(r, z), prop-

agating along the z-direction is described by the paraxial wave equation, Equation C.1. Here

j =
√
−1, and k = 2π

λ
is the wave-number. The fundamental solution to Equation C.1 is

a Gaussian beam mode, Equation C.2, in which w(z) is the beam-waist, wo = w(0), R(z)

is the radius of curvature of the beam front and φ(r) is the phase along the direction of

propagation. φo is initial phase, and q is the complex beam parameter. The beam waist is

the radius at which the power in the beam has fallen to the e−2 power level.

The transverse wave-electric field of the fundamental Gaussian mode, along with other

Gaussian beam parameters, are shown below. Higher-order solutions are also possible in
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terms of Laguerre polynomials [83].

Tansverse Field E(r, z) =

(

2

πw2(z)

)0.5

exp

[−r2

w2
− jkz − jπr2

λR(z)
+ jφo

]

Beam Radius w(z) = wo

[

1 +

(

z

zR

)2
]0.5

,where zR =
πw2

o

λ

Curvature Radius of Phase Front R(z) = z

[

1 +
(zR
z

)2
]

,

Beam Phase φo(z) = tan−1

(

z

zR

)

Beam Parameter q = z + jzR

Beam Power Distribution
P (r)

P (0)
= exp

[

−2( r

w(z)
)2
]

A graphical illustration of some of these parameters is provided in Figure C.1, where the

Rayleigh range, zR = πw2
o

λ
, occurs at w(zR) =

√
2wo. In the far-field, the angle of divergence

of the beam is determined from the radius of curvature to be θ0 =
λ

πwo
, and the angle of the

full-width at half-max in the beam power is θfwhm = 1.18θ0. A fixed frequency Gaussian

beam is completely specified by its beam waist and radius of curvature.

C.2 Ray Transfer Matrices

In the paraxial approximation, the angle of propagation with respect to the beam axis

is assumed to be small such that sin(θ) ≈ θ. Then the wave propagation can be described

by a matrix equation for the ray position, and the ray slope. In Equation C.3, the 2x2

matrix is referred to as an ABCD matrix. A quasi-optical system can then be described as

being composed of a set of elements that each possess their own ABCD matrix. Propagation

through the system results in a single ABCD matrix that is the matrix product of the system
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.

Figure C.1: Quasi-optical Gaussian beam waist, divergence, radius of curvature, and

equiphase surfaces. Reproduced from [84]

elements ray transfer matrices,







rout

r′out






=







A B

C D













rin

r′in






. (C.3)

Since a Gaussian beam is completely specified by its beam waist and its radius of curva-

ture, the propagation is completely described by the beam parameter. In terms of these two

quantities, the beam parameter is q−1 = R−1 − jλ
πw2 . For quasi-optical transmission, the ray

transfer matrices of a lumped element are the same as those from geometric optics, with the

output beam parameter related to the input beam parameter through the ABCD law C.4

[84],

qout =
Aqin +B

Cqin +D
. (C.4)

A table of ray transformation matrices (RTMs) is available from many sources, including

[84] and [83]. Some fundamental RTMs used in the analysis of the ECE and ECRH on HSX
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are,

Distance L in uniform media







1 L

0 1






,

Thin lens of focal length f







1 0

− 1
f

1






,

Transformation by a thin lens







1− d2
f

din + d2(1− din
f
)

−1
f

1− din
f






. (C.5)

Here d2 represents the distance following the thin lens of focal length f , and din represents

the distance to the next element. For a spherical mirror of radius of curvature R, the focal

length is given by f−1 = 2
R
. For an ellipsoidal mirror, where d1 and d2 are the distances

from the section center of the ellipsoid to the respective foci, the focal length is given by

f−1 = d−1
1 + d−1

2 .

C.3 The ECE antenna

In the analysis of the ECE antenna in Chapter 3, the antenna reciprocity theorem [126]

is used to model the TEM wave sampled by the ECE antenna as a Gaussian beam launched

from the ECE antenna into the plasma. The wave electric field within the aperture of the

pyramidal horn of the ECE antenna is constrained to be perpendicular to its walls, because

copper may be considered a perfect electrical conductor to microwaves, and the radius of

curvature of the equiphase surfaces of the beam is constrained by the horn geometry.

The length of the horn is 10.16 cm, and the aperture dimensions are A = 3.76 cm

and B = 3.5 cm respectively. The horn couples power into a WR-42 waveguide that has

dimensions a = 1.1 cm and b = 0.43 cm at the feed-end of the horn. For completeness, the

distance between the horn aperture and the center of the ellipsoidal mirror is 7.5 cm.
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The Gaussian beam that couples to the horn has a radius of curvature of 12.5 cm.

