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Abstract

Plasmas in the quasi-helically symmetric (QHS) configuration of the HSX stellarator are predicted

to have a Pfirsch-Schlüter current that is helical due to the lack of toroidal curvature and a neo-

classical bootstrap current that is in the opposite direction to that in a tokamak. Each current is

predicted to be reduced in magnitude by the high effective transform (≈ 3) of QHS systems. The

equilibrium currents in the HSX stellarator are measured with a set of magnetic diagnostics which

includes Rogowski coils, diamagnetic loops, two poloidal belts separated by 1/3 of a field period,

and internal coils. Each belt, mounted on the external side of the vacuum vessel, consists of 16

3-axis magnetic pick-up coils to measure the local magnetic field, and the 15 internal coils mea-

sure the poloidal field. Measurements confirm the helical rotation of the Pfirsch-Schlüter current

and the reversal of the bootstrap current. Electron temperature and density profiles are measured

with a Thomson scattering system and ion temperature profiles are measured with a ChERS sys-

tem. The measured profiles are used to calculate the neoclassical fluxes and flows with the PENTA

code which includes the effects of momentum conservation between plasma species. The induc-

tive response of the plasma is calculated, including the effects of the 3-D shaping of the column.

The 3-D equilibrium reconstruction code, V3FIT, uses the measured magnetic diagnostic signals

as constraints to reconstruct the pressure and current profiles. The reconstructed pressure profile

and stored energy agree well with the Thomson scattering and flux loop measurements. Later in

the plasma discharge, the measurements are dominated by the bootstrap current which rises on a

timescale comparable to the length of the discharge. The reconstructed current profile is consistent

with the calculated bootstrap current when the effects of momentum conservation between plasma

species and the 3-D inductive response of the plasma column are considered. The reduction of the

Pfirsch-Schlüter and bootstrap currents by the high effective transform is confirmed. Uncertainty

in the reconstructed profiles is largest near the magnetic axis.
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of the LCFS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

C.1 A torus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

F.1 A subset of the auxiliary coil set, the vacuum vessel and diagnostic ports. . . . . . . . 188

F.2 Typical current waveform applied to the auxiliary coils. . . . . . . . . . . . . . . . . . 189

F.3 Signal response on triplet #17 due to the applied current in Figure F.2 on auxiliary coil
A3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

F.4 Comparison between calculated and measured signals of the external magnetic diag-
nostic array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

F.5 The main field current, as measured by the main shunt resistor, a 3rd-order fit polyno-
mial, and its derivative as a function of time. . . . . . . . . . . . . . . . . . . . . . . 191

F.6 Comparison between calculated and measured signals of the external magnetic diag-
nostic array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

F.7 Projections of misaligned vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

F.8 Rotation vector components and misalignment angle. . . . . . . . . . . . . . . . . . . 195

F.9 Comparison of expected signals for internal poloidal array. . . . . . . . . . . . . . . . 196

G.1 Sample pressure profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

G.2 Sample current density profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

G.3 The vacuum vessel and virtual triplets. . . . . . . . . . . . . . . . . . . . . . . . . . . 200

G.4 Normalized eigenvalues for the SVD with the complete virtual diagnostic set. . . . . . 201

JohnS
Rectangle



xviii

Figure Page

G.5 Normalized eigenvalues for the SVD that includes the external magnetic diagnostic
triplets and internal poloidal array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

G.6 Normalized eigenvalues for the SVD that includes only the internal poloidal array. . . 202

H.1 Mirror, 100 kW, ρECRH . 0.1: Te for CCW, and CW N e ∼ 4.2 and CW N e ∼ 5.5.
Ti from ChERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

H.2 Mirror, 100 kW, ρECRH . 0.1: Ne for CCW and CW. . . . . . . . . . . . . . . . . . 204

H.3 Mirror, 100 kW, ρECRH . 0.1: Net toroidal current for ensemble average of shots in
CCW and CW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

H.4 Mirror, 100 kW, ρECRH . 0.1: Stable ambipolar Er solutions with MC and without
MC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

H.5 Mirror, 100 kW, ρECRH . 0.1, With MC: Ion, electron and total parallel current. . . . 206

H.6 Mirror, 100 kW, ρECRH . 0.1, Without MC: Ion, electron and total parallel current. . 207

H.7 Mirror, 100 kW, ρECRH . 0.1, Without MC: Enclosed current profile for different
scenarios of current density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

H.8 Mirror, 100 kW, ρECRH . 0.1: Parallel conductivity of the plasma. . . . . . . . . . . 208

H.9 Mirror CCW, 100 kW, ρECRH . 0.1: Measured and simulated loop voltage. . . . . . 209

H.10 Mirror CCW, 100 kW, ρECRH . 0.1: Measured plasma pressure profile, the Lorentz-
fit initial guess, and reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

H.11 Mirror CCW, 100 kW, ρECRH . 0.1: Measured plasma pressure, reconstruction, and
the minimum found during parameter scan. . . . . . . . . . . . . . . . . . . . . . . . 210

H.12 Mirror CCW, 100 kW, ρECRH . 0.1: The calculated enclosed current profile, the
arctan initial guess, and reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . 210

H.13 Mirror CCW, 100 kW, ρECRH . 0.1: The calculated enclosed current profile, recon-
struction, and the minimum found during parameter scan. . . . . . . . . . . . . . . . 210

H.14 Mirror CW, 100 kW, ρECRH . 0.1: Measured and simulated loop voltage. . . . . . . 211



xix

Figure Page

H.15 Mirror CW, 100 kW, ρECRH . 0.1: Measured plasma pressure profile, the Lorentz-fit
initial guess, and reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

H.16 Mirror CW, 100 kW, ρECRH . 0.1: Measured plasma pressure profile, reconstruc-
tion, and the minimum found during parameter scan. . . . . . . . . . . . . . . . . . . 212

H.17 Mirror CW, 100 kW, ρECRH . 0.1: The calculated enclosed current profile, the
arctan initial guess, and reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 213

H.18 Mirror CW, 100 kW, ρECRH . 0.1: The calculated enclosed current profile, recon-
struction, and the minimum found during parameter scan. . . . . . . . . . . . . . . . 213

H.19 Mirror CW, 100 kW, ρECRH . 0.1: Stable ambipolar Er solutions with MC and
without MC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

H.20 Mirror CW, 100 kW, ρECRH . 0.1, With MC: Ion, electron and total parallel current. 215

H.21 Mirror, 100 kW, ρECRH . 0.1, Without MC: Ion, electron and total parallel current. . 215

H.22 Mirror, 100 kW, ρECRH . 0.1: Enclosed current profile for different scenarios of
current density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

H.23 Mirror, 100 kW, ρECRH . 0.1, higher line-averaged density case: Parallel conduc-
tivity of the plasma, including trapped particle effect. . . . . . . . . . . . . . . . . . . 216

H.24 Mirror CW, 100 kW, ρECRH . 0.1: Measured and simulated loop voltage. . . . . . . 217

H.25 Mirror CW, 100 kW, ρECRH . 0.1: Measured plasma pressure profile, the Lorentz-fit
initial guess, and reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

H.26 Mirror CW, 100 kW, ρECRH . 0.1: Measured plasma pressure profile, reconstruc-
tion, and the minimum found during parameter scan. . . . . . . . . . . . . . . . . . . 218

H.27 Mirror CW, 100 kW, ρECRH . 0.1: The calculated enclosed current profile, the
arctan initial guess, and reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . 218

H.28 Mirror CW, 100 kW, ρECRH . 0.1: The calculated enclosed current profile, recon-
struction, and the minimum found during parameter scan. . . . . . . . . . . . . . . . 218

I.1 QHS, N e = 2× 1018/m3, 50 kW, ρECRH . 0.1: Te for CCW and CW. Ti from ChERS.221

I.2 QHS, N e = 2× 1018/m3, 50 kW, ρECRH . 0.1: Ne for CCW and CW. . . . . . . . . 221



xx

Figure Page

I.3 QHS, N e = 3× 1018/m3, 50 kW, ρECRH . 0.1: Te for CCW and CW. Ti from ChERS.222

I.4 QHS, N e = 3× 1018/m3, 50 kW, ρECRH . 0.1: Ne for CCW and CW. . . . . . . . . 222

I.5 QHS, N e = 4× 1018/m3, 50 kW, ρECRH . 0.1: Te for CCW and CW. Ti from ChERS.222

I.6 QHS, N e = 4× 1018/m3, 50 kW, ρECRH . 0.1: Ne for CCW and CW. . . . . . . . . 222

I.7 QHS, N e = 5× 1018/m3, 50 kW, ρECRH . 0.1: Te for CCW and CW. Ti from ChERS.223

I.8 QHS, N e = 5× 1018/m3, 50 kW, ρECRH . 0.1: Ne for CCW and CW. . . . . . . . . 223

I.9 Measured toroidal current for the 4 densities with the magnetic field in the CCW and
CW directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

I.10 Extrapolated steady state current and the net toroidal current predicted by PENTA for
an ion-root dominated solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225



1

Chapter 1

Introduction

The world demand for energy is increasing. Over the last 30 years, the consumption of energy

has increased every year, except in 2009, when the financial and economic crisis caused a 0.6% de-

crease in GDP [1]. According to the U.S. Energy Information Administration, the vast majority of

the world’s energy,∼ 85%, currently comes from fossil fuels, such as oil, coal, and natural gas [2].

An abundance of scientific data indicates that the burning of fossil fuels for energy is increasing the

CO2 concentration in the atmosphere. The data indicates that this is causing global temperatures

to rise and is increasing the risk of extreme weather patterns, such as increased summer dryness

(risk of drought) and winter wetness in most parts of the northern middle and high latitudes [3].

Because of the large environmental impact, alternative energy sources are sought after to decrease

reliance on oil and coal based sources of energy to reduce CO2 emissions. Meanwhile, the safety

of conventional nuclear fission facilities has been called into question due to the recent crisis at the

Fukushima nuclear power plant [4].

A fusion reaction between light nuclei releases an enormous amounts of energy. In the fusion

reaction, a small amount of the original mass from the particles is converted into kinetic energy

which is carried by the products of the fusion reaction [5]. For example, a promising fusion reaction

involves the nuclei of two hydrogen isotopes, deuterium and tritium. The fusion product of a D-T

fusion reaction is an alpha particle with 3.5 MeV of kinetic energy and a neutron with 14.1 MeV
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of kinetic energy:

1D
2 + 1T

3 → 2He
4 (3.5MeV ) + 0n

1 (14.1MeV ) (1.1)

The reaction rate for this fusion process depends on the collisional cross-section of the reaction,

which is a function of the temperature of the atoms. For D-T fusion, the maximal cross-section

occurs around 10-100 keV, or 108-109 ◦C, while the maximum cross section occurs at still higher

temperatures for other possible fusion reactions involving light nuclei (such as D-D and D-He3).

At these temperatures, the fuel is completely ionized and is in the plasma state.

Strong magnetic fields are used to confine the high temperature plasma inside of some type

of vessel. The magnetic field is responsible for containing the plasma and preventing it from

interacting with the relatively cold vessel wall. The alpha particles released by the D-T fusion

reaction are charged particles and are confined by the magnetic field, while the neutrons are not

confined by the magnetic field and escape the confinement volume. The energetic neutrons will

collide with a blanket material surrounding the plasma, absorb the kinetic energy of the neutron

and convert it to thermal energy which can be used to heat steam and generate electricity. To reach

self sustaining operation, the plasma must reach a self-heated state where the heating power of

the alpha particles exceeds the power losses in the plasma. This condition, called ‘ignition’, is

achieved when the triple product of the plasma density, temperature, and energy confinement time

satisfies

nTτE > 5× 1021KeV s m−3 (1.2)

In magnetically confined fusion, the magnetic field lines form closed flux surfaces to ensure

good confinement. The equilibrium field has both toroidal and poloidal components, B = BT +BP

[5] [6]. Axisymmetric tokamaks generate the toroidal magnetic field with a set of external field

coils that wind around the plasma column in a poloidal direction. The poloidal field is generated by

a toroidal current in the plasma which can be driven inductively by an external transformer coil that

uses the plasma column as the secondary winding. However, the transformer has a finite limit of

volt-seconds that it can supply, which precludes this method as the only source of current drive in a
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tokamak. Therefore, supplemental sources of toroidal current are required for steady-state tokamak

operation. Alternative methods of driving currents in the plasma include electron cyclotron current

drive (ECCD) such as by the Okhawa [7] or Fisch-Boozer [8] effect, ion cyclotron current drive

(ICCD) or neutral beam injection (NBI).

In a large-aspect ratio axisymmetric tokamak with minor radius r, major radiusR0, and inverse

aspect ratio εt = r/R0, the magnetic field strength on a flux surface is

B

B0

=
1

1 + εt cos θ
≈ 1− εt cos θ (1.3)

The magnetic field strength varies with the poloidal angle, θ. The rotational transform describes

the angular pitch of the field lines on a flux surface,  ι = dθ/dζ , where ζ is the toroidal angle. With

 ι, Eqn 1.3 can be used to express the field strength along the field line as a function of toroidal

angle, with an arbitrary starting angle, ζ0.

B

B0

≈ 1− εt cos ( ι (ζ − ζ0)) (1.4)

The magnitude of B on a flux surface in an large-aspect ratio axisymmetric tokamak is shown in

Figure 1.1, along with the path of a field line on that surface for  ι ∼ 1.05. The toroidal symmetry in

|B| is clearly seen. The |B| along that field line is shown in Figure 1.2. Because the magnetic field

is toroidally symmetric in a tokamak, the particle motion is described by an Euler-Lagrange equa-

tion and the toroidal canonical momentum is conserved [9]. The particles follow closed trajectories

on the flux surface and are well confined. In a stellarator, the toroidal and poloidal components are

generated predominantly by the external field coils. No other source of current is required to gen-

erate vacuum flux-surfaces and this is the reason that the stellarator is often called a ‘current-less’

configuration. Conventional stellarators are constructed with continuous helical windings and the

magnetic field strength is not symmetric on a flux surface. In addition to the toroidal ripple, εt,

additional helical modulations of the field strength are present:

B

B0

≈ 1− εt cos θ −
∑

εh,nm cos (nζ −mθ) (1.5)

The additional modulation of |B| from the helical component has a detrimental result: There is no

longer a direction of symmetry in |B| and there is no equivalent to the conservation of canonical

momentum and, therefore, no guarantee of good particle confinement as in a tokamak.
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Figure 1.1 |B| on a flux surface for an
axisymmetric tokamak is symmetric in the

toroidal angle, ζ , and varies with the poloidal
angle, θ.

0 1 2 3 4 5 6
0.9

0.95

1

1.05

1.1

|B
|

ζ

Figure 1.2 |B| along field line for an
axisymmetric tokamak.

A class of equilibria [10] were found to exist for which the drift orbits and associated transport

are predicted to be identical to a tokamak. These ‘isomorphic’ equilibria are described by a a

magnetic field strength that depends on a single helicity (a single (n,m) combination). It has

been shown that quasi-helically symmetric stellarators strictly confine guiding center orbits [11],

restoring the good confinement properties of an axisymmetric tokamak.

The Helically Symmetric Experiment (HSX) [12], Figure 1.3, is a four-field period quasi-

helically symmetric stellarator designed to have a direction of symmetry of |B| in a helical direc-

tion. A set of 48 modular field coils generate the magnetic field required. In Figure 1.4, |B| on

the flux surface and a field line on the surface is shown for the QHS magnetic configuration. In

Figure 1.5, |B| along the field line is shown. The Fourier decomposition of |B| along the field lines

provides the full magnetic spectrum [13]:

B

B0

=
∑
n,m

bn,m cos (nζ − nθ) (1.6)

The magnetic spectrum of the QHS configuration, as a function of normalized radius, ρ =
√

Φ/ΦLCFS

(square-root normalized toroidal flux), is shown in Figure 1.6. In the figure, the b0,0 component

has been suppressed. The dominant spectral term is clearly the b4,1 term for most of the plasma

column, exceeding the contribution from the rest of the terms by an order of magnitude. Near the
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Figure 1.3 The Helically Symmetric eXperiment.

Figure 1.4 |B| on a flux surface for the
quasi-helically symmetric (QHS) magnetic

configuration.
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0.95

1

1.05

1.1

|B
|

ζ

Figure 1.5 |B| along field line for QHS.

axis, the other terms are more significant because of the relative decrease of the magnitude of the

b4,1 helical spectral term.
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Figure 1.6 Boozer spectrum of |B| as a function of radius for the QHS configuration. The largest
7 terms are shown, excluding b0,0.

In HSX, the equation for |B| on a flux surface is dominated by the b4,1-helicity component and

is given approximately by

B

B0

= 1− b4,1 cos (4ζ − 1θ) (1.7)

= 1− b4,1 cos ((4− 1 ι) ζ) (1.8)

Eqn 1.8 is analogous to the Eqn 1.3 with the substitutions of  ιeff = (n−m ι) ≈ 3 and εt = bn,m =

b4,1. The 3 ripples are seen in Figures 1.4 and 1.5. By restoring a direction of symmetry in |B|,
good confinement of particles is guaranteed, similar to that is an axisymmetric tokamak. The high

effective transform,  ιeff ≈ 3, and negligible toroidal curvature has been verified experimentally

for HSX [14].

HSX is equipped with a set of planar auxiliary field coils, as seen in Figure 1.3, to allow

for some flexibility in the magnetic spectrum and rotational transform. In the Mirror magnetic

configuration, for example, the auxiliary field coils are energized so that the magnetic spectrum
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has b4,0 & b8,0 terms, breaking the symmetry of the single-helicity (n,m) = (4, 1) field, as seen in

Figure 1.7. By breaking the symmetry, the neoclassical transport is raised back towards the level

of a conventional stellarator [15]. The auxiliary coils can also be used to alter (increase/decrease)

0 0.2 0.4 0.6 0.8 1

−0.15

−0.1

−0.05

0

ρ

b n,
m

 

 

(n,m) = (4,1)

(n,m) = (4,0)

(n,m) = (8,0)

Figure 1.7 Boozer spectrum of |B| as a function of radius for the Mirror configuration. The
largest 7 terms are shown, excluding b0,0s.

the rotational transform without drastically changing the magnetic spectrum by either adding or

subtracting net toroidal flux. Discussed in Chapter 6, this can control which vacuum magnetic

resonances are inside of the confinement volume. The (n,m) = (4, 4) & (8, 7) rational surfaces

can be in the confinement volume by adjusting the rotational transform from just under 1 to just

over 1.14.

In a toroidal fusion experiment, the pressure on the flux surface equilibrates very quickly along

the field lines, so that the pressure is nearly constant on the entire surface. The radial pressure

gradient generates a diamagnetic current perpendicular to the field lines. As will be shown in

Section 2.2, the condition of ∇ · J = 0 requires that another current, parallel to B must exist in

the plasma. This current is called the Pfirsch-Schlüter current [16]. In a tokamak, this current is a
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dipole current that generates a net vertical magnetic field which causes a radial outward shift of the

plasma flux surfaces, called the Shafranov shift [17]. In the QHS configuration, this dipole current

is reduced by ∼ 3, rotates with the toroidal angle and is in the opposite direction compared to a

tokamak. The decrease in current reduces the Shafranov shift. For the surfaces to shift 1/2 of the

minor radius in QHS, the value of the plasma beta, the ratio between plasma pressure (p = nkBT )

and magnetic pressure (B2/2µ0) must reach β = 2µ0p
B2 ∼ 35% [12]. As part of this dissertation, the

dipole magnetic field generated by the Pfirsch-Schlüter current and its helical rotation is measured

and verified by magnetic diagnostics, and the measured signals are used to reconstruct information

about the plasma pressure profile with a 3-D reconstruction code. This is presented in Chapter 5.

1.1 Neoclassical Bootstrap Current

Both tokamaks and stellarators share the characteristic of an inhomogeneous |B| on the flux

surfaces. This results in a population of particles that are trapped in magnetic ‘wells’ along the field

lines. These trapped particles do not contribute to the parallel electrical conductivity, σ‖ = 1/η‖.

Also, the momentum exchange from collisions between the trapped and passing particles on a flux

surface leads to a net fluid flow. Since the particles have an electrical charge, this flow is a non-

inductive source of current called the bootstrap current [16] . This current is parallel to the field

lines. It is desired to operate a tokamak with a high fraction of the net toroidal current coming from

the bootstrap current. Maximizing the bootstrap current minimizes the amount of current required

from other sources. A review of the theory for the bootstrap current in tokamaks and the evidence

for these trapped particle effects in most recent tokamaks, including JT-60, TFTR, and JET is in

Reference [18].

Over the years, the modeling of the bootstrap current in stellarators has improved and exper-

iments have demonstrated that the stellarator magnetic field can be adjusted to change both the

magnitude and direction of the bootstrap current. One of the first experiments to demonstrate

the existence of the bootstrap current in a stellarator configuration was the Advanced Toroidal

Facility (ATF) torsatron. Measurements of the net current agreed with calculations of the neo-

classical bootstrap current to within about (25%) . In this case, the bootstrap current density was
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calculated in two parts: a toroidal, tokamak-like component and a helical component. For each

component, the current was calculated with an analytic interpolation function between different

collisional regimes. For the helical component, the calculation was benchmarked with a monoen-

ergetic code [19].

Using an analytic expression of the bootstrap current [20], it was shown that the bootstrap

current could be tailored or eliminated by balancing the contributions from the two type of trapped

particles; those that are trapped in toroidal ripples and those in helical ripples. If a toroidal system

has a main toroidal component, b1,0, and one helical component with n >> m, then if bn,m = nb1,0
m ι ,

the net bootstrap current should be close to zero [21].

Another method, valid for the low-collisionality (1/ν) regime, using a flux-surface averaged

geometric factor to relate the radial temperature and density gradients to parallel flows [22], cor-

rectly models the effects that the ‘bumpiness’ of the flux surface has on the bootstrap current. In

Heliotron J, the relative magnitude of three field components, the toroidal, b01, the helical, b41,

and the bumpiness term, b4,0 interact in a complicated way. With b0,1 = 0.01 and b4,1 = 0.02,

scanning the magnitude of b4,0 from -0.04 to 0.04 reverses the direction of the bootstrap cur-

rent. For b0,1 > b4,1, the bumpiness term does not change the geometric factor much, while

for 0 < b0,1 < b4,1, the bumpiness term can reverse the current at values around small negative

b4,0 ∼ 0.01 − 0.03 [23]. The (θ, ζ) position of the maximum value of the magnetic field strength,

which depends on the magnitudes of b0,1, b4,1, and b4,0, plays an important role in determining the

direction of the bootstrap current.

There are many reasons to be concerned with the bootstrap current and its control. The boot-

strap current will alter the radial profile of  ι and affect the location of low-order rational surfaces,

which can affect confinement. On the W7-AS stellarator, it was found that higher temperature

and density gradients increase the total current and the net increase of  ι. This occurs without any

degradation of confinement until  ι = 1/2 surfaces were at the last closed flux surface (LCFS) of

the column. Then, Te decreased by about 70% and tearing modes would develop. No disruption

occurred because of the improved positional stability from the external poloidal field [24]. When

low-order rational surfaces were located just outside of the LCFS, improved confinement regimes
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were found [25]. The mechanism of improved confinement is not understood, but it may be linked

to a region of decreased viscous damping near (but not at) islands outside of the LCFS [26]. The

bootstrap current and its effect on the rotational transform are important to understand, particularly

when evaluating the performance of island divertors, like the one planned for W7-X [27]. In ad-

dition to the role that rational surfaces play at the edge of the plasma column, they may also play

an important role for internal transport barriers (ITBs). In TJ-II, an ITB was correlated with the

location of rational surfaces at or near the ECH location [28].

Recently, the presence of a bootstrap current driven by the radial electric field, Er, has been

predicted, an effect unique to non-axisymmetric devices [29]. In a stellarator, the direction of the

viscous flow damping is a function of collisionality, Particles in the Pfirsch-Schlüter regime are

damped in a different direction that those in the 1/ν-regime. This is not the case for tokamaks,

in which the direction of damping is the same regardless of collisionality [9]. For electrons in the

1/ν-regime and ions in the Pfirsch-Schlüter regime (similar to HSX plasmas), the flows driven by

Er in a stellarator are damped in different directions, and the net Er-driven current flows opposite

to that driven by the pressure gradient, reducing and possibly reversing the total bootstrap current

density.

Until recently, the calculation of the transport coefficients in a general toroidal geometry for

arbitrary collisionality and Er has not included the effects of flows and momentum conservation

(MC) between plasma species self-consistently. Often, the drift kinetic equation (DKE) is solved

in an asymptotic limit regarding collisionality regime and radial electric field. A method of cal-

culating the neoclassical viscosity, diffusion and current coefficients for general toroidal plasmas,

including the effects of MC among plasma species and the radial electric field, has been described

analytically [30] [31]. A numerical code that evaluates the expressions therein, called PENTA, is

written in FORTRAN [32] and in MATLAB [33]. It should be noted that the numerical evaluation

makes use of monoenergetic transport coefficients calculated by DKES [34]. The MC-inclusion

technique reproduces ambipolar transport in the axisymmetric limit, and is valid for any arbitrary

toroidal geometry. In terms of the effective ripple, εeff , a quantity that describes the transport in



11

the 1/ν regime in toroidal devices [35], PENTA is valid for several orders of magnitude spanning

from ∼ 10−5 for ITER [36] to ∼ 1 for conventional stellarators.

1.2 Timescales and Temporal Evolution

The relevant timescales for the varying effects is important to consider. In toroidal devices,

the MHD currents reach steady-state on an Alfvénic timescale, defined as the circumference of the

device, 2πR, divided by the Alfvén velocity,

τA =
2πR

vA
=

2πR
√
µ0ρm

B
(1.9)

Here, ρm is the mass density. For typical HSX plasma parameters, τA ≤ 1 µs. The net toroidal cur-

rent, which has both a bootstrap and an inductive component, evolves on a much longer magneto-

diffusion timescale, which is defined as the square of the minor radius, a, divided by the magnetic

diffusivity,

τη‖/µ0 =
a2

η‖/µ0

=
a2µ0neq

2
e

meνe
(1.10)

The electron density, mass and collision frequency are given by ne, me, and νe. In HSX, τη‖/µ0 ≥
40 ms is characteristic of plasmas with near-axis electron cyclotron heating (ECH) due to the high

electron temperature, Te. Because the time scales of the toroidal current diffusion are comparable

to the experimental time, τexp = 50 ms ∼ τη‖/µ0 , modeling of the temporal behavior is required

to describe the current enclosed within the plasmas. In principle, the change in current leads to a

modification of the magnetic confinement field and rotational transform. These effects are small

in the plasmas presented in this dissertation. Low-order rational surfaces are not expected to be

present in the confinement volume while the ECH is applied. So while a self-consistent calculation

of the bootstrap current is necessary for cases where the magnetic configuration is altered enough

to change the underlying transport properties (specific to each configuration), this self-consistent

calculation are not needed for HSX plasmas.

Several events can lead to a change in the current profile: a toroidal loop voltage applied

with a transformer-coupled solenoid (inductive, or ohmic-drive), a change in the gradients and
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transport-related fluxes and related flows (i.e. bootstrap current), or a change in either RF- or NBI-

current drive. The relaxation of the current profile from its initial state to its steady-state in a large

aspect-ratio circular tokamak can be expressed as a sum of Bessel-like basis functions [37]. In

non-axisymmetric devices, the relaxation of the current profile is more complicated because of

the 3-D helical shape of the plasma column which leads to a coupling of the toroidal and poloidal

currents to each of the toroidal and poloidal magnetic fields [38]. As explained in Chapter 3, a 2×2

susceptance matrix, S, relates the toroidal and poloidal currents, I and F , to the radial derivatives

of the poloidal and toroidal magnetic fluxes, Ψ′ and Φ′.

µ0

 I

F

 =

 S11 S12

S21 S22

 Ψ′

Φ′

 (1.11)

Numerical simulations of LHD plasmas that include these 3-D effects [39], [40], [41] were

in reasonable agreement with measurements of the rotational transform, Figure 1.8 [42]. While

the rotational transform was in reasonable agreement, the current density profile, I ′, which is

proportional to the radial derivative of  ι, can not be resolved with much precision. The model for

the bootstrap current in this case was based on an analytic solution for particles in the 1/ν and

Pfirsch-Schlüter regime, with a connection formula between the two regimes. The effects of Er

are not modeled in these expressions (it is a small Er estimate) [43] [44].

For the W7-X stellarator, now in the final construction phase in Greifswald, Germany, the

performance of the island divertor will depend on how well the rotational transform at the edge

of the plasma column is controlled. If the rotational transform is too high or too low, then the

island region outside of the LCFS will not be located in the correct position to be on the edge

limiter and the plasma will interact with the vessel wall and increase the impurity content of the

plasma or damage internal components that are not shielded by the limiter. To account for this, a

predictive 1-D transport model will be used for feed forward control of the  ι profile in W7-X, where

the current profiles are expected to evolve to steady-state on timescales of 10’s of seconds [45].

With the measured plasma temperature and density profiles, the steady-state bootstrap current and

rotational transform will be rapidly calculated. To maintain the  ιLCFS within an acceptable range,

the total current will be compensated with ECCD [46]. It is critical that the calculation of the
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Figure 1.8 Measured (left) and calculated (right) rotational transform profiles for LHD. Figure
from [42].

bootstrap current is accurate and fast. It is also important that the deposition efficiency (current

drive) of the ECCD is correctly predicted. The various methods of achieving ECCD in stellarators

are discussed elsewhere [47] [48] [49].

1.3 Equilibrium Reconstruction with Magnetic Diagnostics

In tokamaks, magnetic diagnostics provide essential information regarding the main electro-

magnetic parameters of the plasma, including the plasma current, Ip, the internal inductance, li,

shape of the plasma boundary and the amplitude and mode numbers of fluctuations. The informa-

tion is used in real-time control loops to maintain the desired plasma parameters and by almost all

other diagnostics [50].

In the Doublet III experiment, it was found that 3 pieces of information could be resolved

from magnetic diagnostic information. The reconstruction involves repeatedly solving the Grad-

Shafranov equation to search for a current density profile that produces diagnostic signals that

best-fit the measured signals. With this strategy, the total plasma current (Ip), the poloidal beta

(βp), and the peakedness of the current profile (related to the internal inductance, li) could be
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determined. For non-circular discharges, the values of βp and li can be separately determined; for

circular discharges, only βp + li/2 could be determined [51]. With more shaping to the plasma

column, more information could be extracted from the magnetic measurements. Variations of

the reconstruction code, EFIT [52] are in use around the world on various tokamaks. The non-

inductive current profile has been reconstructed in DIIID [53] and MSTFIT is in use at the Madison

Symmetric Torus RFP [54].

Equilibrium reconstruction is not a routine process for stellarators. Complicated by the 3-D

nature of the magnetic fields, no simple Grad-Shafranov (G-S) equation exists from which the

equilibrium can be quickly calculated. A fully 3-D equilibrium solver (VMEC, Appendix A) is

required, which needs much more computational time to solve than the G-S equation. Because

modern stellarators are designed for, and are achieving, higher level of plasma beta and bootstrap

current, the deviation of the equilibrium surfaces from the vacuum configuration increases and a

3-D reconstruction is required. Even tokamaks with small asymmetries need a 3-D reconstruction,

such as the planned ITER experiment. ITER will have ferromagnetic blanket materials that break

the axisymmetry and the eddy currents induced in the blanket will affect the diagnostic signals, so

they must be modeled and accounted for in the data for the reconstruction to be accurate.

For stellarators in general, the amount of information in the magnetic field generated by the

plasma is increased, compared to a tokamak. This is because of the non-circular cross-section of

the plasma column and the variation of the shape of the cross-section with toroidal angle in a stel-

larator. For stellarators, expressions of the radial and poloidal components of the magnetic field

outside of the plasma volume have additional integral relations of the pressure and current profile

than for a tokamak (see Eqns 41 and 42 is Reference [55]). Accuracy of the information of the

plasma parameter profiles is largely increased in stellarators compared with the possible precision

of the magnetic diagnostics in tokamaks [55]. The information of the size of the plasma column,

rotational transform on the boundary, main harmonic amplitude of stellarator field, boundary sur-

face shift and poloidal magnetic flux can all be extracted from the measured magnetic field. It is,

in principal, possible to extract more info about plasma pressure profile by measuring the magnetic

field generated by the dipole current carefully, although this requires more diagnostics than used in
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a tokamak [56]. Early studies regarding magnetic diagnostics and equilibrium information for stel-

larators focused on cases with no net toroidal current. For the TJ-II stellarator in Madrid, Spain,

with model pressure profiles specified by two parameters, it was shown that only two magnetic

diagnostics were required to adequately reconstruct the pressure profile [57]. This is not a strong

result, however, since only very simple (linear) plasma pressure profiles were considered.

The challenges for 3-D equilibrium reconstruction are similar to those encountered in toka-

maks: It is difficult to discern pressure and current profiles with small differences [58] and because

the magnetic field outside the plasma is the integrated effects of current density in the plasma, there

are few independent quantities that can be extracted from the data [59]. So, while there is more

information about the plasma profiles contained in the magnetic field of a stellarator, there are open

questions as to which information can be extracted (measured) and to what degree of accuracy.

One of the limits of the early 3-D reconstruction work was that a large amount of computational

time was required to calculate the 3-D MHD equilibrium. With computational power increasing

thanks to Moore’s law, the speed, accuracy and fidelity of the MHD calculation has improved

dramatically. This has enabled the reconstruction of stellarator plasmas with magnetic diagnostics

to be studied more carefully.

Function parameterization (FP) is one such computational study that provides insight into the

prospects of the reconstruction based on magnetic diagnostics [60]. FP is a method to invert com-

putational models that map input parameters to the measurements. Here, the input parameters

describe the plasma pressure profile, current profile, and other relevant pieces of information, such

as the main field current and magnetic configuration. A large database of input parameters is gener-

ated, which span the operational space of the particular configuration. Next, the MHD equilibrium

solution for each set of inputs is calculated, and the magnetic signals for each diagnostic is calcu-

lated. These are the simulated measurements. The next step is to remove redundant or insignificant

information from the measurements. By applying principal component analysis (PCA) to the ma-

trix of (input parameters)×(measurements), [61], the number of dimensions in the measurements

can be reduced [62], and the inverse mapping from the measurements back to the input parameters

can be found.
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The recovery of pressure profiles for the W7-AS plasma profiles with no net current using

the FP technique was studied [63]. The results of the study were that only two moments of the

pressure profile were readily recoverable: an average pressure profile and a peaking factor. There

was little or no chance to resolve the higher-order structure of the pressure profile with more than

15%− 25% certainty [64]. A similar study was performed for the future successor to W7-AS, the

W7-X stellarator, but both pressure and current profiles were variable [65]. Two profile parameters

for each the pressure and current could be resolved. While disappointing in terms of equilibrium

reconstruction, this result is, in part, due to the optimization of the W7-X stellarator. It is optimized

to minimize the plasma currents.

In contrast to W7-X, a singular value decomposition (SVD) study of magnetic diagnostics on

the quasi-axisymmetric stellarator, NCSX, which involved the calculation of 1800 likely equilib-

rium and corresponding magnetic signals, predicted that up to 19 unspecified plasma profile pa-

rameters could be extracted from a dense set (60×20 = 1200) of diagnostic signals [66]. The final

set of diagnostics included only 225 magnetic diagnostics, but because the machine was canceled

before it became operational, further analysis of the diagnostic set and reconstruction capabilities

have not been performed.

The FP technique provides insight into how well a reconstruction performs in a global sense

(over the span of the input database), but it does not provide information on how well the recon-

structed profiles represent the experimental ones in a local sense (local in parameter space). An

alternative method of reconstructing the plasma profiles for 3-D configurations, which is more

like the method involved in EFIT, involves using SVD to approximate a quasi-newton algorithm

for choosing new parameters in a nonlinear least-squares minimization routine [67]. This code is

called V3FIT. The search for the reconstructed pressure and current profiles is an iterative one.

The MHD equilibrium for an ‘initial guess’ of profiles is solved, and the magnetic signals are

calculated [68]. For each variable input parameter, that parameter is adjusted and the equilibrium

solution and diagnostic signals are calculated. That parameter is then set back to its original value

and the next input parameter is adjusted until each parameter has been varied. The path to min-

imizing the mismatch between the measured and modeled signals is optimized by the SVD step
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because it selects the search direction based on the signals that are found to be statistically most

significant in the local parameter space.

External magnetic diagnostics are not the only way to measure the effects of plasma current.

Other methods are available, but not practical for HSX, at least at present. Polarimetric measure-

ments of the Faraday rotation angle of probe beams provide a line-integrated density-weighted

parallel B measurement, ∼
∫

dlNeB‖ [69] [70]. In HSX the rotation angle is estimated to be too

small to be reliably measured [71]. Another method is based on motional Stark effect polarimetry

(MSE) [72] [73]. A diagnostic neutral beam is launched into the plasma. The Stark splitting of

the emission line results in a polarization angle that depends on the magnetic field pitch. HSX

does have a diagnostic neutral beam, but the splitting of the emission line is likely to be to small to

observe in HSX.

1.4 Thesis Outline

This dissertation describes the modeling and reconstruction of the equilibrium currents that

are present in the HSX stellarator during plasma operations. In Chapter 2, the MHD equilibrium

currents (diamagnetic and Pfirsh-Schlüter) and their properties in HSX are presented. The neo-

classical bootstrap current, driven by viscous damping between trapped and circulating particles

is also discussed in Chapter 2. A qualitative description of the bootstrap current in tokamaks is

outlined. The important effect of Er and momentum conservation are included for the stellarator

picture, and the PENTA code is described. PENTA is used extensively to calculate the steady

state parallel current and parallel conductivity. The DKES coefficients used by PENTA have been

benchmarked [74], but the results of PENTA have not been checked against other MC-codes.

In typical plasma discharges in the HSX stellarator, the net toroidal current continues to evolve

(rise) on the timescale of the experiment and don’t reach steady-state by the end of the shot. The

temporal evolution of the net toroidal current is described in Chapter 3. The evolution is first

discussed in a cylindrical geometry. The modeling for a general non-axisymmetric toroidal con-

figuration is then presented. A 1-D diffusion equation is derived which describes how the current

or rotational transform evolves during the plasma discharge. The diffusion equation uses a 2 × 2
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susceptance matrix, S, relating the toroidal and poloidal current to radial derivatives of the toroidal

and poloidal magnetic flux. The S-matrix is calculated from geometric information describing the

shape of the flux surface. The outlined technique is appropriate for any toroidal configuration, can

be calculated rapidly, and can incorporate several different boundary conditions (prescribed net

current, loop voltage, or free-resistive relaxation). The diffusion equation is solved numerically by

a time evolution code called iota evolution generate (IEG) which simulates the evolving rotational

transform and current profile as a function of time. The bootstrap current density and the parallel

conductivity from PENTA are used as inputs for IEG.

In Chapter 4, a set of magnetic pick-up coils or sensors is described. These diagnostics are used

to measure the magnetic field generated by the plasma current outside of the plasma column. Post-

shot signal processing is performed to remove the effects of the background magnetic vacuum field

from each diagnostic, and these signals are used as constraints in a 3-D equilibrium reconstruction.

To facilitate this, two software codes, V3RFUN and V3FIT are described. V3RFUN calculates

a Green’s function response of each magnetic diagnostic due to the magnetic fields generated by

both the field coils and the plasma current [68]. This response is calculated once and stored in

a database. The V3FIT code reads the information of the current distribution from the output of

an equilibrium solver (VMEC, in this case) and uses the response functions to calculate the total

signal for each magnetic diagnostic. V3FIT then uses a singular value decomposition (SVD) to

approximate a quasi-newton algorithm in a least-squares minimization routine, where the profiles

of the plasma pressure and current are adjusted to find a best-fit between the measured and modeled

signals.

In Chapter 5, the results of experiments in the QHS magnetic configuration with near-axis

ECH (50 kW and 100 kW) and off-axis ECH heating are presented. The measured Te, Ne, and

Ti profiles and the calculated bootstrap current and σ‖ profiles are shown. The evolved current

profile, based on the PENTA calculation, is used as an initial guess for the 3-D reconstruction, and

the reconstructed profiles are compared to the measured profiles.
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Chapter 6 will discuss the conclusions of the experimental results and unresolved questions

regarding the bootstrap current in the HSX stellarator and provide suggestions for possible fu-

ture research topics, including benchmarking PENTA, improving the reconstruction of the plasma

profiles, and studying effects of rational surfaces (magnetic islands) in HSX plasmas.
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Chapter 2

Magnetohydrodynamic Equilibrium and Neoclassical Bootstrap
Currents

This chapter presents the models describing the equilibrium currents in the HSX stellarator.

The solution to the magnetohydrodynamic (MHD) equilibrium relates the plasma pressure gradient

to the diamagnetic and Pfirsch-Schlüter current, which are part of the total equilibrium current. The

Pfirsch-Schlüter current is a dipole current that rotates helically with |B| contours in HSX, rotating

360◦ in the poloidal direction along a single field period. The neoclassical viscosity between

trapped and circulating populations of particles on a flux surface drives the bootstrap current. In a

tokamak, the bootstrap current has a relatively simple expression and there is no radial electric field

dependence, but it will be shown that in a stellarator, when momentum conservation is included

between the plasma species, the bootstrap current has a strong dependence on the radial electric

field. The main current-carrying components of the plasma are the passing particles. The value

of the bootstrap current that is calculated is a steady-state estimate. It is not a self-consistent

estimate in the sense that the modifications to the magnetic spectrum due to the presence of the

bootstrap and MHD current are not considered. These effects on the magnetic spectrum are small:

major resonances in the rotational transform profile are avoided, and the |B|-spectrum shows little

change because of the high effective transform that results in small currents. The time for the

bootstrap current to reach steady-state is on the scale of the slowing down time between like particle

collisions, which is on the order of ms in HSX plasmas. In Chapter 3, the reaction of the plasma

to the onset of the bootstrap current is considered and leads to an evolving current profile in the

plasma column.
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2.1 Basic MHD

In magnetohydrodynamics, the force-balance equation and the divergence-free condition of

plasma current are

J× B = ∇p (2.1)

∇ · J = 0 (2.2)

The Lorentz (J×B) force generated by the plasma current balances the force of the plasma pressure

gradient, and the equilibrium current on each flux surface is divergence-free. The component of

the current that is perpendicular to the field lines and lies within the flux surface is found by taking

B× Eqn 2.1. With Φ as the toroidal flux enclosed by a flux surface and expanding∇p = dp
dΦ
∇Φ,

J⊥ =
B×∇Φ

B2

dp

dΦ
(2.3)

This is the magnetization or diamagnetic current, which is driven by the pressure gradient and is

proportional to the geodesic curvature, [1]. Since both B and ∇Φ vary on a flux surface, J⊥ is not

constant on the flux surface. To maintain a divergence-free current, Eqn 2.2 implies that a parallel

(to B) current is required:

∇ · J = ∇ · J⊥ +∇ · J‖ (2.4)

∇ · J⊥ = −∇ · J‖ (2.5)

By writing

J‖ = hB
dp

dΦ
(2.6)

where h is a single valued function of space, and using Eqn 2.3, Eqn 2.5 becomes a magnetic

differential equation [2]:

B · ∇h = ∇ ·
(

B×∇Φ

B2

)
(2.7)

= −2
(B×∇B) · ∇Φ

B3
(2.8)
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The parallel current, J‖, consists of two parts. The first part, the Pfirsch-Schlüter current,

exactly balances the diamagnetic current and has no net parallel component on the flux surface.〈
J‖PS · B

〉
= 0 (2.9)

The angled set of brackets, 〈 〉, is a flux-surface average operator. The Pfirsch-Schlüter current

will be discussed in more detail in section 2.2. The second part of the solution allows for a net

parallel component, 〈
J‖ · B

〉
= J||,net 6= 0 (2.10)

Section 2.3 will discuss the contributions to this term.