Optimum coupling to the horn occurs for a beam waist at the aperture of the horn of

wh = 0.35A
2
in the plane containing the wave magnetic field, and we = 0.5B

2
in the plane

containing the wave electric field [83]. The beam waist occurs within the aperture of the

antenna, and the equivalent Gaussian beam is determined by propagating the wave into its

throat using [83],

wh

wo,h

=

√

1 +

(

πw2
h

λLa

)2

,
we

wo,e

=

√

1 +

(

πw2
e

λLb

)2

. (C.6)

The ellipsoidal mirror used in the ECE antenna is set at an angle of 54.5 degrees with

respect to the incident wave, and is cut from an ellipsoid with minor- and major- radii of

amin = 13.7 cm and bmaj = 23.6 cm respectively. For a Gaussian beam incident on an

ellipsoidal mirror at an angle φ = 54.5◦, the focal length may be written in terms of the

curvature of the mirror. The radius of curvature of the ellipsoidal mirror perpendicular and

parallel to the plane of incidence of the wave are R⊥ = amin and R‖ =
b2maj

R⊥
respectively.

The corresponding focal lengths of the thin lens are f⊥ = 0.5R⊥/ cosφ in the direction

perpendicular to the plane of incidence, and f‖ = 0.5R‖ cosφ parallel to the plane of incidence

[83]. The focal length of the ellipsoidal mirror is f‖ = f⊥ = 11.8 cm. Other dimensions of

the ECE antenna can be determined from the block diagram provided in Figure C.2.
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.

Figure C.2: The ECE antenna within boxport D of HSX. Dimensions are in cm (inches).



195

Appendix C: Bibliography

83. Goldsmith, P. F., Theory, I. M. & Society, T. (Quasioptical systems, Piscataway, NJ : IEEE

Press, 1998).

84. Goldsmith, P. F. Proceedings of the IEEE. 80, 1729–1747 (1992).

126. Balanis, C. A. Advanced Engineering Electromagnetics, 1st (John Wiley and Sons, New York,

1989).



196

Appendix D: Absolute Calibration of the Radiometer

This appendix is meant to provide the basic equations that relate the measured antenna

temperature to the radiation temperature. The data sheet of the noise-source used during

absolute calibration of the ECE radiometer is also included in Figure D.1. Additional doc-

umentation is available upon request, including the calibration procedure for the HSX ECE

radiometer.

The radiometer gain in Section 3.2 relates the power through the waveguide to the volt-

age from the radiometer, but it does not include the gain of the ECE antenna. On HSX,

modeling is necessary to determine the radiation temperature of the plasma from the an-

tenna temperature measured by the radiometer, because the antenna is not fully illuminated

by the core of the plasma (within r/a < 0.2). A thorough discussion of that modeling is

included in Chapter 3. In this section, the antenna temperature will be related to the radi-

ation temperature of the plasma assuming that the ECE antenna is fully illuminated by the

plasma.

The power passing through the waveguide after the terminal of the ECE antenna is

equivalent to the total power collected by the antenna, and that power is the product of

the power flux through the aperture and the antenna efficiency, PA = ΦAe. The power flux

is related to the specific intensity of the electron cyclotron emission, which is discussed in

detail in Chapter 2 and Chapter 3, and the antenna efficiency is determined by its radiation

pattern, which is modeled in Chapter 3. The power flux is the product of the radiance of

the source and the solid angle of the plasma subtended by the antenna, so that the total

power collected by the antenna is PA = IrΩAe. Finally, the radiance is related to the

specific intensity of the source, Ir =
∫

Iωdω = BIω, which is proportional to the radiation

temperature.
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The power at the terminals of the antenna in terms of the radiation temperature of the

emission from the plasma, the wavelength of the radiation, the bandwidth of each channel,

the effective aperture of the antenna, and the solid angle of the antenna is,

PA ≈ ΩAeBIω = ΩAe
ω2

8π3c2
kBTrad =

ΩAe

2πλ2
kBTrad. (D.1)

Then the signal measured by the radiometer is related to the radiation temperature through,

PA = GVrad + kBTr =
ΩAe

2πλ2
kBTrad,

kBTrad =
2πλ2

ΩAe

(GVrad + kBTr) . (D.2)
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Figure D.1: QuinStar Noise-Source Data Sheet