2.2 Pfirsch-Schlüter Current

Consider the quantity 1/B2 in Eqn 2.7. By employing Boozer flux coordinates [3] where ζB

and θB are the toroidal and poloidal angular coordinates, respectively, 1/B2 can be expressed as a

Fourier series:

1

B2
=

1

B2
0

∑
n,m

δn,m cos (nζB −mθB) (2.11)

The amplitude of the spectral component is δn,m, and (n,m) are the toroidal (n) and poloidal (m)

mode number pairs. The Pfirsch-Schlüter current is expressed as [4]

JPS =
B
B2

0

dp

dΦ

∑
(n,m)6=(0,0)

nI +mF

n−m ι
δn,m cos (nζB −mθB) (2.12)

The quantity I is the total toroidal current enclosed within a flux surface and F is the total poloidal

current external to a flux surface. In the quasi-helically symmetric (QHS) magnetic configuration

of HSX [5], the largest contribution is from the dominant spectral component, δ4,1:

JPS,QHS =
B
B2

0

dp

dΦ

4I + F

4−  ι︸ ︷︷ ︸
reversal, reduction

δ4,1 cos (4ζB − θB)︸ ︷︷ ︸
toroidal rotation

(2.13)

The helical axis of symmetry and the effective elimination of the (n,m) = (0, 1) toroidal

curvature term in the QHS configuration has three consequences. First, the dipole Pfirsch-Schlüter



27

current rotates with the helical |B| contours due to the cos(4ζB − θB) dependency. Numerical

methods to calculate the normalized quantity, hB in Eqn 2.6, and the Pfirsch-Schlüter current,

J‖PS , by field-line following are derived elsewhere [6], [7]. Figure 2.1 shows the quantity JP.S · B
on vertical slices at three toroidal angles in the QHS configuration. The results from the VMEC

code (see AppendixA), are shown in Figure 2.2. The pressure profile for these two cases is shown

in Figure 2.3, which is peaked on-axis and is typical of centrally-heated plasmas in HSX. In the

VMEC input file for this case, the net toroidal current was set to 0,
〈
J‖ · B

〉
= 0. The region of

(JP.S · B > 0) rotates from the outboard side of the plasma column at ζ = 0◦ to the top of the

column at ζ = 22◦ and to the inboard side at ζ = 45◦, which is 1/2 of a field period from the

first slice. There is good agreement between the line-following method and VMEC. The shape

of the edge of the plasma column in the VMEC case does not reflect the level of detail as in the

line-following results because of the finite Fourier series used to represent the MHD quantities and

inverse coordinates.
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Figure 2.1 JP.S · B in QHS at three toroidal
angles along 1/2 of a field period, calculated

by a line-following technique.
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Figure 2.2 JP.S · B in QHS at three toroidal
angles along 1/2 of a field period, calculated

by VMEC.

The second consequence of Eqn 2.13 is that the Pfirsch-Schlüter current is directed opposite

to that in a tokamak. This arises because the B × ∇B-direction in HSX is opposite to that in a
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Figure 2.3 The centrally-peaked radial pressure profile for the Pfirsch-Schlüter current density
contours in Figure 2.2.

tokamak, Eqn 2.8 and Figure 2.4. More specifically, this holds true for the region where the QHS

field is most ‘tokamak-like’, where the low-field side is on the outboard side, ζ = 0, θ = 0. This

can also be seen with Eqn 2.12 with (n,m) = (0, 1) as the dominant term and comparing it to Eqn

2.13:

JPS,tok =
B
B2

0

dp

dΦ

F

− ι
δ0,1 cos (−θB) = − B

B2
0

dp

dΦ

F

 ι
δ0,1 cos (θB) (2.14)

The third consequence of Eqn 2.13 is that the magnitude of the current is reduced by a factor

of n − m ι ≈ 3. A useful measure of the reduction of the Pfirsch-Schlüter current is made by

comparing the quantity
〈
J2
‖PS/J

2
⊥

〉
in QHS with an equivalent tokamak. An ‘equivalent tokamak’

is defined as a tokamak with the same effective (average) major and minor radii and the same ro-

tational transform as the QHS configuration,  ι ∼ 1, described in Appendix A. The results of the

VMEC calculation for this quantity in QHS and for an equivalent tokamak is in Figure 2.5. The

pressure profiles for each case is 2000
(

1− Φ
ΦLCFS

)2

. The Pfirsch-Schlüter current density is re-

duced in QHS by a factor ≈ 3-3.5, favorably increasing the equilibrium beta limit. The achievable

equilibrium beta limit due to a Shafranov shift of 1/2 of the minor radius is approximately 35% [5].
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Figure 2.4 |B|,∇B, and a field line, ~B, on a flux surface for a large aspect-ratio axisymmetric
tokamak (top) and the QHS configuration (bottom).

2.3 Neoclassical Parallel Bootstrap Current

Recall the second part of the parallel current on the flux surface, Eqn 2.10. This term is the

sum of inductive and non-inductive sources. In HSX, there is no direct inductive drive during

the shot (no ohmic heating transformer), and the electron cyclotron heating source is launched

perpendicular to the plasma column and should drive little to no parallel current. Plasma discharges

in the QHS magnetic configuration with similar density and temperature profiles but with the main

magnetic field reversed show similar levels of toroidal current, but in opposite directions, as seen

in Figure 2.6. This is the expected behavior of a plasma with bootstrap current but little to no
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ECCD. The net toroidal current was also independent of small changes in the time-varying main

field current (∼ 0.3%).
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Figure 2.6 QHS, 50 kW, ρECRH . 0.1: Measured net toroidal current for an ensemble average of
shots with the magnetic field in the CCW (blue) and CW (red) directions.
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2.3.1 Large Aspect Ratio Tokamak

The toroidal (or helical) curvature in toroidal plasmas results in two classes of particles for each

species on a flux surface: trapped and passing [8]. The trapped particles are confined inside the

magnetic potential well, or ripple-trapped, along the field line, whereas the passing particles have

enough kinetic energy to pass beyond the magnetic potential and circulate around the surface. The

trapped particles have a collective drift velocity, and the collisions between the passing particles

and the trapped particles leads to a net current, called the bootstrap current.

In a large-aspect ratio axisymmetric tokamak, with minor radius r and major radius R0, ε =

r/R0, and the magnetic field strength along a field line is given by

B

B0

=
1

1 + ε cos θ
≈ 1− ε cos θ (2.15)

The magnetic field strength varies with the poloidal angle, θ. The guiding center drift of particles

confined within such a field exhibit two different types of behavior depending on the ratio of their

parallel velocity, v‖, and total velocity, v. For particles with
∣∣v‖
v

∣∣ &
√

2ε, the particles make

complete toroidal orbits, but experience a small excursion in their orbit due to ∇B and curvature

drifts. Those that have v‖ > 0 (parallel to the direction of B) trace out orbits with a radius that is

slightly larger than the flux surface, while those with v‖ < 0 trace out orbits with a radius slightly

smaller. The projection of these two trajectories for ‘passing’ particles onto a single poloidal slice

(a vertical slice through the plasma column at a single toroidal angle) is shown in Figure 2.7.
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Figure 2.7 Orbits of passing particles. The
flux surface is shown as a dotted line.
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Figure 2.8 Orbits of trapped particles. The
flux surface is shown as a dotted line.
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Particles with
∣∣v‖
v

∣∣ . √2ε become ‘trapped’ in the magnetic wells. They do not have sufficient

parallel velocity to pass beyond the maximum value of the magnetic field. Instead, they have

turning points where their parallel velocity becomes zero and then reverses direction. The poloidal

projection of these orbits represent bananas; hence the name, ‘banana orbits’, Figure 2.8. Consider

the particles that start at the tangent point of the two banana orbits, ‘P’. Those that start with v‖ > 0

drift off the flux surface to a slightly larger radius until they reach the turning point where v‖ = 0

and reverse direction. It continues to drift further off of the surface until it passes through Z = 0

and then experiences a drift inwards until it returns to the starting surface. The particles that start

with v‖ < 0 drift inwards during the 1st 1/2 period of a bounce orbit, and then drift outward on the

2nd 1/2 period.

The distance a moderately trapped particle travels between the turning points in a tokamak is

πR0/ ι. The total particle velocity is related to the thermal velocity by v2 ∼ 3
2
v2
T , so the average

parallel velocity for a typical trapped particle is v‖,t ∼
√

2εv/2 ∼ √εvT . The time for a trapped

particle to travel between turning points is τb ∼ πR0/( ιv‖) ∼ πR0/( ι
√
εvT ). The bounce fre-

quency is ωb = 2π/2τb =  ι
√
εvT/R0. The time for a trapped particle to collisionally scatter in

pitch angle to become untrapped is τeff ∼ ετ90◦ , where τ90◦ = 1/ν is the time for the particle to

scatter 90◦ in pitch angle. The effective collision rate to untrap is then νeff ∼ ν/ε. The only par-

ticles that complete banana orbits are those that do not untrap faster than they traverse the banana

orbit. For a significant number of particles on the flux surface to be in the ‘banana’ regime, the

normalized collision rate must be small, ν∗ =
νeff
ωb
∼ R0ν

 ιvT ε3/2 � 1. The trapped particle fraction,

ft,QHS = 1− 3
4
〈B2〉

B−1
max∫
0

dλ λ

〈(1−λB)1/2〉 [9], where λ is the pitch angle, and effective electron col-

lisionality, ν∗, for a 50 kW ECRH QHS plasma are shown in Figures 2.9 and 2.10. (The plasma

profiles are in Figures 5.6 and 5.7) The QHS magnetic configuration has a trapped particle fraction

around 30− 50% , and the effective collisionality for this case is ν∗ ∼ 0.1� 1 across most of the

plasma column, so the electrons are well in to the banana, or 1/ν regime.

If there is a negative density gradient in the plasma, then there will be more particles that

follow the shifted-in orbits than the shifted-out orbits. If there is a negative temperature gradient,

the particles on the shifted-in orbits will be faster than those on the shifted-out orbits. In either
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the electron population in QHS,
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case, there will be an imbalance in the effective number of charged particles passing the point P

in the direction parallel to B, and a net current will be generated. The current generated by the

trapped particles in a plasma with temperature T = constant and a density gradient is [8]

Jt = −
√
ε

 ι

T

B0

dn

dr
(2.16)

The difference in the orbits of the passing particles also results in a parallel current. In this case,

Jp = −1

 ι

T

B0

dn

dr
(2.17)

This current is larger than that from the trapped particles by 1/
√
ε.

Consider the rate of momentum transfer from the passing particles to the trapped particles

and from the trapped particles to the passing particles. In each case, the quantity is (density) ×
(mass) × (velocity) × (collision rate).

〈
v‖,p
〉

= up = Jp/(qnp) and
〈
v‖,t
〉

= ut = Jt/(qnt) are

the fluid flow velocities for the passing and trapped particles, respectively, in terms of the current,

electronic charge, q, and density associated with the different populations. In the large-aspect

tokamak limit, the trapped particle fraction, ft ∼
√

2ε is small, because ε� 1. The density of the

passing particles is np ≈ n and the density of the trapped particles is nt ≈
√

2εn. The collision

rate is ν for the passing particles and ν/ε and for the trapped particles. The momentum transfer
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rates from the passing to trapped particles, δPp→t and for trapped to passing particles, δPt→p are

δPp→t ∼ m up np ν = m
Jp
q
ν = − mT

q ιB0

ν
dn

dr
(2.18)

δPt→p ∼ m
Jt
q

ν

ε
= − mT

q ιB0

ν√
ε

dn

dr
(2.19)

The momentum transfer from the trapped particles to the passing particles is larger by a factor

of ∼ 1/
√
ε. In steady state, this momentum transfer manifests itself as a steady fluid flow in

the passing particles, uB. The momentum transfer rate from the passing particles to the trapped

particles is

δPp→t ∼ m(up + ub)nν = m

(
Jp
q

+ ubn

)
ν (2.20)

In steady state, the total rate of momentum transfer between the trapped and passing particles is

zero, δPp→t = δPt→p, so

− mT

q ιB0

ν
dn

dr
+muBnν = − mT

q ιB0

ν√
ε

dn

dr
(2.21)

JB ≡ quBn =
T

 ιB0

dn

dr

(
1− 1√

ε

)
≈ − 1√

ε

T

 ιB0

dn

dr
(2.22)

The bootstrap current, JB, is caused by momentum transfer from the trapped particles to the pass-

ing particles, and results in a fluid flow in the passing particles. The bootstrap current is larger

than that from orbit drifts by orders of magnitude: JB ∼ Jp/
√
ε ∼ Jt/ε. The trapped particles are

necessary to drive the bootstrap current, but the largest effect comes from the momentum balance

between the trapped and circulating particles.

The preceding explanation for the source of the bootstrap current is appropriate for the large-

aspect ratio tokamak, but the coefficients were only crude estimates. More exact expressions for

the bootstrap current in a tokamak were derived for: the large-aspect tokamak limit, including

the effects of the temperature and density gradients separately [8], finite toroidal field ripple, low

collisionality regime [10], finite aspect-ratio limit, low collisionality regime [11], and temperature

and density scalings of the bootstrap current for tokamaks were derived from computational studies

[12].



35

2.3.2 Nonaxisymmetric Transport Analysis: Radial Electric Field, Flows, Vis-
cosity and Momentum Conservation Between Plasma Species

For stellarators and heliotrons, estimates of the bootstrap current typically involve solving the

drift kinetic equation (DKE) in some asymptotic limit. The moment method approach has been

used to describe the neoclassical transport fluxes and parallel plasma flows for both axisymmet-

ric [9] and non-axisymmetric toroidal plasmas. For example, the bootstrap current density for

each of the following non-axisymmetric plasmas is available, in the limit of small fluid flow: the

Pfirsch-Schlüter collisional regime [13], plateau [14], and banana regime [6] [13] [15] [16]. Con-

nection formulas are sometimes used to smoothly connect the estimates of the several regimes [17].

Monte-Carlo calculations [18] of the bootstrap current for arbitrary collisional frequency and Er,

a variational numerical method [19], and very recently, one based on a method that conserves mo-

mentum between the species of which the plasma consists [20], are all used as benchmarks for

the other estimates. Two extrema are of particular relevance in the HSX stellarator: the bootstrap

current density while neglecting the effects of momentum conservation and Er [21], and the case

where Er is self-consistently included in the transport calculations and the effect of momentum

conservation between the plasma species is included [22].

If the effects of the radial electric field are ignored, and particles are assumed to be in the 1/ν

regime, then for a toroidal device dominated by a single magnetic harmonic, such as a quasi-helical

stellarator or axisymmetric tokamak, the bootstrap current for a magnetic configuration dominated

by a single harmonic is [21]:

JB = 1.46
g

B0

m
√
bn,m

n−m ι

[
1.67 (Te + Ti)

dn

dΦ
+ 0.47n

dTe
dΦ
− 0.29n

dTi
dΦ

]
(2.23)

where the dominant harmonic is bn,m. The g in this expression is the poloidal current outside

of the flux surface, times the permeability of free space, µ0. Compare Eqn 2.23 for a traditional

tokamak with dominant harmonic b0,1 to a quasi-helically symmetric system like HSX with b4,1.

The bootstrap current in HSX is reduced by a factor of n−m ι ≈ 3 and the bootstrap current is in

the opposite direction because the∇B and curvature drifts, b · ∇b are reversed, Figure 2.4.
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The effects of the radial electric field and arbitrary collisionality are neglected in Eqn 2.23, and

these both have significant consequences regarding the equilibrium neoclassical flows and currents

in the plasma fluid [22] [23]. To address these effects, the drift kinetic equation, momentum

conservation and radial electric field must be considered, self-consistently. The modifications to the

transport coefficients are related to the monoenergetic transport coefficients solved for by DKES

[22].

In a general 3-D toroidal configuration with non-symmetric field components, the particle and

energy radial fluxes and in-surface flows are related in a complicated manner. In general, particle

orbits and collisions will depend on temperatures, densities and their gradients. The Drift Kinetic

Equation Solver (DKES) [19] uses a variational principle to find upper and lower bounds of the

monoenergetic transport coefficients as a function of collisionality and radial electric field. A large

database of coefficients have been generated to cover the regimes applicable to HSX plasmas,

and the results have been extrapolated to the case of large Er when necessary [24]. Neglecting

conservation of momentum, and using the database of DKES transport coefficients, the parallel

current for species ‘a’ with electric charge qa can be written as

J‖,a =
1

B0

〈Ja · B〉 = qaI3a (2.24)

where I3a is the thermodynamic flow,

I3a = −na
3∑
j=1

La3jAaj (2.25)

The thermodynamic forces are

Aa1 =
n′a
na
− 3

2

T ′a
Ta
− qaEr

Ta
(2.26)

Aa2 =
T ′a
Ta

(2.27)

Aa3 = − qa
Ta

〈B · E〉
〈B2〉 B0 (2.28)

The prime (′) indicates a radial derivative. Ta, na, and qa are the temperature, density and elec-

tric charge of species ‘a’. Er is the radial electric field. The transport coefficients are found by
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convolving the monoenergetic transport coefficients, Da
3j , with appropriate energy moments:

La3j =
2√
π

∞∫
0

dKaK
1/2
a e−KahjD

a
3j(Ka) (2.29)

h1,3 = 1, h2 = Ka (2.30)

Ka =
mav

2

2Ta
(2.31)

The monoenergetic coefficients are calculated by DKES. They are defined such that Da
11 =

Da
12 = Da

21 = Da
22, Da

13 = D23, Da
31 = Da

32. Da
11 describes radial transport, Da

33 describes parallel

transport, Da
13 is related to the Ware pinch, and Da

31 is related to the bootstrap current. By Onsager

symmetry, Da
13 = −Da

31 [25].

The expression of the neoclassical bootstrap current in Eqn 2.24 neglects momentum conserva-

tion between different plasma species. This is acceptable if the plasma fluid flows are small, such

as in the case of conventional stellarators. This is not the case for quasi-symmetric stellarators or

tokamaks, which are expected to have a high level of flow because of a direction of symmetry in

|B|. This flow has been measured in the quasi-helically symmetric stellarator, HSX [26] [27], and

the measured ion flow exceeds that indicated by the model that neglects momentum conservation

(MC) effects, Figure 2.11.
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Figure 2.11 Measured parallel (to B) ion flow and calculated values that included and neglect
momentum conservation. Figure courtesy A. Briesemeister [27].
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A model that includes these effects has a few additional terms [22]. The parallel flows with

MC are found by solving the following system of equations [24]:

ma

jmax∑
k=0

〈
Bu‖ak

〉
〈B2〉

∥∥∥∥νaDFa(v2 〈B2〉
3νaD

−Da
33B

2
0

)
L

3/2
k

∥∥∥∥
j

+ B0‖FaDa
31‖jTaAa1 +B0‖FaDa

31Ka‖jTaAa2

=
∑
b

jmax∑
k=0

[
labj+1,k+1

〈
Bu‖bk

〉
+ δj0naTa

〈B2〉
B0

Aa3

]
(2.32)

Here, L3/2
j are the Sonine polynomials, νaD is the energy dependent perpendicular scattering fre-

quency [19], labj+1,k+1 are the classical friction coefficients [9], and

Fa(Ka) =
2Ka 〈B2〉
3B2

0D
a
33

(2.33)

The ‖A‖ operator is a Sonine-weighted energy convolution over a Maxwellian distribution, defined

as

‖A(Ka)‖j ≡ na
2√
π

∞∫
0

dKa

√
Kae

−KaL
3/2
j (Ka)A(Ka) (2.34)

The sum over k is truncated as some jmax, representing the truncation of the Sonine-expansion of

the energy dependence of the velocity moment of the first order distribution function, f l=1
a1 [24]. In

Eqn 2.32, the left side of the equation is the neoclassical parallel viscosity and the right side of the

equation is the parallel friction and parallel electric field forces. The parallel flow of each species

is found as a function of the radial electric field.

The radial particle and energy fluxes are a sum of contributions from the banana-plateau, non-

axisymmetric, and Pfirsch-Schlüter fluxes. The sum of the first two contributions, banana-plateau

and non-axisymmetric, is denoted as Γbna and Qbn
a , respectively, for the particles and energy, while
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the Pfirsch-Schlüter contribution is likewise denoted as ΓPSa and QPS
a . The fluxes are given by Γbna

Qbn
a /Ta

 = B0

jmax∑
k=0

 ‖FaDa
13‖k

‖FaDa
13Ka‖k

 〈Bu‖,ak〉
〈B2〉

−

 ‖La‖0

‖LaKa‖0

Aa1 −

 ‖LaKa‖0

‖LaK2
a‖0

Aa2 (2.35)

 ΓPSa

QPS
a /Ta

 =
〈
Ũ2
〉∑

b

Tb
qaqb

 lab11 −lab12

−lab21 lab22

 (Ab1 + 5
2
Ab2
)

Ab2

 (2.36)

La is the monoenergetic particle diffusion coefficient:

La = Da
11 −

2maTaKaν
a
D

3q2
a

〈
Ũ2
〉

+
3B2

0

2 〈B2〉
(Da

13)2

Ka

Fa (2.37)

The factor Ũ is related to the Pfirsch-Schlüter term, h in Eqn 2.7

B · ∇
(
Ũ

B

)
= B×∇r · ∇ 1

B2
(2.38)〈

BŨ
〉

= 0 (2.39)

The fluxes are now calculated as a function of radial electric field. Ambipolarity is enforced to

determine a unique set of solutions for the radial electric field (Er), fluxes (Γ), and flows (u‖)

Γbne + ΓPSe =
∑
b=ions

Zb
(
Γbnb + ΓPSb

)
(2.40)

The parallel current density for each species is J‖,a = qana
〈
bu‖,a0

〉
where b = B/B0 and the total

parallel current is

J‖ =
∑

J‖,a (2.41)

The bootstrap current is found by setting the parallel electric field force to 0:

Jbootstrap = J‖

∣∣∣
Aa3=0

(2.42)

and the inductively driven current is found by setting the gradient forces to 0:

Jinductive = J‖

∣∣∣
Aa1=Aa2=0

(2.43)
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The parallel conductivity of the plasma, which accounts for the effects of trapped particles, can be

solved for numerically by using

σ‖ =
Jinductive

∣∣
Aa1=Aa2=0,E‖=Eind 6=0

Eind
(2.44)

For a two species plasma, this parallel conductivity reduces to the analytic results [16]

σ‖ =
(nee)

2 leb22

leb11l
eb
22 − (leb12)2

(2.45)

In a stellarator, the flows and radial electric field are not independent. The radial fluxes are a

function of the magnetic configuration, plasma temperature, density and their radial gradients. The

radial electric field is determined by the ambipolarity constraint, and influences the fluid flows.

The fluid flows, in turn, affect the radial fluxes. The PENTA code [23] calculates the neoclassical

fluxes, flows, and Er as outlined above, self-consistently. PENTA was adapted and extended for

use at HSX [24], to predict the radial electric field and steady state fluid flows. The time required

to perform a PENTA run for a plasma profile depends on the order of the Sonine polynomials

to include in the expansion of the flow and flux equations, Eqns 2.32 and 2.36, ranging from 5

minutes for 35 surfaces and 2 Sonine polynomials, to 20 minutes for 35 surfaces and 6 Sonine

polynomials, on a 2.13 GHz 64 bit Intel Core 2 Duo with 2 GB ram and running the GNU/Linux

operating system. PENTA can be also be run in ‘DKES’ mode, where momentum conservation is

not included in the solution.

The bootstrap current density is related to the monoenergetic transport coefficient, Da
31. This

coefficient is a complicated function of collisionality and Er. The normalized transport coefficient,

D∗31 is defined as

D∗31 =
Da

31

mav2/2q2
aB0

(2.46)

Figures 2.12 and 2.13 show contour plots of D∗31 versus the normalized collisionality and normal-

ized Er for a surface near the mid-radius, ρ ' 0.5. For low-collisionality and small Er (the lower

left corner of each figure), the coefficient is nearly constant. In the high collisionality regime (the

upper part of each figure) the coefficient approaches 0. The dependence onEr is more complicated,
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and can increase or decrease depending on the collisionality. The differences between the QHS and

Mirror configuration are small in the high-collisionality regime, but are more pronounced in the

low collisionality regime. Here, the coefficient is about 2-3 times larger in QHS than in Mirror for

most Er values, suggesting that higher parallel flows may be achieved in QHS than in Mirror for a

similar set of conditions, if the effects of Er and MC are not too large.

Figure 2.12 Normalized monoenergetic
coefficient, D∗31 in the QHS configuration for

ρ ' 0.5.

Figure 2.13 Normalized monoenergetic
coefficient, D∗31 in the Mirror configuration

for ρ ' 0.5.

2.4 Parallel currents with and without momentum conservation

To illustrate the effects of momentum conservation on the parallel currents, consider a simple

two-species hydrogen-electron plasma with

ne = ni = 0.1 + 4.9(1− ρ) · 1018 m−3 (2.47)

Te = 45 + 1050
1

N0

((
1 +

( ρ

0.27

)2
)−1

− c0

)
eV (2.48)

c0 =
(
1 + 0.27−2

)−1
N0 = 1− c0

Ti = 44 + 17(1− ρ2) eV (2.49)
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The radial profiles, with ρ =
√

Φ/ΦLCFS are shown in Figures 2.14 and 2.15. These profiles

are similar to those achieved in the HSX stellarator in the QHS configuration with 50 kW ECRH,

ρECRH . 0.1 and in the 11% Mirror configuration with 100kW ECRH, ρECRH . 0.1.
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Figure 2.14 Example density profile.
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Figure 2.15 Example temperature profile.

The results of the PENTA calculation both including and neglecting the effects of momentum

conservation are shown in Figures 2.16 - 2.19. The magnetic configuration for this set of calcu-

lations is the QHS configuration. The radial electric field solution varies with the radius, Figure

2.16, but has similar characteristics with or without momentum conservation. The neoclassical

parallel current density (discussed below) is shown in Figure 2.17. The ion flows, Figure 2.18,

are close to zero when momentum conservation is neglected and do not change significantly in the

presence of the electron root. When momentum conservation is included in the modeling, the ion

flows are non-zero. Near the core of the plasma, the flows are large when the Er is in the ion-root

solution and the flows are strongly reduced when Er is in the electron-root. The electron flows

constitute the majority of the parallel current when momentum conservation is neglected, Figure

2.19. Without momentum conservation, the flows are not very different when Er is in either the

ion- or electron- root. When momentum conservation is included, the electron contribution to the

parallel current is similar to the ion contribution across the outer half of the plasma. The electron
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flow near the core is a strong function of Er. The flow is reversed and increased in magnitude

when Er is in the electron root.

The ion and electron fluxes for the cases with and without MC in QHS at ρ = 0.2 are shown

in Figure 2.20. The electron fluxes do not change much when MC is included. The ion flux

experiences a helical particle resonance [28] near |Er| ∼ 65 V/cm, where the E × B drift causes

the ions to experience an uncompensated radial drift, and hence, an increased radial flux [29].

When MC is included, the ion flux is altered slightly and the ambipolar root is different from the

case without MC. The electron flow, ion flow and net current for ρ = 0.2 are shown in Figure 2.21

as a function of Er. Without MC, the ion flow is small for all Er, and the electron flow is nearly

linear with respect to Er. When MC is included, the effects of the poloidal resonance alter the

flow vs. Er profile. For small Er, the particle resonance effects described above alter both flows,

although the net effect on the current is small. For large Er (close to the electron root solution) the

effect of MC between the species is a small increase in the magnitude of the ion flow and a larger

increase in the electron flow. The net effect is a reversal of the total current.

With momentum conservation, the neoclassical parallel current density, Figure 2.17, is in-

creased in the region where Er is in the ion root, compared to the case without momentum conser-

vation. The effect of momentum conservation is much more pronounced in the region where Er is

in the electric root. Without momentum conservation, the current density is slightly increased, but

when momentum conservation is included, the current density reverses direction, due to a combi-

nation of ion flows being reduced and electron flows being reversed and increased in magnitude.

The results of the PENTA calculations with the 10% Mirror configuration, using density and

temperature profiles shown in Figures 2.14 and 2.15, are shown in Figures 2.22 - 2.25. Again,

the ambipolar Er solutions, Figure 2.22, are similar with or without including momentum con-

servation. When momentum conservation is neglected, the ion flows are small, the majority of

the current is carried by the electron flow, and the flows are not strongly affected by the different

Er roots. When momentum conservation is included, and Er is in the ion root, the ion flows and

electron flows are similar in magnitude. When Er is in the electron root, the ion flows are reduced

and the electron flows are increased in magnitude, leading to a reversal of the current density.
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Figure 2.16 The radial electric field in QHS with
(red) and without (blue) momentum conservation

(MC). The ion root solution exists throughout across
much of the plasma radius, while the electron root

exists primarily near the core.
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Figure 2.17 The parallel current density in QHS
with (red) and without (blue) MC. With MC, the

current density reverses in the electron root. Without
MC, the current density shows little change.
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Figure 2.18 The parallel ion flow in QHS with
(red) and without (blue) (MC). Without MC, the ion
flow is near zero. With MC, the ion flow is non-zero

and is reduced in the electron-root solution.
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Figure 2.19 The parallel electron flow in QHS with
(red) and without (blue) (MC). Without MC, the
electron flow is the dominant component of the

parallel current. With MC, the flow reverses in the
electron root.
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QHS at ρ = 0.2. Ambipolar roots, Γi = Γe, are
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(3) electron root w/o MC, and (4) electron root w/
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Figure 2.21 For QHS at ρ = 0.2: TOP: Parallel
flow vs. Er for ions(blue) and electrons(red) with and
w/o MC. BOTTOM: Parallel bootstrap current with

and w/o MC.

For ρ & 0.5, the total current density is similar with or without momentum conservation, but for

ρ . 0.5, the current density is reduced or reversed when momentum conservation is included.

The differences between the current density in the QHS and Mirror configurations are small

when momentum conservation is neglected. The current density is reduced by about 30% for

ρ . 0.2. When momentum conservation is included in the modeling, the currents are reduced for

ρ . 0.4, where the ion flows and Er effects play an important role.

The integrated current profiles for the cases shown in Figures 2.17 and 2.23 are shown in Fig-

ures 2.26 and 2.27, respectively. The profile of the ambipolar Er is important, since it has a strong

effect on the net current that is expected to be measured. Three limiting conditions are plotted.

When the electron-root is the solution wherever it is a stable root, called the e-root dominant case,

the integrated current profile is not monotonic and may switch signs at some radial location. A

non-smoothing curve connects the current density, Jb, at the end of the electron-root, near ρ ∼ 0.3,

to the ion-root solution. If only a small portion of the electron-root is the stable solution, such as

when the ion-root solution does not exist near the axis, then the ion-root solution accounts for most
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Figure 2.22 The radial electric field in Mirror with
(red) and without (blue) momentum conservation

(MC). The ion root solution exists throughout across
much of the plasma radius, while the electron root

exists primarily near the core.
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Figure 2.23 The parallel current density in Mirror
with (red) and without (blue) MC. With MC, the

current density reverses in the electron root. Without
MC, the current density shows little change.
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Figure 2.24 The parallel ion flow in Mirror with
(red) and without (blue) MC. Without MC, the ion

flow is near zero. With MC, the ion flow is non-zero
and is reduced in the electron-root solution.
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Figure 2.25 The parallel electron flow in Mirror
with (red) and without (blue) MC. Without MC, the

electron flow is the dominant component of the
parallel current. With MC, the flow reverses in the

electron root.
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of the total current. If the ion-root is the solution wherever it is a stable root, the profile is called

the i-root dominant case. An additional hypothetical case is shown, called the “ion-root only” so-

lution. Here, in an attempt to mimic the existence of an ion-root solution, the current density is

interpolated between 0 on the axis to whatever value is the closest radial ion-root solution.
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Figure 2.26 The enclosed parallel current
profile for QHS. (The current density is

shown in Figure 2.17.)
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Figure 2.27 The enclosed parallel current
profile for Mirror. (The current density is

shown in Figure 2.23.)

The underlying reasons for the complicated dependency of the parallel currents on the ra-

dial electric field and magnetic spectrum are not well understood, as suggested by the results of

benchmarking studies for several devices, including LHD, NCSX, HSX, and W7-X [30]. In those

benchmarking studies for the HSX devices, for particles at low-collisionality and Er = 0, even

modest symmetry-breaking terms can dramatically affect the monoenergetic transport coefficient

related to the bootstrap current, D∗31, but even a small Er can suppress the effects of the symmetry

breaking.

2.5 Summary

This chapter has shown that with quasi-helical symmetry, the Pfirsch-Schlüter current profile

rotates helically with the toroidal angle. The bootstrap current is in the opposite direction than
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that of a tokamak, reducing the rotational transform. Also, each of these currents is reduced by a

factor of ∼ 1/3 compared to an equivalent tokamak, and modifications to the net bootstrap current

from Er and MC effects are possible. The expected time evolution of the toroidal current profile

in HSX is long compared to the experimental time, so a model of the time evolution of the toroidal

current is required for meaningful comparisons to measured values. Trapped particle effects are

included in the calculation of the parallel conductivity. The next step is to use one of the enclosed

current profiles as a most-likely candidate for the plasma at hand. The choice is suggested by

the extrapolated steady state current from the Rogowski coil. Usually, the profile that agrees best

with the extrapolated steady state current is chosen. The candidate profile will be used in a time-

evolution code that calculates the diffusion of the toroidal current across the plasma column, which

is discussed in Chapter 3. The results of the simulation will provide the initial guess for the V3FIT

reconstruction of the plasma pressure and current profiles, which is described in Chapter 4.
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Chapter 3

Temporal Modeling of Parallel Current

The evolution of the toroidal current in the HSX stellarator is described by the case of resistive

relaxation of an induced electric field driven by the onset of non-inductive bootstrap current during

the rapid pressure rise associated with the application of ECRH. The microwave heating source is

turned on, the neutral gas ionizes and the plasma quickly reaches a quasi-equilibrium within a few

ms with a relatively constant stored diamagnetic energy and line-averaged central density. The net

toroidal current continues to rise throughout the shot, evolving on a timescale of 10’s of ms, while

the density and temperature profiles remain constant after the initial breakdown. Also known as

the ‘rapid heating scenario’ [1], when the plasma pressure increases, the plasma current response

is damped because of the finite conductivity of the plasma column. This is in contrast to a ohmic

current drive, in which a loop voltage is enforced at the plasma edge, (i.e. using the plasma column

itself as a winding in a transformer). The electric field at the edge diffuses into the plasma column

and because the plasma has finite resistance, the current response is damped. In Section 3.1, the

temporal evolution of the net toroidal current in a cylindrical geometry is presented. Section 3.2

extends this model to general nonaxisymmetric toroidal configurations.

3.1 Plasma Current Evolution in a Cylindrical Geometry

In a toroidal confinement fusion experiment, the electron and ion flows on a flux surface, Ue

and Ui, generate electric currents proportional to their densities, Ne and Ni, and, in the case of

ions, the charge state, Zi. This current distribution consists of both inductive and non-inductive
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sources, Jind and Jn.i.,

J = Jind + Jn.i. = qe NeUe + qi
∑
i

NiZiUi (3.1)

The charges of the electron and proton are given by−qe = qi = 1.602 ·10−19 C. An example of an

inductive source would be the ohmic current drive common to most tokamaks (not present on HSX)

and examples of non-inductive sources include bootstrap current and electron-cyclotron current

drive (ECCD). The current distribution generates a magnetic flux, B, according to Ampere’s law

(neglecting displacement current)

µ0 J = ∇× B (3.2)

When the current distribution changes (such as during rapid plasma heating or current-drive mod-

ulation), the magnetic flux also changes and an electric field, Eind, is induced (Faraday’s law)

−∂B
∂t

= ∇× Eind (3.3)

Due to the finite conductivity of the plasma, σ, a current is produced according to Ohm’s law,

Jind = σEind (3.4)

These three equations, along with appropriate initial and boundary conditions, must be solved self-

consistently to describe the spatial and time evolution of the plasma current density as it diffuses

throughout the column.

Consider a cylindrical geometry as shown in Figure 3.1. The current density directed in the

z-direction has no azimuthal (θ-) or height (z-) dependence and can be written as [2]

J(r, t) = ẑJcyl (r, t) (3.5)

Jcyl (r, t) = Jcyl,n.i. (r) + σ (r)E (r, t) (3.6)

In Eqn 3.6, the variables Jcyl,n.i.(r), σ(r), and E(r, t) = Ecyl,ind(r, t) are the non-inductive

current density (bootstrap, ECCD, etc.), electrical conductivity and electric field, respectively. If

changes inE(r, t) do not drastically change Jcyl,n.i.(r) over time, then by taking the time-derivative
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Figure 3.1 Cylindrical coordinate system. Figure 3.2 Toroidal coordinate system.

of Eqn 3.5 and substituting Eqn 3.2 for J and Eqn 3.3 for B, a 1-D radial diffusion equation for the

electric field along the plasma column is [2]

µσ
∂E

∂t
=

1

r

∂

∂r

(
r
∂E

∂r

)
(3.7)

The magnetic permeability is given by µ ≈ µ0. The electric field diffuses radially across plasma

with a characteristic time constant of (a2
cylσµ0), where acyl is the radius of the plasma column.

If one provides the initial total and non-inductive current distributions along with the boundary

conditions (constant current, constant loop voltage, or free relaxation), then the solution of the

electric field, E(r, t) for the diffusion equation is readily computed numerically or analytically

as the sum of Bessel or Bessel-like functions [2]. The radial profile of the current density can

be determined as a function of time by Eqn 3.6. In this model, the azimuthal magnetic field is

modified by the evolving current profile, but changes in the magnetic field along the z-direction do

not occur.

The above model can be applied to axisymmetric tokamak configurations in the high aspect

ratio limit by substituting the cylindrical coordinates with appropriate toroidal coordinates, Figure

3.2. Specifically, this is accomplished by equating the z-direction to the toroidal φ-direction, the

azimuthal θ-direction to the poloidal θ-direction, and the radial r-direction to the (minor) radial ρ-

direction. In effect, the torus is ‘straightened’ into a cylinder. Modifications due to the aspect ratio

and elongation of the flux surface have been considered [3] and changes, relative to the cylindrical
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model, to the external inductance and V-s consumption were found to be important for machines

with a small aspect ratio.

The helical 3-D shaping of the plasma column of HSX adds an additional ‘twist’: the equilib-

rium current profile has both toroidal and poloidal components and couples to both the poloidal

and toroidal magnetic fluxes. The diffusion is not modeled adequately by Eqn 3.7 which only con-

siders toroidal current and poloidal flux. These effects have been considered analytically for simple

profile changes in stellarators with circular cross-sections [1], and more recently, numerically for

general toroidal devices [4]. This modeling is presented next.

3.2 Plasma Current Evolution in a General Nonaxisymmetric Toroidal Con-
figuration

The modeling of the time evolution of the toroidal and poloidal currents and fluxes, relevant for

general nonaxisymmetric toroidal configurations is presented here, following the method described

in references [1] and [4]. A susceptance matrix relates the radial derivative of magnetic fluxes to

plasma and coil currents (Ampere’s law). The components of the matrix are found for a VMEC [5]

(Appendix A) representation of the magnetic field. With the addition of Faradays and Ohms laws,

a 1-dimensional diffusion equation for the rotational transform is derived. Boundary conditions

appropriate for HSX plasmas are given. Finally, the equations are recast into a form appropriate

for a computational numerical solver.

The plasma formulary [6] and Prof. James D. Callen’s Plasma Physics text [7] are useful

references for vector calculus identities and relations. The properties of curvilinear coordinates are

summarized in references [1] and [7], and a very thorough review of the subject is provided in [8].

3.2.1 Current and Magnetic Flux Relations via Ampere’s Law

The notation in this section is as follows: A set of curvilinear coordinates is employed, (ρ, θ, ζ),

where ρ is the radial coordinate, and θ and ζ are general angular coordinates on a flux surface, but

will be referred to as poloidal- and toroidal- like angles which vary from (0→ 2π), Figure 3.2. The

radial coordinate is a flux surface label and is left unspecified at this point to maintain generality.
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The flux surfaces are assumed to be well-defined closed toroidal surfaces. The magnetic field lines

are written in contravariant form,

B = Bρ eρ +Bθ eθ +Bζ eζ (3.8)

with the contravariant components of the magnetic field defined as

Bρ = B · ∇ρ Bθ = B · ∇θ Bζ = B · ∇ζ (3.9)

The radial term, Bρ = 0, because the field lines form closed surfaces and do not leave the surface.

The field lines are assumed to be straight so that both Bθ and Bζ are constant on a flux surface.

The Cartesian coordinate system x = (x, y, z) and the covariant basis vectors are

eρ =
∂x
∂ρ

eθ =
∂x
∂θ

eζ =
∂x
∂ζ

(3.10)

Covariant metric coefficients (or elements) are defined as:

gjk = gkj = ej · ek for j, k = {ρ, θ, ζ} (3.11)

The magnetic field lines can also be written in covariant form,

B = Bρ∇ρ+Bθ∇θ +Bζ∇ζ (3.12)

where the covariant components are defined as

Bρ = B · eρ Bθ = B · eθ Bζ = B · eζ (3.13)

and the contravariant basis vectors are

∇ρ ∇ζ ∇θ (3.14)

The Jacobian of the transformation from curvilinear to Cartesian coordinates is

J =
1

∇ρ · ∇ζ ×∇θ = eρ · eθ × eζ (3.15)
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and the basis vectors are related by the following relations:

eρ = J ∇θ ×∇ζ eθ = J ∇ζ ×∇ρ eζ = J ∇ρ×∇θ (3.16)

∇ρ =
1

J eθ × eζ ∇θ =
1

J eζ × eρ ∇ζ =
1

J eρ × eθ (3.17)

With the above definition of the Jacobian, the plasma volume is defined by the integral,

V =

ρ∫
0

dρ

2π∫
0

dθ

2π∫
0

dζJ (3.18)

and the radial derivative of the volume is:

V ′ =

2π∫
0

dθ

2π∫
0

dζJ (3.19)

The flux-surface-average operator, 〈 〉, of the value Q is defined as

〈Q〉 =
1

V ′

2π∫
0

dθ

2π∫
0

dζJ Q (3.20)

The toroidal and poloidal magnetic fluxes enclosed within the surface are, respectively:

Φ(ρ) =

2π∫
0

dθ

ρ∫
0

dρJ Bζ (3.21)

Ψ(ρ) =

2π∫
0

dζ

ρ∫
0

dρJ Bθ (3.22)

The toroidal and poloidal components of the current density are

Jζ = J · ∇ζ Jθ = J · ∇θ (3.23)

The current lies within a flux surface and so Jρ = 0. The toroidal current enclosed within a flux

surface is

I(ρ) =

2π∫
0

dθ

ρ∫
0

dρJ Jζ (3.24)
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and the poloidal current exterior to a flux surface is

F (ρ) =

2π∫
0

dθ

∞∫
ρ

dρJ Jθ (3.25)

By writing the magnetic field in covariant form, Eqn 3.12, and using Eqn 3.2, the following rela-

tions between the currents and magnetic fields are found:

µ0 I(ρ) =

2π∫
0

dθ

ρ∫
0

dρJ Jζ

=

2π∫
0

dθ

ρ∫
0

dρJ (J · ∇ζ)

=

2π∫
0

dθ

ρ∫
0

dρJ
(
∇× (Bρ∇ρ+Bθ∇θ +Bζ∇ζ)

)
· ∇ζ

=

2π∫
0

dθ

ρ∫
0

dρJ (∇Bρ ×∇ρ+∇Bθ ×∇θ +∇Bζ ×∇ζ) · ∇ζ

=

2π∫
0

dθ

ρ∫
0

dρJ
(
∇Bρ · (∇ρ×∇ζ) +∇Bθ · (∇θ ×∇ζ) +∇Bζ · (∇ζ ×∇ζ)

)

=

2π∫
0

dθ

ρ∫
0

dρ (−∇Bρ · eθ +∇Bθ · eρ) (3.26)

The fourth step involves expanding the ∇× operation in the parenthesis and simplifying, the fifth

step is a vector identity, and the last step comes from Eqn 3.16. The only component of ∇Bρ that

is not orthogonal to eθ is the∇θ-term, and the only component of∇Bθ that is not orthogonal to eρ

is the∇ρ-term, so

µ0 I(ρ) =

2π∫
0

dθ

ρ∫
0

dρ

(
−dBρ

dθ
∇θ · eθ +

dBθ

dρ
∇ρ · eρ

)

=

2π∫
0

dθ

ρ∫
0

dρ

(
−dBρ

dθ
+

dBθ

dρ

)
(3.27)
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The magnetic field is single-valued on a flux surface, so the first term vanishes after rearranging

the order of the integrals:
2π∫

0

dθ

(
−dBρ

dθ

)
= 0 (3.28)

and so,

µ0 I(ρ) =

2π∫
0

dθ (Bθ(ρ)−Bθ(0)) =

2π∫
0

dθ Bθ(ρ) (3.29)

Following an analogous set of steps for F (ρ),

µ0 F (ρ) =

2π∫
0

dζ Bζ(ρ) (3.30)

Using the metric coefficients, Eqn 3.11, the covariant components of the magnetic field can be

written as:

Bθ =
(
Bθeθ +Bζeζ

)
· eθ = Bθgθθ +Bζgζθ (3.31)

Bζ =
(
Bθeθ +Bζeζ

)
· eζ = Bθgθζ +Bζgζζ (3.32)

With Eqns 3.19, 3.21 and 3.22, the radial derivatives of the magnetic fluxes are (recall that Bζ and

Bθ are constant on a flux surface):

2πΦ′(ρ) =

2π∫
0

dθ

2π∫
0

dζ J Bζ = BζV ′ (3.33)

2πΨ′(ρ) =

2π∫
0

dθ

2π∫
0

dζ J Bθ = BθV ′ (3.34)

The electric currents, I(ρ) and F (ρ), can be related to the radial derivatives of the magnetic fluxes

with Eqns 3.29 - 3.34:

µ0 I(ρ) =
Ψ′

V ′

2π∫
0

dθ

2π∫
0

dζ gθθ +
Φ′

V ′

2π∫
0

dθ

2π∫
0

dζ gζθ (3.35)

µ0 F (ρ) =
Ψ′

V ′

2π∫
0

dθ

2π∫
0

dζ gθζ +
Φ′

V ′

2π∫
0

dθ

2π∫
0

dζ gζζ (3.36)
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Recalling the definition of the flux-surface-average operator, Eqn 3.20, Eqns 3.35 and 3.36 can be

written as:

µ0

 I

F

 =

 S11 S12

S21 S22

 Ψ′

Φ′

 (3.37)

The components of the susceptance matrix are defined as:

S11 =
〈
gθθ
J

〉
S12 =

〈gζθ
J

〉
S21 =

〈gθζ
J

〉
S22 =

〈gζζ
J

〉 (3.38)

The susceptance matrix components, Eqn 3.38, describe the coupling between the toroidal and

poloidal plasma currents to the radial derivatives of the toroidal and poloidal magnetic fluxes. In

an axisymmetric tokamak, there is no coupling between poloidal currents and poloidal magnetic

flux, and there is no coupling between the toroidal currents and toroidal magnetic flux; eθ ⊥ eζ ,

gθζ = eθ · eζ = 0 everywhere on a flux surface and S12 = S21 = 0. In HSX, and for stellarators in

general, eθ · eζ 6= 0 and S12 6= 0, S21 6= 0.

3.2.2 Rotational Transform

The rotational transform,  ι, is defined as

 ι =
Ψ′

Φ′
=

µ0I

S11Φ′
− S12

S11

(3.39)

In the case of a vacuum magnetic field, I = 0, and

 ιvac = −S12

S11

(3.40)

which for tokamaks with no toroidal current is 0, but for stellarators, because S12 6= 0, there is a

non-zero vacuum rotational transform.

3.2.3 VMEC Coordinates and Susceptance Matrix Components

Recall the contravariant form of the magnetic field, Eqn 3.8, and notice that it can be general-

ized to another form:

B = Bθ eθ +Bζ eζ =
1

2π
(∇ζ ×∇Ψ +∇Φ×∇θ∗) (3.41)
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This is the choice that Variational Moments Equilibrium Code, or VMEC [5] code uses. A factor

of 1
2π

is included in the definitions of the enclosed fluxes, so the Jacobian will is now V ′

4π2 where V’

is defined by Eqn 3.19. The value of θ∗ corresponds to the choice in determining the poloidal angle

which results in a straight field line system. VMEC chooses the poloidal angle in such a way that

the poloidal mode expansion of the inverse coordinates, R and Z, converges as rapidly as possible.

This leads to the introduction of a magnetic stream function, λ, which is periodic in both θ and ζ:

θ∗ = θ + λ(ρ, θ, ζ) (3.42)

The magnetic field can now be written as

B =
1

2π

(
∇ζ ×∇Ψ +∇Φ×∇θ +∇Φ×∇λ(ρ, θ, ζ)

)
(3.43)

=
1

2πJ

((
Ψ′ − Φ′

dλ

dζ

)
eθ + Φ′

(
1 +

dλ

dθ

)
eζ
)

(3.44)

The contravariant components of B in the VMEC representation are

Bθ =
1

2πJ

(
Ψ′ − Φ′

dλ

dζ

)
(3.45)

Bζ =
1

2πJ Φ′
(

1 +
dλ

dθ

)
(3.46)

With these definitions, the components of the susceptance matrix are given by:

S11 = V ′(ρ)
4π2

〈
gθθ
J 2

〉
S12 = V ′(ρ)

4π2

〈
gζθ(1+dλ

dθ )−gθθ
dλ
dζ

J 2

〉
S21 = V ′(ρ)

4π2

〈gθζ
J 2

〉
S22 = V ′(ρ)

4π2

〈
gζζ(1+dλ

dθ )−gθζ
dλ
dζ

J 2

〉 (3.47)
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Direct substitution shows that Eqn 3.37 is satisfied. The enclosed toroidal current is:

S11Ψ′ + S12Φ′ =
V ′

4π2

1

V ′

2π∫
0

dθ

2π∫
0

dζ
J
J 2

[
gθθ

(
Ψ′ − Φ′

dλ

dζ

)
+ gζθΦ

′
(

1 +
dλ

dθ

)]

=
1

4π2

2π∫
0

dθ

2π∫
0

dζ 2π
[
gθθB

θ + gζθB
ζ
]

=
1

2π

2π∫
0

dθ

2π∫
0

dζ Bθ (3.48)

=

2π∫
0

dθBθ = µ0I

The poloidal current exterior to a flux surface is:

S21Ψ′ + S22Φ′ =
V ′

4π2

1

V ′

2π∫
0

dθ

2π∫
0

dζ
J
J 2

[
gθζ

(
Ψ′ − Φ′

dλ

dζ

)
+ gζζΦ

′
(

1 +
dλ

dθ

)]

=
1

4π2

2π∫
0

dθ

2π∫
0

dζ 2π
[
gθζB

θ + gζζB
ζ
]

=
1

2π

2π∫
0

dθ

2π∫
0

dζ Bζ (3.49)

=

2π∫
0

dζ Bζ = µ0F

Radial profiles of S11, S12, S21, and S22, for the standard QHS configuration of HSX and for

an ’equivalent tokamak’, Appendix A, are shown in Figure 3.3. The expressions in Eqn 3.47 were

evaluated numerically with Matlab with the calculate susceptance code. Each case is for a vacuum

magnetic field. The diagonal terms, S11 and S22, are similar in magnitude for each case, while the

off-diagonal terms, S12 and S21, are non-zero in the QHS case and zero for the equivalent tokamak,

as expected.

In Figure 3.4, the radial profiles of the susceptance matrix components are shown for several

different magnetic configurations that can be achieved in the HSX stellarator when energizing the
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auxiliary field coils. The ‘Mirror’ configuration [9] adds a mirror ‘symmetry-breaking’ term to

the QHS magnetic spectrum, but does not drastically alter the susceptance matrix. The ‘Well’ and

‘Hill’ configurations raise and lower the vacuum rotational transform, respectively. The effective

minor radius is also smaller in each of these configurations. The S11, S12, and S21 components are

increased in magnitude in the Well configuration and are slightly decreased in the Hill configura-

tion. The S22 component is not drastically altered in any of these configurations.

3.2.4 Parallel Electric Field: Faraday’s Law and Ohm’s Law

In the previous section, the relationship between the magnetic fluxes and electrical currents

was found, leading to the susceptance matrix equation, 3.37. Now the relationships between the

current, electric field and induced magnetic field will be used to derive the time evolution of the

plasma current density, or more specifically, the rotational transform. Relationships, derived in

Appendix C, between the magnetic energy density, Eqn C.32, parallel current density, Eqn C.33,

and radial force balance, Eqn C.40, will be useful.

Returning to the notion for the general curvilinear coordinates, not those of VMEC, consider

the integral form of Faraday’s law,
∮
C

dl · E = − ∂
∂t

∫∫
S

ds · B, where the contour C is the boundary

of surface S. With the electric field written in covariant form,

E = Eρ∇ρ+ Eθ∇θ + Eζ∇ζ (3.50)

the time-rate-of-change of the poloidal magnetic flux is related to the toroidal electric field and

loop voltage as:

dΨ(ρ)

dt
=

2π∫
0

dζEζ(ρ)−
2π∫

0

dζEζ(0)

= Vζ−loop(ρ)− Vζ−loop(0) (3.51)



63

0 5 10
−100

−50

0

r
eff

  cm

S
22

0 5 10

0

0.1

0.2

r
eff

  cm

S
21

0 5 10

0

0.1

0.2

r
eff

  cm

S
12

0 5 10
−0.2

−0.1

0

r
eff

  cm

S
11

 

 

QHS
Equiv Tok

Figure 3.3 Radial profiles of susceptance matrix coefficients for the QHS magnetic cofiguration
and an equivalent tokamak.
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possible in HSX when energizing the auxiliary field coils in different ways: QHS, 10% Mirror

Flip14, 11% Well, and 11% Hill..
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and the time-rate-of-change of the toroidal magnetic flux is related to the poloidal electric field and

loop voltage as:

dΦ(ρ)

dt
= −

2π∫
0

dθEθ(ρ) +

2π∫
0

dθEθ(0) = −
2π∫

0

dθEθ(ρ)

= −Vθ−loop(ρ) (3.52)

The poloidal loop voltage is proportional to the circumference of the loop and vanishes as ρ→ 0.

The flux-surface-average of the parallel electric field relates the magnetic fluxes and loop voltages.

Using the contravariant form of B, Eqn 3.8 and covariant form of E, Eqn 3.50 :

〈E · B〉 = 〈BθEθ +BζEζ〉

=
1

V ′

2π∫
0

dθ

2π∫
0

dζJ
(
BθEθ +BζEζ

)

=
1

V ′

2π∫
0

dθ

2π∫
0

dζJ
(
BθEθ

)
+

1

V ′

2π∫
0

dθ

2π∫
0

dζJ
(
BζEζ

)
(3.53)

With the following functions and differential definitions,

u = Eθ v = Ψ′ du = dζ
∂Eθ
∂ζ

dv = dζJBθ (3.54)

s = Eζ t = Φ′ ds = dθ
∂Eζ
∂θ

dt = dθJBζ (3.55)

Eqn 3.53 can be simplified by integrating by parts, twice:

〈E · B〉 =
1

V ′

2π∫
0

dθ

2π∫
0

dζ

EθΨ′ − 2π∫
0

dζΨ′
∂Eθ
∂ζ


+

1

V ′

2π∫
0

dθ

2π∫
0

dζ

EζΦ′ − 2π∫
0

dθΦ′
∂Eζ
∂θ

 (3.56)

The terms involving derivatives of the electric field components vanish because of periodicity on

the torus,

〈E · B〉 =
Ψ′

V ′

2π∫
0

dθEθ +
Φ′

V ′

2π∫
0

dζEζ (3.57)
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Substituting Eqns 3.51 and 3.52 into 3.57 and rearranging:

〈E · B〉V ′ = Φ′
(

dΨ

dt
+ Vζ−loop(0)

)
−Ψ′

dΦ

dt
(3.58)

The loop voltage dependence can be removed with rearranging and taking a toroidal flux derivative.

An equation for the time derivative of the rotational transform is found, after some algebra:

dΨ

dt
+ Vζ−loop(0) =

〈E · B〉V ′
Φ′

+
Ψ′

Φ′
dΦ

dt
d

dΦ

dΨ

dt
=

d

dΦ

(
〈E · B〉dV

dΦ

)
+

d

dΦ

(
 ι
dΦ

dt

)
dι

dt
=

d

dΦ

(
〈E · B〉dV

dΦ

)
+

d

dΦ

(
 ι
dΦ

dt

)
(3.59)

Next, consider Ohm’s law. The parallel plasma resistivity is η‖ = 1
σ‖

. Recalling that Jn.i. is the

non-inductive current density and J is the total current density,

〈E · B〉V ′ = η‖〈(J− Jn.i.) · B〉V ′

= η‖〈J · B〉V ′ − η‖〈Jn.i. · B〉V ′ (3.60)

With Eqn C.33 and dV
dρ

= V ′

ρ′
, this can be written as:

〈E · B〉V ′ = η‖µ0 (FI ′ − IF ′)− η‖〈Jn.i. · B〉V ′

= η‖µ0F
2

(
I

F

)′
− η‖〈Jn.i. · B〉V ′ (3.61)

Substituting Eqn 3.61 into Eqn 3.59,

d ι

dt
=

d

dΦ

[
1

Φ′

(
η‖µ0F

2

(
I

F

)′
− η‖〈Jn.i. · B〉V ′

)]
+

d ι

dΦ

dΦ

dt
(3.62)

After substituting Eqn 3.37 for F and I , a 1-D diffusion equation for the rotational transform can

be written as [4] :

d ι

dt
=

d ι

dΦ

dΦ

dt
+

d

dΦ

(
Φ′
η‖
µ0

(S21 ι+ S22)2 d

dρ

(
S11 ι+ S12

S21 ι+ S22

)
− η‖

Φ′
〈Jn.i. · B〉V ′

)
(3.63)

This expression has mixed derivatives and requires calculation of the full susceptance matrix. Us-

ing the relations in Eqns C.32, C.33, and C.40,

FI ′ =
〈B2〉V ′
µ0Φ′

I ′ − II ′ ι (3.64)

−IF ′ = p′V ′

Φ′
I + II ′ ι (3.65)
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and F 2
(
I
F

)′
= FI ′ − IF ′,

d ι

dt
=

d ι

dρ

dρ

dΦ

dΦ

dt
+

dρ

dΦ

d

dρ

(
η‖µ0

(Φ′)2

(〈B2〉V ′
µ0

I ′ + p′V ′I

)
− η‖

Φ′
〈Jn.i. · B〉V ′

)
(3.66)

=
d ι

dρ

dρ

dΦ

dΦ

dt
+

dρ

dΦ

d

dρ
· · · (3.67)(

η‖V
′

(Φ′)2

(
〈B2〉 d

dρ

(
Φ′

µ0

(S11 ι+ S12)

)
+ p′Φ′ (S11 ι+ S12)

)
+−η‖

Φ′
〈Jn.i. · B〉V ′

)
Two common choices for the radial variable are the normalized toroidal flux, ρs and square-root

normalized toroidal flux, ρr, defined as

ρs = Φ/Φa (3.68)

ρr =
√

Φ/Φa (3.69)

Here, Φa ≡ ΦLCFS is the flux enclosed within the last closed flux surface. These two choices

lead to dΦ
dρs

= Φa and dΦ
dρr

= 2ρrΦa, respectively. For the term involving the time derivative of the

toroidal flux, the two choices lead to dΦ
dt

= d(Φaρs)
dt

= ρs
dΦa
dt

and dΦ
dt

=
d(Φaρ2r)

dt
= ρ2

r
dΦa
dt

. For the

first choice of radial variable, the diffusion equation for  ι becomes

d ι

dt
=

ρs
Φa

d ι

dρs

dΦa

dt
+ (3.70)

1

Φ2
a

d

dρs

(
η‖V

′
(〈B2〉

µ0

d

dρs
(S11 ι+ S12) + p′ (S11 ι+ S12)− 〈Jn.i. · B〉

))
For the second choice, the diffusion equation is

d ι

dt
=

ρr
2Φa

d ι

dρr

dΦa

dt
+ (3.71)

1

4ρrΦ2
a

d

dρr

(
η‖V

′

ρr

(〈B2〉
µ0ρr

d

dρr
(ρr (S11 ι+ S12)) + p′ (S11 ι+ S12)− 〈Jn.i. · B〉

))
These expressions are similar to those in Refs [10] and [11], except these are dimensionally correct.

The time-changing toroidal flux term, the 1st term on the RHS of Eqns 3.70 and 3.71, has a weak

influence on the evolution and can be neglected in most cases, as will be done here. These last two

equations use 〈B2〉 and p′ instead of S21 and S22. During the numerical simulation of the diffusion

equation, the MHD equilibrium quantities B2, p′, S11, S12, and 〈Jn.i. ·B〉 are assumed to be slowly
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varying or constant. This allows for the rotational transform profile to evolve for some time before

a full recalculation of the equilibrium quantities is required. Studies on LHD have shown that an

update interval of 100 ms is sufficient for their plasmas [11]. In the HSX plasmas studied here, the

bootstrap current has small effect on the magnetic field geometry and so the MHD quantities are

nearly constant during a simulation and no update is performed.

3.2.5 Boundary Conditions

A combination of Dirichlet and Neumann boundary conditions are used to complete the speci-

fication of the diffusion equation,

α ι+ β ι′ = γ (3.72)

At the center of the plasma column, ρ = 0, there is finite (or, non-infinite) current density so

d ι

dρ

∣∣∣∣
ρ=0

= 0 (3.73)

At the edge of the plasma column, ρ = 1, the measured net toroidal current, I (ρ = 1) determines

the value of  ι at the edge, Eqn 3.39

 ι|ρ=1 =

(
µ0I

S11Φ′
− S12

S11

) ∣∣∣∣
ρ=1

(3.74)

This is the boundary condition used for the work presented here. Other options for the boundary

condition at the edge are discussed in Appendix D. The numerical implementation of the solution

to the diffusion equation is given in Appendix E.
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Chapter 4

Magnetic Diagnostics and Equilibrium Reconstruction

This chapter presents the diagnostic set and computational tools implemented to reconstruct the

plasma pressure and current profiles. A ‘flapper probe’, which sweeps out accelerated electrons

during the rise in main field, is described in section 4.1. A set of magnetic diagnostics that measures

changes in the magnetic field surrounding the plasma are described in section 4.2 and the signal

analysis is discussed in section 4.3. The effects of the vacuum vessel are discussed briefly in

section 4.4. In section 4.5, the V3RFUN code that calculate the expected signal response from

plasma currents and external magnetic fields on a set of diagnostics is described. The V3FIT code

performs the reconstruction of the plasma profiles, described in section 4.6.

4.1 Flapper Probe

In HSX, a significant population of electrons can be accelerated in the confinement volume

by the time-changing magnetic field during the main-field current ramp-up stage of the discharge.

The presence of these dB/dt electrons has been seen on hard x-ray diagnostics [1], and they can

constitute a significant toroidal current, even before any heating source has been applied, Figure

4.1. To remove this current source, and to simplify the analysis of the measured currents, a flapper

probe has been installed on HSX. The probe is a 1 cm x 12 cm strip of titanium that extends into the

confinement volume prior to the main field ramp-up. A sketch of the probe, along with Poincaré

plots of the QHS magnetic configuration, are shown in Figure 4.2. The flap is completely removed

from the confinement volume 50 - 100 ms before heating is applied. The flap remains out of the

confinement volume until the next shot cycle begins.



70

Figure 4.1 The toroidal current measurement with and without the presence of hard x-rays caused
by dB/dt electrons (those accelerated during the main field ramp up). As the electrons leave the

confinement field, they collide with the vessel and generate a hard x-ray flux [1]. The loss of these
accelerated electrons results in a net toroidal current (red line). The flapper probe, Figure 4.2,

prevents the generation of these particles, and the toroidal current is generated during the plasma
discharge (blue), which occurs during 0.800 < t < 0.850.
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Figure 4.2 Sketch of the internal flapper probe in
its extended position and Poincaré plots of vacuum

magnetic surfaces in the QHS magnetic
configuration.

4.2 Magnetic Diagnostics

The magnetic field in and around the plasma column of a magnetic fusion device has several

sources. The currents in the external field coils generate a vacuum magnetic field which confines
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the plasma. The plasma develops diamagnetic, Pfirsch-Schlüter, bootstrap and induced currents

which generate magnetic fields. Eddy currents may be induced in the surrounding vacuum vessel

and support structure which also generate magnetic fields. The magnetic field at any specific point

is the sum of the contributions from all of these sources. Diagnostics can measure these ‘local’

changes in the magnetic field at a particular point in space. Diagnostics can also be designed to

measure integral properties of the magnetic field in order to measure ‘global’ properties of the

plasma, such as the total enclosed current or total flux. In this section, two types of magnetic

diagnostics are described and the signal analysis techniques are in section 4.3.

4.2.1 External Magnetic Vector Diagnostic Array

The external magnetic vector diagnostic array is a set of 32 individual cubes, or triplets, in-

stalled on the outside (atmospheric side) of the vacuum vessel. Each triplet measures the change

in the local magnetic field vector. Each cube, Figure 4.3, is constructed from Delrin plastic, or

polyoxymethylene, measuring 3/4” on a side. The cube is wrapped with three sets of insulated

(Kapton coated) 35 AWG wire in such a way that each wire forms a square coil that measures flux

in one of three orthogonal directions. A total of 160 turns of wire is wrapped in each orientation.

The ends of the wire are then twisted together to avoid pickup from magnetic flux located away

from the cube. The twisted wires are connected to an amplifier, where the signal is amplified,

low-pass filtered at 3.2 kHz, and then digitized. A single layer of copper foil, ∼ 2.5 mil thick, is

taped around the cube to protect the wires from damage, and is thin enough to not decrease the

sensitivity or frequency response of the coil [2].

The output voltage, V , of a single axis of one of the triplets due to changes in the magnetic

field B is given by Faraday’s law and Stokes’ theorem:

V = GN

∮
C

dl · E = GN

∫
S

ds · (∇× E) = GN

∫
S

ds ·
(
−∂B
∂t

)
(4.1)

S is the face of the cube, C is the contour about the surface S, G is the gain of the amplifier and

N is the number turns of wire along the contour C. If the magnetic field does vary much over the
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Figure 4.3 External magnetic diagnostic
‘triplet’. Photo courtesy P. H.Probert. Figure 4.4 Triplets, covered with a

protective copper shield, mounted on a nylon
belt and wrapped around the vacuum vessel.
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volume of the cube, then

V = −GNA∂B
∂t

(4.2)

where A is the area of the face of the surface S and B is the component of the magnetic field

perpendicular to S. The time derivative of B is given by

Ḃ (t) =
∂B

∂t
= − V

GNA
(4.3)

The GNA product of each axis of each triplet and amplifier was measured with a Helmholtz coil

over the range of 30 Hz - 3 kHz and recorded for later use in the signal processing step.

Figure 4.5 Outboard view of the external diagnostic array.

Two nylon belts each have 16 triplets mounted on them with epoxy and secured in place with

elastic bands. Prior to the final installation on the HSX vessel, each belt was wrapped around a

test section and tightened in place. This test section was created with the same forms as the rest of

the HSX vacuum vessel and they share the same form markings and mechanical reference points

etched into the stainless steel. In places where the belts do not touch the vacuum vessel, rubber

shims were used to fill the gaps between the vessel and the belt in order to reduce mechanical

vibrations. The location of each individual triplet, relative to the reference points on the vessel, was

measured with a coordinate measuring machine (CMM), a Romer Cimcore, Model 5028 [3]. These

are the coordinate points that are later used for input into V3RFUN to generate response functions,
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section 4.5. The belts were then transferred from the test section to the HSX vacuum vessel using

the machining marks and mechanical reference points to reproduce the same positioning.

The triplets are shown on the HSX vacuum vessel in Figure 4.4. The measured position of

the 32 diagnostics and 1/2 of a field period of the vacuum vessel are shown in Figures 4.5 and

4.6. Each triplet is designated by a unique ’poloidal index’, an integer between 1 and 32. The

linear spacing along the nylon belt between the triplets is uniform except for triplets with poloidal

indices 7-10. One of the main field coils makes an excursion close to the vacuum vessel in this

location and there is not enough clearance in which to place a triplet. Each of the two sets of

triplets lie nearly in plane. Each belt makes slight deviations due to the curvature of the vacuum

vessel and the constraint of minimizing the belt length by wrapping the belt as tightly as possible

around vessel. The position and alignment of each triplet was verified by comparing the measured

response with the theoretical signal response while energizing the main field coil set and several

individual auxiliary field coils. Details of this are in Appendix F. The misalignment in orientation

is considered a systematic angular uncertainty in this thesis. This systematic error is typically a

1-3◦ for the majority of the triplets, with the maximum misalignment angle being 5◦.

Figure 4.6 Inboard view of the external diagnostic array.

4.2.2 Internal Magnetic Diagnostics

A set of 15 coils, circularly wound on a polyethylene tube, and covered with electrostatic

shielding and heat-shrink rubber are inside of a flexible helically-wound 10-mil stainless steel
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hose. This hose is attached to the inside of the vacuum vessel by metal clips. The positions of the

coils are known with respect to the ends of the tube, and the position of the hose was measured with

the CMM. The calculated positions of each of the coils, are shown in Figure 4.7. A photograph

of the hose is in Figure 4.8. These diagnostics are sensitive to mainly the poloidal component

of the magnetic field, and are referred to as the internal poloidal array. The output voltage for

these diagnostics is described by Equation 4.3. Each coil was calibrated with a Helmholtz coil in

both free space and while inserted into the steel hose. The steel hose has negligible effect on the

frequency response below 20 kHz. The signal from these coils is amplified and low-pass filtered

at 3.3 kHz and digitized. The position and alignment of the array was verified by energizing the

main field coil set. Details of this are in appendix F.

Figure 4.7 The calculated positions of the
internal poloidal array.

Figure 4.8 Photograph of the steel hose of
the internal poloidal array.

4.2.3 Rogowski Coil

The net toroidal current in HSX plasmas is measured by two Rogowski coils. An illustration

of one is in Figure 4.9. This coil is essentially a solenoid inductor bent into the shape of a torus.

The physical construction is identical to a helically-wound coil on a flexible tube, with a return

wire traversing the center of the coil. The ends of the coil meet, and completely enclose a current,

I . The magnetic field, B created by the enclosed current in linked by the cross-section area of the
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coil, A. A change in I will induce a voltage at the ends of the coil. The purpose of the return wire

is to minimize the effect of any background magnetic flux that may be enclosed by the loop.

Figure 4.9 Illustration of a Rogowski coil. The
current I generates magnetic field B which is
linked by area A. Changes in I will induce a

voltage across the ends of the coil.

The voltage appearing across the ends of the Rogowski coil is proportional to the time-derivative

of the enclosed current, I [4]:

V = NAµ
dI

dt
(4.4)

N is the number of turns in the coil, A is the cross-sectional area, and µ is the permeability of the

material inside the cross-section. The Rogowski coils on HSX are constructed with non-magnetic

materials with a relative permeability of 1, so µ = µ0. One of the Rogowski coils is mounted on

the external side of the vacuum vessel, and the other one is installed on the internal side, inside of

a helical steel tube identical in construction to the one shown in Figure 4.8. The signal from each

coil is amplified with a gain factor, G, and low-pass filtered at 10 kHz. The time-derivative of I is

given by

dI

dt
=

V

GNAµ
(4.5)

The effective gain-area product, (GNA), for each coil was determined while they were mounted

in place by linking them with a multi-turn loop of wire which was driven by a signal generator and

power amplifier. An independently calibrated Rogowski coil monitored the current in the multi-

turn loop. The effective gain-area product of the internal coil is (GNA)internal = 8.4 ± 0.4 m2.

For the external coil, it is (GNA)external = 40. ± 2. m2. The GNA factor for each coil has

approximately 5% precision.
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4.3 Magnetic Diagnostic Signal Processing

The reconstruction of the plasma pressure and current profiles depends on accurate measure-

ments of the background vacuum magnetic field and of the magnetic field due to the plasma. The

reconstruction also requires estimates of the uncertainties in these measurements. Data from sev-

eral similar plasma shots are used to form ensemble averages. Calibration shots, similar to plasma

shots except that there is no heating and no gas fueling, are also taken to measure the behavior of

the vacuum magnetic field. The calibration shots help remove the largest components of the vac-

uum field, but small differences in the main field current from shot-to-shot exist and are accounted

for in the data. The ultimate goal is to prepare the data for later use in V3FIT. The desired form

for the magnetic diagnostic data is Btotal and σBtotal , where

Btotal(t) = Bvacuum +Bplasma(t) (4.6)

For simplicity, the main magnetic field is defined as a constant in time, where

Bvacuum = bd,1 Amp × IMain Field (4.7)

where bd,1 Amp is the calculated signal that diagnostic d would measure due to 1 amp of current in

the main field coils for the particular magnetic configuration (i.e. from a Biot-Savart calculation

or similar), and IMain Field is chosen as the mean value of the average current through the field

coils, as measured by the main shunt resistor, during the time 0.820 < t < 0.840 sec. If ∆t is the

sampling time of the digitized signal, IMF,i(t) is the main field current data at discrete time sample

for shot i, and there are a total of n shots, then

IMain Field =
1

n

n∑
i=1

1

# of t samples

0.840∑
t=0.820

IMF,i(t) (4.8)

For a typical set of similar discharges that are analyzed, the main field current for a single shot,(
1

# of t samples

0.840∑
t=0.820

IMF,i(t)

)
, varies no more ∼ 0.30% from the average, IMain Field. This point

in time is approximately where the main field current has reached a ‘flat-top’ peak. The main field

current is not used in the reconstruction process as a free parameter (section 4.6). It is treated as a

‘known quantity’ and is kept at the same value during each iteration of the minimization loop, and
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has no uncertainty associated with it, so that σBtotal(t) = σBplasma(t) in the V3FIT reconstruction.

Since the main field current is not a fit parameter in V3FIT, there is no need to estimate in an

uncertainty in the main field signal.

Bplasma(t) and σBplasma(t) are needed. Relevant quantities that are measured by the diagnostics

are Ḃd,i(t) (the ˙ indicates a time derivative) for a typical magnetic diagnostic on shot i, and the

time-derivative of the main field current, İMF,i. There is not an absolute measurement of Bd(t). To

account for this, the value of ∆Bd,i(t) is defined as 0 for t =≤ 0.800 sec, and for t > 0.800 sec,

where ∆t is the sampling time interval of the digitized signal

∆Bd,i(t) = ∆t
t∑

t′=0.800

Ḃd,i(t
′) (4.9)

Btotal,i(t) = Bvacuum + ∆Bd,i(t) (4.10)

After t = 0.800 sec, the ECRH is turned on. This summation process, starting at t = 0.800 s,

acts as a numerical integrating ‘gate’ for the ∆Bd,i(t) signal. The changes in the magnetic field,

∆Bd(t) after t = 0.800 are assumed to be from one of two sources: 1) Changes in the currents

in the plasma, which generate Ḃplasma,i or 2) Changes in the main field current, İMF , which we

want to remove from the signal. Other sources of current, such as currents in the vacuum vessel or

surrounding structure are not directly modeled at this point.

First, consider a set of calibration shots, j = 1...m, and a diagnostic ‘d’

Ḃd,j,cal(t) = bd,1 Amp × İMF,j,cal(t) (4.11)

An averaged calibration shot and variance are defined as

Ḃd,cal(t) =
1

m

m∑
j=1

Ḃd,j,cal(t) = bd,1 Amp × İMF,cal(t) (4.12)

σ2

Ḃd,cal
(t) =

1

m− 1

m∑
j=1

(
Ḃd,cal(t)− Ḃd,j,cal(t)

)2

(4.13)

For a set a plasma shots, i = 1...n,

Ḃd,i,pl(t) = Ḃd,i,plasma(t) + bd,1 Amp × İMF,i,pl(t) (4.14)
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The difference between the plasma and average calibration shots is

Ḃd,i,pl(t)− Ḃd,cal(t) = Ḃd,plasma,i(t) + bd,1 Amp × İMF,i,pl(t)− bd,1 Amp × İMF,cal(t) (4.15)

Ḃd,i,plasma(t) = Ḃd,i,pl(t)− Ḃd,cal(t)− bd,1 Amp
(
İMF,i,pl(t)− İMF,cal(t)

)
(4.16)

Performing a time-integral

Bd,i,plasma(t) =

t∫
t′=0.800

dt
(
Ḃd,i,pl(t

′)− Ḃd,cal(t
′)− bd,1 Amp

(
İMF,i,pl(t)− İMF,cal(t)

))
(4.17)

In terms of digitized data, the integral becomes a sum,

Bd,i,plasma(t) =
t∑

t′=0.800

∆t
(
Ḃd,i,pl(t

′)− Ḃd,cal(t
′)− bd,1 Amp

(
İMF,i,pl(t)− İMF,cal(t)

))
(4.18)

An average rate-of-change of the magnetic signals is

Ḃd,plasma(t) =
1

n

n∑
i=1

(
Ḃd,i,pl(t)− Ḃd,cal(t)− bd,1 Amp

(
İMF,i,pl(t)− İMF,cal(t)

))
(4.19)

=
1

n

n∑
i=1

(
Ḃd,i,pl(t)− bd,1 AmpİMF,i,pl(t)

)
−Ḃd,cal(t) + bd,1 AmpİMF,cal(t) (4.20)

for which the variance is

σ2

Ḃplasma
(t) = σ2

Ḃd,cal
(t) + bd,1 Ampσ

2

İMF,cal

(t) + (4.21)

1

n− 1

n∑
i=1

(
Ḃd,plasma(t)−

(
Ḃd,i,pl(t)− Ḃd,cal(t)− bd,1 Amp

(
İMF,i,pl(t)− İMF,cal(t)

)))2

The magnetic field due to the plasma on diagnostic ‘d’ is

Bd,plasma(t) = ∆t
t∑

t′=0.800

Ḃd,plasma(t) (4.22)

The variance of the magnetic field due to the plasma is

σ2
Bd,plasma

(t) =
t∑

t′=0.800

(
∆t σ

Ḃd,plasma
(t′)
)2

(4.23)
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The current in the main field coils is measured by two separate methods. The first method, a

shunt resistor, measures a signal that is directly proportional to the current in the main field coils.

The second method, a Rogowski coil wrapped around one of the field coils, measures the time

derivative of the current in the field coils. Each main field coil has 14 turns. The shunt resistor

is digitized by a 12-bit digitizer and a single bit in the measurement is on the order of 150 amps.

The Rogowski coil, with a sensitivity of 3.31 · 10−7 V−s
A

is amplified with a gain of 50 V/V and

digitized with a 16-bit digitizer with an effective signal range of ±1V . With this configuration the

Rogowski coil is sensitive to changes as small as 0.007A over the length of the shot, 50ms. During

the field ramp up and ramp down, the digitized Rogowski signal is saturated, so the time-integrated

signal is scaled to fit the shunt signal from t = 0.6 → 0.9 sec, Figure 4.10. The Rogowski is a

more precise measurement of the time-derivative of the main field current, but still needs to be

calibrated against the main shunt to determine the absolute value. It is the Rogowski signal that is

used as İMF , above.
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Figure 4.10 Main field current measured by the shunt resistor (black) and Rogowski coil (red).



81

For each triplet, i, the uncertainty in the magnitude of the measured field, σi,Mag, was estimated

in appendix F. The uncertainty in each channel of triplet i, due to this is

σi,k,Mag(t) = σi,Mag ·Bi,k(t) (4.24)

where k = (x, y, z). To account for the uncertainty in the location and orientation of the external

magnetic vector diagnostics, an estimate of the angular misalignment is used to calculate the un-

certainty for each channel, Eqn F.11: σBi,k,MA
(t). The total uncertainty in the measured signal for

each channel, k = (x, y, z), of a triplet with poloidal index i is

σi,k(t) =
√
σ2
Bi,k,plasma

(t) + σ2
Bi,k,MA

(t) + σ2
i,k,Mag(t) (4.25)

The measured magnetic field components and uncertainties on a triplet are shown in Figure 4.11.

The orthogonal x-, y-, and z- components are shown separately.
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Figure 4.11 The x-, y-, and z- components of the calculated magnetic vector, ~̃Bi (black) along
with 1-σ uncertainties for an external magnetic diagnostic triplet (blue).

The magnitude of the magnetic field component and uncertainty measured by the internal mag-

netic diagnostics are given by Eqns 4.22 and 4.23. The alignment of the internal diagnostics has
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been discussed in appendix F, and no reliable estimate has been made. The uncertainty in the gain

of the coil+amplifier system is estimated, conservatively at 5%. However, the internal diagnostics

gain an additional signal drift during the plasma discharge. It is related to the presence of the

plasma, but a direct correlation with other measurable plasma quantities has not been determined.

This drift appears to occur while the electron cyclotron heating is applied and only after plasma

breakdown occurs. Additional signal processing is applied to remove this drift. First, a linear off-

set is matched to the signal after the plasma signal decays. This line is projected back in time to

a point at ECH turn-off. Next, a line is calculated to connect this value to the zero value at ECH

turn-on. These two lines are subtracted from the integrated signal to arrive at a post-processed

magnetic signal for that poloidal channel. Figure 4.12 shows the original signal, the linear offsets

and final signal. This drift is only significant on a few of the internal diagnostics. For most coils,

the drift is 0.25 − 0.4 × 10−4T or less, as shown in Figure 4.13. No uncertainty is estimated for

this drift. An example of the magnetic field component measured by the poloidal array and the

standard deviation of the signal is shown in Figure 4.14.
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Figure 4.12 The measured field due to the
plasma before offset removal (red) and after

(blue). The offset line is shown (black,
dashed). A large drift occurs during the

plasma on this diagnostic.
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Figure 4.13 The measured field due to the
plasma before offset removal (red) and after

(blue). The offset line is shown (black,
dashed). No significant drift appears on this

diagnostic.
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Figure 4.14 Calculated poloidal magnetic field for an internal poloidal diagnostic (black) and 1-σ
uncertainties (blue).

Two Rogowski coils measure the net plasma current in HSX. One of the coils is mounted on

the external side of the vacuum vessel and the other other is internal to the vacuum vessel, installed

inside of a flexible steel hose similar to that of the internal poloidal array, Figure 4.8. The signal

for each coil is time-integrated for each plasma and calibration shot. With Eqn 4.5, the current

measured by each coil is

IRog =

∫
dt

V

GNAµ
(4.26)

The Rogowski coils are not perfect and pick up some signal due to the vacuum field from the main

field coils, so the mean and variance of the n calibration signals is calculated:

IRog,Cal(t) =
1

n

n∑
i=1

IRog(t) (4.27)

σ2
IRog,Cal

(t) =
1

n− 1

n∑
i=1

(
IRog,Cal(t)− IRog(t)

)
(4.28)
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The mean and variance of the current for the m plasma shots is calculated, after subtracting the

calibration signal:

IRog,P lasma(t) =
1

m

m∑
i=1

IRog(t)− IRog,Cal(t) (4.29)

σ2
IRog,P lasma

(t) =
1

m− 1

m∑
i=1

(
IRog,P lasma(t)− IRog(t)− IRog,Cal(t)

)
(4.30)

+ σ2
IRog,Cal

(t)

Finally, an arbitrary integration constant is removed from this signal to set the net current to 0 at

t = 0.800 sec, when the ECH is turned on.

IRog,P lasma,Comp(t) = IRog,P lasma(t)− IRog,P lasma(t = 0.800) (4.31)

Because one of the coils lies on the inside of the vessel and one is on the outside, the net toroidal

current in the vacuum vessel is

IV essel(t) = IExt.Rog,P lasma,Comp(t)− IInt.Rog,P lasma,Comp(t) (4.32)

σ2
IV essel

(t) = σ2
ĨExt.Rog,P lasma

(t) + σ2
ĨInt.Rog,P lasma

(t) (4.33)

The compensated signals for the external and internal Rogowski coils, Eqn 4.31, and the current in

the vessel, Eqn 4.32 are shown in Figure 4.15 for a set of similar plasma discharges in QHS. After

ECH turn-on, the net current measured by the internal coil increases faster than that measured

by the external coil. After ECH turn-off, the current decreases faster on the internal coil. The

difference between the internal and external Rogowskis indicates that several 10’s of amps are

induced in the vacuum vessel and decays during the shot. Long after ECH turn-off, the measured

currents have returned to 0.

4.4 Effects of the Vacuum Vessel

Fast fluctuations or changes in magnetic flux due to currents in the plasma are attenuated by

the type 304 stainless steel vessel [5]. The skin frequency of the vacuum vessel, which is a good

conductor with permeability µ ≈ µ0 = 4π · 10−7 H/m, conductivity σ = (72µΩ-cm)−1, and
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Figure 4.15 The compensated net current during a set of plasma discharges in QHS as measured
by the internal Rogowski (red) and external Rogowski (blue). The difference of these two signals

is the vessel current (green). 1-σ uncertainties are shown as dotted lines.

width d = 6.35 mm , is given by [6]: f1/e = (πµσd2)−1 Hz. Variations in magnetic flux above

this frequency are effectively filtered with a 3-dB frequency of f3dB ≈ 0.693f1/e = 3.1 kHz.

Net toroidal currents in the vessel are inferred from measurements, but the magnitude is small

and tend to decay during the plasma discharge, Figure 4.15. The magnetic field generated by this

current in the vessel can be estimated by approximating the vacuum vessel as a cylinder. The

diagnostics lie on this cylinder along a contour with a circumference of ≈ 1.2 m. The poloidal

magnetic field due to the current in the vessel in the axial direction can be calculated from Ampere’s

law,
∫

dlBpol = µ0Ivessel. If the current is distributed uniformly in the poloidal direction around

the vessel, then ∫
dlBpol ≈ Bpol

∫
dl = 1.2Bpol = µ0Ivessel (4.34)

Bpol ≈
µ0Ivessel

1.2
(4.35)

This estimate gives Bpol ≈ 2× 10−5 T early in the discharge and Bpol ≤ 5× 10−6 T after 30 ms.

Local eddy currents which produce no net current are not considered, but will be discussed in

section 6.3.



86

4.5 Response Functions to Rapidly Calculate Magnetic Signals

The generation of Green’s function responses for a set of magnetic diagnostics is described

here. The V3RFUN code [7], written in Fortran, is used to perform the numerical calculations

presented. The outline here follows the method outlined in Ref. [7].

Consider a current-carrying wire described by the curve li(s). The magnetic diagnostic re-

sponse of this loop of wire is determined by the flux that it encloses:

Ψi ≡
∫∫
Si

dsi · B =

∮
li

dli · A (4.36)

B is the magnetic field and ds is the differential surface area. The integration is taken over a

surface enclosed by the loop, Si. The second equality follows from Stokes’ theorem where A is

the magnetic vector potential, dl is the differential length vector and the integral is taken along the

contour of the loop, li. The vector potential is comprised of two parts. The first part is due to the

current in the external field coils that generate the vacuum field and the second part is from currents

in the plasma itself.

A = Acoil + Aplasma (4.37)

A third contribution would be from currents in other diagnostic loops around the machine, but the

current in these loops is negligible compared to these first two sources and can be neglected.

The vector potential from the field coils can be written as a linear combination of coil currents,

Ij and vector potentials due to unit current in each coil, ajcoil.

Acoil =
∑
j=coils

Ijajcoil (4.38)

The flux can also be expressed as a linear combination of mutual inductances,

Ψi
coil =

∑
j=coils

IjLij (4.39)

where the mutual inductance between an external coil, j, and magnetic diagnostic, i, is defined as

Lij =

∮
li

ajcoil · dldiagi (4.40)
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The vector potential in terms of an arbitrary current density, J(x′), is

A(x) =
µ0

4π

∫
d3x′

J(x’)
r

(4.41)

Here, r = |x− x′|. Here, the diagnostic and external coils are modeled as thin elements, so the

current density can be replaced by a line density, I = Idl and the volume integral changes to a

contour integral:

A(x) =
Iµ0

4π

∮
dl′

r
(4.42)

For unit current, the vector potential is

a(x) =
µ0

4π

∮
dl′

r
(4.43)

Now the mutual inductance, Lij , can be written as

Lij =
µ0

4π

∮
li

∮
lj

dldiagi · dlcoilj

|li − lj|
(4.44)

By reciprocity, the flux through diagnostic i due to a unit current in coil j is the same as the flux

through coil j due to a unit current in diagnostic loop i:

Lij =

∮
lj

aidiag · dlcoilj (4.45)

This expression shows that the response of the diagnostic due to currents in the coils can be deter-

mined from the vector potential of the diagnostic coil evaluated along the contour of the external

coils:

aidiag(x) =
µ0

4π

∮
li

dldiagi

|li − x| (4.46)

In V3RFUN, an expansion for Eqn 4.46 [8] involving elliptical integrals is evaluated numerically

[9].

A Rogowski coil is constructed of many small loops wound on a guiding curve, mi. For one of

these small loops, assumed to lie in a plane, the dominant component of a multipole expansion of

Eqn 4.46 gives

aidiag(x) =
µ0

4π
wi ×

x− xi
r3

(4.47)
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where wi is the area of the loop times the unit vector normal to the surface of the loop and xi is the

center of the loop. The vector wi is assumed to be tangent to the guide curve. If nR is the number

of turns, or loops of the Rogowski coil per unit length, and the quantity (nR |wi|) is constant along

mi, then the vector potential of the Rogowski coil can be written as

aiRogowski(x) = nR |wi|
µ0

4π

∫
mi

dmi ×
x−mi

|x−mi|3
(4.48)

A unit current along the guide path will generate a magnetic field of

biRogowski(x) =
µ0

4π

∫
mi

dmi ×
x−mi

|x−mi|3
(4.49)

so the magnetic vector potential for a Rogowski coil is simply

aiRogowski(x) = nR |wi|biRogowski(x) (4.50)

The plasma contribution to the total magnetic vector potential, the second part in Eqn 4.37, can

also be found using a similar procedure. Using Eqns 4.36 and 4.41, the magnetic flux enclosed by

a diagnostic coil due to the current, Jplasma, in the volume of the plasma, Vp, is

Ψi
plasma =

µ0

4π

∮
li

dldiagi ·
∫
Vp

d3x′
Jplasma(x′)
|li − x′| (4.51)

=

∫
Vp

d3x′Jplasma(x′) · µ0

4π

∮
li

dldiagi

|li − x′| (4.52)

=

∫
Vp

d3x′Jplasma(x′) · aidiag(x′) (4.53)

The plasma equilibrium is solved by VMEC which uses a set of coordinates (Φ, θ, ζ) where Φ

is the enclosed toroidal flux, θ is a poloidal flux coordinate angle, and ζ is the geometric toroidal

angle. The current distribution is expressed in contravariant form:

Jplasma = Jθeθ + Jζeζ (4.54)

VMEC assumes well-defined closed flux surfaces, so the MHD equilibrium requires that the radial

current is 0, JΦ = 0. The inverse mapping of the flux surfaces between cylindrical and flux
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coordinates is also calculated by VMEC: R(Φ, θ, ζ) and Z(Φ, θ, ζ). The magnetic vector potential

in Eqn 4.53 is expressed in a cylindrical coordinate (R, φ, Z) covariant form and converted to flux

coordinate covariant form:

aidiag(x′) = aiReR +R aiφeφ + aiZeZ (4.55)

= aiR

(
dR

dΦ
eΦ +

dR

dθ
eθ +

dR

dζ
eζ
)

+ R aiφ

(
dφ

dΦ
eΦ +

dφ

dθ
eθ +

dφ

dζ
eζ
)

+ aiZ

(
dZ

dΦ
eΦ +

dZ

dθ
eθ +

dZ

dζ
eζ
)

(4.56)

The diag subscript has been suppressed on the terms of the right hand side. The terms involving eΦ

do not survive the dot product in Eqn 4.53, dφ
dθ
≡ 0, and φ = ζ (defined in VMEC), so

Ψi
plasma =

∫
Vp

d3x′
[
Jθ
(
aiR

dR

dθ
+ aiZ

dZ

dθ

)
+ Jζ

(
aiR

dR

dζ
+Raiφ + aiZ

dZ

dζ

)]
(4.57)

In general, the plasma current density, flux coordinates and inverse coordinates in Eqn 4.57 all vary

with different equilibrium solutions. However, the vector potential components, (aiR, a
i
Z , a

i
φ), are

calculated once and stored by V3RFUN. The domain is a cylindrical coordinate grid that covers

all possible location of current density and shares the same geometric toroidal angle as the VMEC

equilibrium. Once the equilibrium is solved, the vector potential components are interpolated with

a bilinear formula and Eqn 4.57 is evaluated.

The mutual inductances between the diagnostic coils and external field coils, Eqn 4.45 and

response functions for plasma currents, (aiR, a
i
Z , a

i
φ), are calculated once for each diagnostic and

stored by V3RFUN. The external magnetic vector diagnostics are each modeled as three orthog-

onal circular magnetic probes with the same surface area as the square face of the triplet. The

calculated flux is divided by the area, so the final output is a signal in units of Tesla. The internal

diagnostics are also modeled as circular magnetic probes, but with a radius of 1/4” = 3.175 mm.

The V3RFUN code does not use the information about the number of turns or size of the Rogowski

coils, so the signal that is returned is just
(∫

dl · B
)
/
(∫

dl
)

which also has units in Tesla. This

means that the Rogowski signal and uncertainty are multiplied by µ0/L where L is the length of
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the Rogowski coil.

BRog,P lasma,Comp(t) =
µ0

L
IRog,P lasma,Comp(t) (4.58)

σ2
B̃Rog,P lasma,Comp

(t) =
µ0

L
σ2
ĨRog,P lasma,Comp

(t) (4.59)

The equilibrium is calculated by VMEC and then the V3FIT [13] code evaluates Eqns 4.39 and

4.57 to determine the total magnetic signal for a diagnostic coil. This process of calculating the

expected magnetic signals for a plasma equilibrium is called the ‘forward-problem’. The V3FIT

code is also capable of reconstructing the plasma profile properties (current and pressure) based on

the signals measured by the diagnostics. That process is described next.

4.6 Modeling and Reconstruction of Plasma Pressure and Current Profiles

The solution of the 3D-MHD equilibrium is provided by VMEC, discussed in Appendix A.

VMEC uses the lab coordinates of the magnetic field coil set and main field current to determine

the vacuum magnetic field. Each field coil is modeled as a set of current filaments which are

directed along the contour of the coil. To model the plasma profiles in HSX, the Lorentz-type

profile (see Appendix A) with AM(0) = AM(1) = AM(2) = AM(4) = 1 is chosen. The

pressure profile has 2 free parameters: PRES SCALE and AM(3):

p(s) = PRES SCALE

[
1

N0

((
1 + sAM(3)

)−1 − c0

)]
(4.60)

The normalization terms are

c0 =
(
1 + sAM(3)

)−1
(4.61)

N0 = 1− c0 (4.62)

The enclosed toroidal current profile is described by an arctangent function (see Appendix A) with

AC(0) = AC(5) = AC(9) = AC(13) = AC(17) = 0, AC(1) = AC(4) = 1, and AC(3) = 3/2.

This profile has 2 free parameters: CURTOR and AC(2):

Ienclosed(s) = CURTOR
2

π
arctan

(
AC(2)s3/2

1− s

)
(4.63)
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The net toroidal flux enclosed by the last flux surface, PHIEDGE is also a free parameter. There

are a total of 5 free parameters to describe the plasma equilibrium. The free parameters are denoted

as the set p. The magnetic diagnostic signals calculated by V3FIT [13] for this set of parameters

is Sm,i(p). The observed diagnostic signals, So,i, are the sum of the plasma and vacuum field

contributions, Eqns 4.6 and 4.22. The uncertainty of the observed signals is σi, given by either Eqn

4.23 or 4.25.

V3FIT also includes information about a limiter. The ‘signal’ associated with the limiter is the

distance from the last closed flux surface to the edge of the limiter. The position of the limiter

during the experiment is at the calculated vacuum last closed flux surface, So,limiter = 0 with an

uncertainty of σlimiter = 1 mm.

The reconstruction process that V3FIT employs is a nonlinear least-squares minimization rou-

tine and uses singular value decomposition (SVD) to approximate a quasi-newton algorithm for

choosing new parameters. Non-linear minimization is a nontrivial problem, one that has encom-

passed many decades of work and continues to be an active field of research. Many excellent

references cover the basic challenges of nonlinear minimization, including References [10], [11]

and [12]. The technique involved here is described in reference [13] and [14].

The quantity that is minimized to find an optimal solution is the mismatch between the mea-

sured and observed signals, weighted by their respective uncertainty:

χ2(p) =
∑
i

κi

(
So,i − Sm,i (p)

σi

)2

(4.64)

The quantity, κi, is a weighting function to allow one to emphasize certain diagnostics during the

reconstruction process. For the work here, κi ≡ 1, ∀i. By defining a dimensionless error vector,

ei =

√
κi
σi

(So,i − Sm,i (p)) (4.65)

the χ2 can be written as

χ2(p) =
∑
i

eiei = e · e (4.66)
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The components of a normalized parameter vector, a, and the Jacobian matrix, J = ∇e, are defined,

aj =
pj
πj

(4.67)

Jik = − ∂ei
∂ak

(4.68)

The number of columns in the Jacobian matrix is the same as the number of free parameters, m,

and the number of rows is the same as the number of signals, n. The matrix is calculated as a

single-sided finite difference for each parameter, where the finite difference for each parameter is

πj . A total of m+ 1 VMEC calculations are performed, one for each fit parameter and one for the

initial state.

A Taylor-series expansion of χ2(a) is

χ2(a + δa) ≈ χ2(a)− 2β · δa + δa ·α · δa (4.69)

The gradient vector, β, and Hessian matrix, α, are defined as

β = −1

2
∇χ2 = JT · e (4.70)

α =
1

2
∇∇χ2 = JT · J− e · ∇J ≈ JT · J (4.71)

A quasi-Newton method attempts to minimize χ2 by locating where the gradient is 0,

∇χ2(a + δa) = −2β + 2α · δa = 0 (4.72)

which leads to

α · δa = β (4.73)

or,

JT · J · δa = JT · e (4.74)

The change in parameters that is predicted to minimize χ2 is δa. The Hessian, JT · J, tends to be

ill-conditioned, but SVD provides a useful way to deal with this situation.
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The SVD decomposes a matrix, D, of size n×m into three matrices:

D = U ·W · VT (4.75)

The matrix U is orthonormal and has size n× n. V is also orthonormal and has size m×m. The

matrix W is a diagonal matrix with the same size as D, whose elements are sorted in decreasing

order, Wi,i ≥ Wi+1,i+1. A k-SVD inverse, D(k)∼1 is defined such that the largest k elements in W

are replaced with their reciprocals, and the rest are set to 0.

W
(k)∼1
i,i = (Wi,i)

−1 1 < i ≤ k (4.76)

= 0 i > k (4.77)

Now, rather than solving Eqn 4.74 directly, δa = (JT · J)−1 · JT · e, the k-SVD inverse of (JT · J),

is applied to find an approximate solution [15],

δa ≈ (JT · J)(k)∼1 · JT · e (4.78)

= (V ·W · UT · U ·W · VT )(k)∼1 · V ·W · UT · e (4.79)

= (V ·W2 · VT )(k)∼1 · V ·W · UT · e (4.80)

= V · (W2)(k)∼1 · VT · V ·W · UT · e (4.81)

= V ·W(k)∼1 · UT · e (4.82)

= J(k)∼1 · e (4.83)

It is not necessary to calculate the Hessian, rather, only the k-SVD inverse of the Jacobian. Once

δa is calculated, the next guess of the normalized parameter vector that minimizes χ2 is a + δa.

The Jacobian is calculated, etc. The process is repeated until the value of χ2 is no longer getting

smaller and a minimum value is found.

If the errors on input signals are uncorrelated, and diagonal signal covariance matrix is given

by C with Cij = σ2
i δij . The parameter covariance or posterior covariance matrix is then defined

as [16]

Cp =
(
JT · C−1 · J

)−1
(4.84)
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A measure of the confidence for fit parameter pj is the

σp,j =
√

(Cp)jj (4.85)

A measure of the effectiveness of a signal, simply called the ”Signal Effectiveness” is defined

as

Rji =
d lnσp,j
d lnσi

(4.86)

This quantity indicates how much the posterior confidence, σp,j , improves when the uncertainty on

the ith diagnostic, σi is reduced. This is a local, in parameter space, estimate of the importance for

a particular diagnostic and is not necessarily representative of the how useful a diagnostic is for

reconstructing a particular parameter for a general profile.

Several parameters may be adjusted by the user of the V3FIT code to control its behavior. These

include: the fit parameters, pj , the finite difference variance, πj , the threshold for the minimum

Wi,i to include in the k-SVD inverse. A maximum threshold on the magnitude of the change in

parameters, δamax is an optional parameter. The maximum number of iterations to seek a minimum

in χ2 is also specified.

After the V3FIT code is completed and a set of reconstructed fit parameters is found, a reduced-

χ2 value is calculated

χ2
ν,min = χ2/ν (4.87)

where ν = n − m − 1. If χ2
ν ≈ 1, then this indicates that the profile descriptions, i.e. the fit

functions and fit parameters, are a good approximation of the actual profiles and agree well with

the experimental data. If χ2
ν >> 1, then the profile descriptions are a poor fit to the data and are not

an appropriate description. If χ2
ν << 1, then the fit is not necessarily a better fit. It may indicate

that there are too many free parameters in the model, or that the signal uncertainties have been

overestimated.

The number of degrees of freedoms in a profile description can be adjusted simply by adding

or removing fit parameters. Let’s denote the value of χ2 with a set of functions with m fit param-

eters as χ2(m). If an additional fit parameter is added, the value is χ2(m + 1). The Fχ statistic
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can provide an indication of whether or not the addition of an additional parameter significantly

improves the fit.

Fχ =
χ2(m)− χ2(m+ 1)

χ2(m+ 1)/(n−m− 1)
=

∆χ2

χ2
ν(m+ 1)

(4.88)

If the addition of an additional term has improved the fit, then the value of Fχ will be large. If the

additional term does not significantly improve the fit, then ∆χ2 ≈ 0 and Fχ will be small.

One practical problem with this definition of Eqn 4.85 is that the Jacobian matrix, J, is calcu-

lated with single-sided finite differences, so the 2nd order mixed partial derivatives are not directly

calculated and the nonlinear relationship among the parameters is not captured very well. This

leads to an overestimation of the parameter uncertainties. To overcome this limitation, the parame-

ter space around the solution is scanned to determine the χ2
ν value for a large variety of parameters.

When the parameter space around the pressure profile is scanned, the current profile is held at the

reconstructed parameterization. When the current profile is scanned, the pressure profile is also

held constant. Profiles that satisfy

χ2
ν . χ2

ν,min + 1 (4.89)

are considered to fall within a single standard deviation interval of the reconstructed solution. This

is not the traditional definition according to multivariate statistics. The more exact definition [17]

would require all of the parameters for the pressure and current profile to be scanned simultane-

ously, but that is not done here because of the large amount of computational time that would be re-

quired to scan the 5-D parameter space (PRES SCALE,AM(3), CURTOR,AC(2), PHIEDGE).
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Chapter 5

3-D Equilibrium Reconstruction

The 3-D equilibrium reconstruction procedure begins with a set of plasma realizations that have

similar measurements of: line-averaged central density, main field current, radiated power, and

magnetic signals, including the diamagnetic flux loop, Rogowski coil and the rest of the diagnostics

presented in Chapter 4. Examples of these will be shown in this chapter. These shots are also used

to calculate the electron temperature and density profiles from the Thomson scattering data. A

set of magnetic calibration shots provide data to characterize and remove the effects of the small

changes in the vacuum field over time, Eqn 4.22. Once the signals due to the plasma currents are

known, Section 4.3, the data is entered into the V3FIT input files as the observed data, So,i, (see

Eqn 4.64).

Next, the measured Te, Ne, and Ti are used as input into PENTA, Section 2.3.2, to determine

radial profiles of the radial electric field, Er, bootstrap current density, Jb, and parallel conduc-

tivity, σ‖. Multiple stable Er roots may exist across regions of the plasma, and the Jb will vary

between the regions of different Er. The total bootstrap current is calculated for a set of limiting

conditions: an electron-root dominant solution, an ion-root dominant solution and a ion-only solu-

tion, as discussed in the end of Section 2.4. A candidate for the ‘most-likely’ steady-state solution

is selected by choosing the profile that has a total current that is closest to that extrapolated from

the Rogowski data (discussed below). The selected bootstrap current density, parallel conductiv-

ity, and measured net toroidal current are then used as input for the codes iota evolution generate

(IEG, Appendix E) to simulate the time evolution of the rotational transform, plasma current and

plasma current density, Eqn 3.70. The results of the simulation is a current profile that serves as an

‘initial guess’ for the reconstruction process, Section 4.6. The initial guess of the plasma pressure
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is calculated from the measured Te, Ne, and Ti. The V3FIT code is then executed to search for a

set of plasma parameters that minimize the χ2 statistic, Eqn 4.64, by applying SVD to the Jacobian

matrix to estimate the minimization search vector, Eqn 4.83. A flowchart of this process is shown

in Figure 5.1.

Measurements:

Magnetic diagnostics

Ext. field coil currents/magnetic 

configuration

PENTA:

Calculate bootstrap current and 

parallel conductivity

IEG:  

Simulate current profile evolution 

for 3-D geometry

V3FIT:

Reconstruct plasma pressure and 

current profiles

Compare modeled and 

reconstructed pressure and current 

profiles

Measurements:  

Te, Ne, Ti, Ni

Ext. field coil currents/magnetic 

configuration

In
it

ia
l 
g
u
e
ss

Figure 5.1 Flowchart showing the process from measured data to reconstructed plasma profiles.

For the data presented in this dissertation, the vacuum vessel was conditioned prior to plasma

operations by depositing a layer of boron on the interior (vacuum-side) of the vessel by evaporating

O-carborane into a helium glow discharge. In the past, before boron-conditioning was available,

methane glow discharges were used to deposit a layer of carbon on the vacuum vessel. Each of

these conditioning methods were found to be beneficial for plasma operations. Without this condi-

tioning, impurity radiation and density would rise throughout the discharge until the plasma would

reach a density cutoff, where the ECH waves would no longer penetrate and heat the plasma. The

plasma profiles (temperature, density and current evolution) are different for these two cases of
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Field Configuration ρECRH PECRH,launched N e × 1018/m3 Itor(t =∞)

QHS CCW∗ ρ . 0.1 50 kW 4.1 386.±23. A

QHS CW ρ . 0.1 50 kW 4.2 -411.±46. A

QHS CCW∗ ρ . 0.1 100 kW 4.1 352.±21. A

QHS CW ρ . 0.1 100 kW 4.0 -343.±20. A

QHS CCW ρ ∼ 0.3 50 kW 3.1 167.±14. A

QHS CW∗ ρ ∼ 0.3 50 kW 3.0 -164.±11. A

Table 5.1 Configuration space explored with balanced fueling in the QHS configuration.
∗ Reconstruction is presented in this chapter.

vessel conditioning. Typically, the temperatures and net current are higher with carbon condition-

ing, compared to boron conditioning. However, the radiated power is also higher with carbon, and

fewer shots could be taken before a glow discharge cleaning cycle was necessary.

The plasma is heated by a 28 GHz gyrotron operated in 1st-harmonic O-mode. The microwaves

are launched perpendicular to the magnetic axis from the outboard midplane at the symmetric

boxport location, Figure 5.2. No direct ECH-driven current is expected with this configuration. To

check for the possibility of an ECH-driven current, similar plasmas are generated with the main

magnetic field in both the CCW and in the CW direction. In these ‘flip-field’ experiments, the

bootstrap current is expected to reverse with the field direction and any differences may indicate

the presence of ECH-driven current. The fueling location for these experiments is at the puff

valve at field period A’ (A-prime), Figure 5.2. This is referred to as ‘balanced fueling’ in the

sense that the gas fuel source is as far from the launch mirror as physically possible. Table 5.1

summarizes the parameter space explored under these conditions. For a particular heating power,

PECRH,Launched, and resonance location, ρECRH , the extrapolated steady state current was similar

in magnitude but of opposite sign when the direction of the main magnetic field was reversed.

The case with the largest level of steady state current is 50 kW, ρ . 0.1 with |Itor(t =∞)| ∼
400 A. The case with 100 kW, ρ . 0.1 is estimated to have a steady state current of 50 A less,

or |Itor(t =∞)| ∼ 350 A. The off-axis 50 kW heating case could not be controlled with N e ∼
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4.0x1018/m3, but N e ∼ 3.0x1018/m3 was controllable, so the data comes from this latter case

and the steady state current is |Itor(t =∞)| ∼ 165 A. For all of the cases, the fueling gas was

hydrogen, and Zeff ≈ 1 was assumed in the analysis. This is suggested by the low levels of carbon

and oxygen impurity radiation observed during plasmas made with the boron-conditioned vacuum

vessel walls, compared to the carbon-conditioned walls.

ECRH Antenna

B B'

A

A'

DD'

C

C'

Puff Valve C
Puff Valve A'

Figure 5.2 The HSX stellarator, viewed from above. The ECRH launch mirror is located at
boxport C. One of two fueling valves can be used at a time. One is located near the ECRH launch

point, in field period C, and the other is located far away, near boxport A.

5.1 QHS 50 kW with Balanced Fueling

The net toroidal current and loop voltage for the both the CCW (blue) and CW (red) plasmas

are shown in Figures 5.3 and 5.4. The steady state estimate of the net toroidal current, I∞, and

decay time, τ , is extrapolated by fitting the measurement to

I(t) = I∞
(
1− e−t/τ

)
(5.1)
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The measured current and voltage are reversed, and nearly identical in magnitude. The measured
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Figure 5.3 QHS, 50 kW, ρECRH . 0.1:
Measured net toroidal current for an
ensemble average of 6 shots with the

magnetic field in the CCW (blue) and CW
(red) directions.
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Figure 5.4 QHS, 50 kW, ρECRH . 0.1:
Measured loop voltage (ens. avg.).

net current at ECH turn off, the extrapolated decay time, and steady state current for the cases listed

in Table 5.1 are shown in Figure 5.5. By doubling the heating power from 50 kW to 100 kW , the

stored energy increases by about 50%.

The measured electron temperature and density profiles from the Thomson system at t =

0.030 s for the shots from Figure 5.3 are in Figures 5.6 and 5.7. An estimate of the ion temper-

ature, based on Doppler-broadening of a carbon-impurity emission line measured by the ChERS

spectrometer is also shown. The temperatures and densities are very similar in both CCW and

CW. The line averaged central density measured by the microwave interferometer for each case is

∼ 4.1× 1018/m3, Figure 5.8. The diamagnetic signal for an internal flux loop is shown in Figure

5.9. The signals are reversed because the main field is reversed. There is about 54 J of stored

energy in the CCW case and 45 J in the CW case. From the measured profiles, the calculated

stored energy for the CCW and CW cases are 51 J and 49 J , which agrees well.

A subset of the magnetic diagnostic signals at the ECRH turn-off time, 50 ms, is shown in

Figures 5.10 and 5.11. Every signal is very close in magnitude and flipped in sign. This also holds
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Figure 5.5 The net toroidal current at ECH turn-off (top), the estimated decay time (center), and
the extrapolated steady state value (bottom) for conditions indicated. CCW cases are in blue, and

CW cases are in red.
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Figure 5.6 QHS, 50 kW, ρECRH . 0.1: Te
for CCW (blue) and CW (red). Ti from

ChERS (black, dashed).
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Figure 5.7 QHS, 50 kW, ρECRH . 0.1: Ne

for CCW (blue) and CW (red).
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Figure 5.8 QHS, 50 kW, ρECRH . 0.1
Line-averaged central chord density

measurement for two shots of the subset used
in Figure 5.3. CCW (blue) and CW (red).
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Figure 5.9 QHS, 50 kW, ρECRH . 0.1.
Diamagnetic flux loop measurement (ens.

avg.) CCW (blue) and CW (red).

for the rest of the diagnostic signals (not shown). From the viewpoint of the Thomson scattering,

interferometer, flux loop, Rogowski coil, loop voltage and magnetic diagnostic signals, these two

sets of QHS plasmas appear to be identical with the exception of the direction of the main magnetic

field. If the ECH antenna were misaligned, it may be possible to drive a current in either the CCW
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or CW direction, regardless of the main field direction, and the net toroidal current would be

different for the two directions of the main field. Since that is not case, it is assumed that the ECH

antenna is well aligned (perpendicular to the magnetic axis) and does not directly drive a parallel

plasma current. For the rest of this section, only the data for the CCW case will be shown. The

results for the CW case are nearly identical.
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Figure 5.10 QHS, 50 kW, ρECRH . 0.1 Bθ

component of the magnetic field due to the
plasma for CCW (blue) and CW (red).
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Figure 5.11 QHS, 50 kW, ρECRH . 0.1 Br

component of the magnetic field due to the
plasma for CCW (blue) and CW (red).

Based on the Thomson profiles, above, the PENTA code calculates the neoclassical radial

fluxes, parallel flows and radial electric field. With the assumption that the plasma is a two-

component, hydrogen-electron plasma, the stable ambipolar radial electric field Er for the CCW

case is shown in Figure 5.12. Regardless if momentum conservation (MC) is included or not, the

Er solution is similar. Note that the radial coordinate is the normalized flux, s = Φ/ΦLCFS , not

the normalized effective radius, ρ ≡
√

Φ/ΦLCFS . Across the majority of the plasma column, the

stable ‘ion-root’ case is the only possible solution for Er and |Er| < 50 V/cm. Near the core of

the plasma, where Te � Ti, the ‘electron-root’ is also stable, and Er ∼ 300 V/cm. The electron

and ion portion of the parallel current, Je and Ji, along with the total parallel current, Jb = Je+Ji,

for both ambipolar roots are shown in Figures 5.13 (with MC) and 5.14 (without MC).
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Figure 5.12 QHS, 50 kW, ρECRH . 0.1: Stable ambipolar Er solutions with MC (blue) and
without MC (green). Calculation by PENTA.
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Figure 5.13 QHS, 50 kW, ρECRH . 0.1, With MC: Ion (blue), electron (red) and total (black)
parallel current. Solid lines coincide with the ion root solution and dashed lines coincide with the

electron root solution. Calculation by PENTA.
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Figure 5.14 QHS, 50 kW, ρECRH . 0.1, Without MC: Ion (blue), electron (red) and total (black)
parallel current. Solid lines coincide with the ion root solution and dashed lines coincide with the

electron root solution. The ion current is nearly zero for each case. Calculation by PENTA.

With MC, when Er is in the ion-root solution, the electron and ion currents are close in magni-

tude across most of the radius, (Φ/ΦLCFS) & 0.1. Near the axis, in the ion-root, the ion current is

the majority of the current density and the electron current is reduced and even reverses direction.

This arises because of the ‘poloidal resonance’ (discussed in Sections 2.4 and 6.1 and shown in

Figures 2.20 and 6.1). The radial ion transport near this resonance condition increases rapidly and

is strongly suppressed when |Er| is raised. In contrast, in the electron-root near the axis, the ion

flows are reduced to a level comparable to that across the rest of the plasma and the electron current

is reversed and increased in magnitude. Near the core, the total parallel current is dominated by

the electron current, is reversed in direction, and is larger than that in the ion root. Without MC,

the ion current is small, relative to the electron current. The electron current makes up most of the

current, and is not changed much when Er is in the electron-root solution.

The current enclosed by the flux surface I(s) ∼
∫

dsJb(s) is shown in Figure 5.15. For the

cases that include MC, if Er is in the ion-root across the plasma profile where it is a stable Er-root,

then the net toroidal current in steady state is expected to be about 260 A (i-root dominant). If
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Figure 5.15 QHS 50 kW, ρECRH . 0.1:
Enclosed current profile for different

possible scenarios of current density. With
MC (blue) and without MC (green).

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5
x 10

7

Φ/Φ
LCFS

S
 /m

 

 

Figure 5.16 QHS 50 kW, ρECRH . 0.1:
Parallel conductivity of the plasma,

including trapped particle effect. Calculation
by PENTA.

Er is in the electron-root everywhere that it is a stable root, then the net current is greatly reduced

to about 5 A (e-root dominant). There is a small region near the core that does not have a stable

ion-root solution. If the current density in the ion-root is extrapolated to 0 at the axis, then the

net current would be near 275 A (i-root only). If MC is not included in the PENTA calculations,

the current density profile is not strongly affected by the electron-root region, and the net current

is near 200 A. In the experiment, the net toroidal current is ∼ 270 A at the end of the shot,

and the extrapolated current is ∼ 386 A. This suggests that Er is not in the electron-root. The

‘i-root dominant’ MC solution is chosen as the most likely candidate for the steady-state current

density profile and will be used in the time evolution modeling of the current density profile. The

calculation of the parallel conductivity, including the effects of trapped particles, is shown in Figure

5.16. The conductivity is highest near the core where Te is the hottest. This conductivity profile

is also used in the time evolution modeling. The edge boundary condition for the modeling is

provided by the measured net toroidal current, Figure 5.3.

The time-evolved net current density, (radial derivative of Eqn 3.24) and induced current den-

sity profiles are shown in Figures 5.17 and 5.18. Early in the simulation, tsim = 10ms, the induced

current density is large near the axis. By the end of the shot, tsim = 50 ms, most of the induced
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current has diffused out of the column. The current density profile is approaching the assumed

neoclassical current density profile, Jb,ion−root. The simulated and measured loop voltage signal,

Eqn 3.61 is shown in Figure 5.19. The behavior is similar, but the measured value is larger. The

extrapolated current measurement suggests that the total current will exceed the total bootstrap

current. Since the boundary condition on the simulation uses the measured net toroidal current,

and the measured toroidal current exceeds that of the ‘i-root dominant’ solution, the simulation

requires an extra parallel electric field to drive this current. The direction of this extra parallel

electric field is in the same direction as the net current, opposite to that of the bootstrap-induced

electric field. This excess parallel electric field reduces the simulated loop voltage below that of

the measurement.
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Figure 5.17 QHS 50 kW, ρECRH . 0.1: Simulated evolving current density profile. Steady state
solution shown in black. Calculation by IEG.

5.2 Helical rotation of Pfirsch-Schlüter current

At tsim = 10ms, the line-averaged density and diamagnetic flux loop signal have both reached

a stationary value, and the net toroidal current is about 75 A. The pressure profile derived from
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Figure 5.18 QHS 50 kW, ρECRH . 0.1: Simulated induced current density profile. Calculation
by ige+igv.
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Figure 5.19 QHS 50 kW, ρECRH . 0.1: Simulated and measured loop voltage.

the measured temperature and densities is shown in Figure 5.20. A best-fit Lorentz profile, Eqn

A.17, is shown, with AM(0) = AM(1) = AM(2) = AM(4) = 1, PRES SCALE = 803 and
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AM(3) = 0.395. The simulated enclosed current profile is in Figure 5.21. The SUM ATAN

fitline, Eqn A.20, at tsim = 10 ms, is parameterized AC(0) = 0, AC(1) = AC(4) = 1, AC(2) =

10, CURTOR = 77. and AC(3) = 1.5.
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Figure 5.20 QHS 50 kW, ρECRH . 0.1:
Plasma pressure profile and
TWO LORENTZ fitline.
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Figure 5.21 QHS 50 kW, ρECRH . 0.1 :
Enclosed current calculated by IEG, and

arctan fitlines. AC(0) = 0, AC(1) =
AC(4) = 1, AC(2) = 10, AC(3) = 1.5 for

both, and CURTOR = 77(blue),
CURTOR = 264(red).

V3FIT was used to calculate the expected magnetic diagnostic response for a ’Pressure Only’

case, where the pressure profile was specified by the Lorentz fitline in Figure 5.20 and the net

toroidal current was identically 0 across the entire plasma. The diagnostic response was also

calculated for the case with the same pressure profile, but with the current density profile specified

by the arctan fitline for tsim = 10 ms in Figure 5.21. The expected diagnostic responses for the

radial and poloidal channels of the external magnetic diagnostic array are shown in Figure 5.22

as dashed lines. The experimentally measured values are also shown in the figures as points with

uncertainties.

An illustrative sketch of the Pfirsch-Schlüter current density at the location of the two external

diagnostic belts is shown in Figure 5.23. (This sketch does not show the Pfirsch-Schlüter current

density for this case, but for a parabolic pressure profile.) Early in the shot, before the net toroidal



112

a)
5 10 15

−1.5

−1

−0.5

0

0.5

1

1.5

G
au

ss

Poloidal Index

B
r

b)
20 25 30

−1.5

−1

−0.5

0

0.5

1

1.5

G
au

ss

Poloidal Index

B
r

c)
5 10 15

−1

−0.5

0

0.5

1

1.5

2

G
au

ss

Poloidal Index

Bθ

d)
20 25 30

−1

−0.5

0

0.5

1

1.5

2

G
au

ss

Poloidal Index

Bθ

t
sim

 = 10ms

Pressure Only

Exp. t = 10 ms

Figure 5.22 QHS 50 kW, ρECRH . 0.1. Br and Bθ components of the external magnetic
diagnostic signals: Measured (blue, with unc.), Pressure profile only, no toroidal current (black,

dashed), and Pressure profile with evolved current profile at tsim = 10 ms (blue, dashed).

current becomes the largest part of the signal, the largest contribution to the signals is expected to

be a dipole-like field generated by the Pfirsch-Schlüter current. Near the 1/2-field period location,

the radial signal, Br, is expected to be largest near diagnostics with poloidal indices 3-4 and 12-13.

It should be negative near 3-4 and positive for 12-13, Figure 5.22a. The poloidal signal, Bθ, is

expected to be positive for diagnostics 5-11 and negative for 13-16 and 1-3. As seen in Figure

5.22c, this is the case with no net toroidal current, but the toroidal current produces an offset in the

poloidal magnetic field is expected even at tsim = 10 ms. Near the 1/6-field period location, Br,

is expected to be largest near diagnostics 24-25 and 32-17. The signal is expected to be positive
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Figure 5.23 Sketch of the Pfirsch-Schlüter current density at the location of the two external
magnetic vector diagnostic belts. The regions of red indicate current density going into the page

and regions of blue indicate current density directed out of the page. Each diagnostic has a unique
poloidal index and measures the magnetic field components in its own local coordinate system.

See section 4.2.1 for details of the diagnostic array.

near 24-25 and negative near 32-17, Figure 5.22b. The values of Bθ are expected to be positive

for diagnostics 17-23, negative for diagnostics 25-31, and be near zero at diagnostics 24 and 32.

This is clearly the case for no net toroidal current, Figure 5.22d, but even at tsim = 10 ms, the

poloidal drift from the toroidal current is evident. The magnetic diagnostic data from the external

array agrees qualitatively with the simulated calculations and demonstrates the helical nature of

the Pfirsch-Schlüter current density. This confirms that the toroidal curvature is largely reduced in

QHS magnetic configuration.

5.3 Reconstruction of Plasma Pressure and Current Profiles

The reconstruction of the plasma pressure and enclosed current profiles at the ECH turn-off

time, t = 50 ms, are discussed here. The initial guess for the plasma pressure profile is the

Lorentz fitline in Figure 5.20 and the initial guess for the enclosed current profile is the arctan

fitline in Figure 5.21. Reconstructions are performed with two different sets of diagnostics. The

first set of diagnostics includes the internal poloidal array, section 4.2.2, the Rogowski Coil, section
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4.2.3, and a limiter placed at the calculated last-closed flux surface in the QHS configuration. The

second set of diagnostics includes all of the first set, with the addition of the external magnetic

vector diagnostics array, section 4.2.1.

5.3.1 Reconstruction with the Internal Poloidal Array and Rogowski Coil

The reconstruction with the internal poloidal array was performed several times, adjusting

the number of fit parameters. For Reconstruction #1, the free parameters were PRES SCALE,

AM(3), CUR TOR, AC(3), and PHIEDGE. AC(3) kept at 1.5. For Reconstruction #2, the

free parameters included all of those previously listed, with the addition of AC(3). Reconstruction

#3 includes the previous set and includes AM(2) as a fit parameter. The initial guess of the pa-

rameters and the results of the reconstruction are listed in table 5.2. The modeled profiles, best-fit

initial guess profiles, and reconstructed profiles are shown in Figures 5.24 and 5.26. The magnetic

diagnostic signals for the initial guess and reconstructions, along with the measured diagnostic

data are in Figure 5.28. The overall change between the initial guess and reconstruction signals is

small, and the differences between the different reconstructions is even smaller.

As seen in the figures, the reconstructed pressure profile for each case agrees well with mea-

sured one. The enclosed current profile for case #1 does not change much from the initial guess,

while the profile from case #2, with the extra free fit parameter in the profile description actually

agrees very well with that of the initial model profile. The χ2
ν for each case is smaller than 1, but

not too close to 0, indicating that the fit profiles are probably reasonable reconstructions for both

cases. While the value of Fχ, Eqn 4.88, is larger than 1, indicating that the addition of the extra

fit parameter, AC(3) improves the overall fit, the value of χ2
ν is already small, so the additional fit

parameter and improvement of the fit is not significant.

The values of σ for each parameter were calculated by V3FIT according to Eqn 4.85. Since the

Jacobian matrix is calculated by a single-sided finite difference (see Eqn 4.68 and the discussion

above Eqn 4.89), the non-linear relationship between the fit parameters is not well resolved and

the uncertainty for each parameter is overestimated. To get an idea of what types of profiles would

produce similar magnetic diagnostic signals, two scans of the parameter space are performed. The
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Figure 5.24 QHS 50 kW, ρECRH . 0.1: Measured plasma pressure profile (black), the
Lorentz-fit initial guess (black, dashed), Reconstruction #1, Reconstruction #2, and

Reconstruction #3 (o). See Table 5.2.
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Figure 5.25 QHS 50 kW, ρECRH . 0.1: Measured plasma pressure profile (black),
Reconstruction #2, and the profile with the minimum χ2 found during Parameter scan #1.
The pressure profiles from the scan that satisfy χ2

ν ≤ χ2
ν,min + 1 are indicated in gray. See

Table 5.2.
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Figure 5.26 QHS 50 kW, ρECRH . 0.1: The calculated enclosed current profile (black), the
arctan-fit initial guess (black, dashed), Reconstruction #1, Reconstruction #2, and Reconstruction

#3 (o). See Table 5.2.

first scan varies the parameters involving the pressure profile, (PRES SCALE,AM(2), AM(3)),

while holding the current profile at its reconstructed value from Reconstruction #1. The second

scan varies the parameters involving the current profile, (CURTOR,AC(2), AC(3)), while hold-

ing the pressure profile at its reconstructed value. Profiles that produce magnetic diagnostics sig-

nals such that χ2
ν . χ2

ν,min + 1, Eqn 4.89, are considered to be within a single standard deviation of

the reconstructed solution. Here, the χ2
ν,min used is the one found during the parameter scan. There

are a total of (15 × 15 × 21) = 4725 grid points for each scan. The pressure scan included 15

linear points for each of the AM(2) and AM(3) from 0.25 to 5.0, and and 21 pressure values from

100 to 2100 Pa. A 2-D cross-section of χ2 for a scan of AM(2) and PRES SCALE from 100 to

2100 Pa is shown in Figure 5.29. For each grid point that satisfies Eqn 4.89, that pressure profile

is plotted in Figure 5.25. Likewise, current profiles that satisfies Eqn 4.89 are plotted in 5.27.

The profile parameter scan provide a sense of pressure and current profiles that produce di-

agnostic signals that are close to the reconstructed ones. There are a variety of pressure profiles
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Figure 5.27 QHS 50 kW, ρECRH . 0.1: The calculated enclosed current profile (black),
Reconstruction #2, and the profile with the minimum χ2 found during Parameter scan #2. The
current profiles from the scan that satisfy χ2

ν ≤ χ2
ν,min + 1 are indicated in gray. See Table 5.2.
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Figure 5.28 QHS 50 kW, ρECRH . 0.1: Signals for the internal poloidal diagnostic array at
texp = tsim = 50 ms. Measurements (black, with unc.), initial guess (black, dashed),

Reconstruction #1, Reconstruction #2, and Reconstruction #3 (o), each listed in Table 5.2.
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Parameter PRES SCALE AM(2) AM(3) PHIEDGE

Value σ Value σ Value σ Value σ

Initial Guess 803. - 1. - 0.395 - 0.0424 -

Reconstruction #1 797. 5450. 1.∗ - 0.252 1.828 0.0409 0.0113

Reconstruction #2 798. 5715. 1.∗ - 0.230 1.703 0.0409 0.0172

Reconstruction #3 798. 8455. 0.981 83.1 0.231 2.414 0.0409 0.0334

Parameter Scan #1 ∗∗ 300. - 2.329 - 0.657 - 0.0409∗ -

Parameter Scan #2 ∗∗ 797.∗ - 1.∗ - 0.252∗ - 0.0409∗ -

CURTOR AC(2) AC(3) χ2 ν χ2
ν Fχ

Value σ Value σ Value σ

264. - 10. - 1.5 - 13.1 - - -

265. 7. 9.98 7.62 1.5∗ - 4.16 11 0.38 -

264. 7. 10.00 16.1 1.00 1.14 2.70 10 0.27 5.4

264. 7. 10.00 16.8 1.00 1.34 2.70 9 0.30 ∼ 0

265.∗ - 9.98∗ - 1.5∗ - 3.71 10 0.37 −
265. - 15.00 - 1.15 - 2.73 10 0.27 −

Table 5.2 QHS, 50kW, ρECRH . 0.1. V3FIT reconstruction results using the internal poloidal
array, Rogowski coil, and limiter signal. Black: Initial guess. Reconstruction with 5 free

parameters. Reconstruction with 6 free parameters. Reconstruction with 7 free parameters. Scan
of pressure profile parameters, holding the current profile constant. Scan of current profile

parameters, holding the pressure profile constant. The χ2, χ2
ν and Fχ values are also shown,

where relevant. (∗) Quantity was not a fit parameter for this case. (∗∗) The limiter signal was
disabled and PHIEDGE was not a fit parameter.

that produce similar signals, but most of the ambiguity is near the axis, where a profile that is

strongly peaked is indistinguishable from one that has a lower and broader pressure profile. The

reconstructed and measured pressure profiles all lie near the middle of the scan, indicating that the

model and the reconstruction agree quite well. The calculated and reconstructed current profiles

all lie near the profile with the minimum χ2 found during the parameter scan. However, there is

a large variation of possible enclosed current profiles for ρ . 0.5, and so the current density is

poorly resolved in this region.
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Figure 5.29 QHS, 50kW, ρECRH . 0.1: χ2
ν for pressure profile parameter scan. One plane of the

3-D scan is shown. The point in space near where the 3 reconstructions found the minimum χ2 is
indicated.

The number of parameters that can reasonably be used to model the pressure and current pro-

files is around 5. This is consistent with the estimate of the number of significant eigenvalues that

the internal diagnostic array can measure when the typical noise is around ±0.25G − ±0.5 G, as

shown in Figure G.6. If the noise level could be reduced to±0.05G, it is expected that the number

of reconstruction parameters could be increased to 8 or 9.

5.3.2 Reconstruction with the External Magnetic Diagnostic Array, Internal
Poloidal Array and Rogowski Coil

The above reconstruction process was repeated for a set of reconstructions that included the

signals from the external magnetic diagnostic array. The parameter scan was repeated to find pro-

files that satisfy χ2
ν ≤ χ2

ν,min+1. The profile specifications for the initial guess and reconstructions,

along with the parameter scan results, are listed in table 5.3. The magnetic diagnostics signals for

the initial guess and reconstructions, along with the measured signals is in Figure 5.34.
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Parameter PRES SCALE AM(2) AM(3) PHIEDGE

Value σ Value σ Value σ Value σ

Initial Guess 803. - 1 - 0.395 - 0.0424 -

Reconstruction #1 807. 463. 1∗ - 0.704 0.530 0.0411 0.0015

Reconstruction #2 804. 486. 1∗ - 0.722 0.609 0.0409 0.0028

Parameter Scan #1 ∗∗ 700. - 2.33 - 0.657 - 0.0411∗ -

Parameter Scan #2 ∗∗ 807.∗ - 1.∗ - 0.704∗ - 0.0411∗ -

CURTOR AC(2) AC(3) χ2 ν χ2
ν Fχ

Value σ Value σ Value σ

264. - 10. - 1.5 - 220.8 - - -

253. 3. 9.98 2.04 1.5∗ - 114.4 107 1.07 -

253. 3. 9.94 3.74 1.71 0.45 113.4 106 1.07 0.93

253.∗ - 9.98∗ - 1.5∗ - 113.7 106 1.07 −
253. - 12.87 - 1.85 - 113.1 106 1.07 −

Table 5.3 QHS, 50kW, ρECRH . 0.1. V3FIT reconstruction results using the signals from the
external magnetic diagnostic array, internal poloidal array, Rogowski coil, and limiter signal.

Black: Initial guess. Reconstruction with 5 free parameters. Reconstruction with 6 free
parameters. Scan of pressure profile parameters, holding the current profile constant. Scan of
current profile parameters, holding the pressure profile constant. The χ2, χ2

ν and Fχ values are
also shown, were relevant. (∗) Quantity was not a fit parameter for this case. (∗∗) The limiter

signal was disabled and PHIEDGE was not a fit parameter.
.

Using the external diagnostic array, the reconstructed pressure profiles and the profile with the

minimum χ2 found during the parameter scan exceed the measured profile by about a factor of 2.

The total stored energy from the reconstructed profile is about twice that of the measured profile,

which does not even lie within profiles found during the parameter scan. The reconstructed current

profiles and the profile with the minimum χ2 found during the parameter scan agree with each

other, and lie near the middle of the profiles found during the scan. However, the calculated profile

lies near the edge of the parameter scan. Again, the current profile is not well resolved for ρ . 0.5.

For these reconstructions, χ2
ν ≈ 1, which indicates that the model reasonably represents the data
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Figure 5.30 QHS 50 kW, ρECRH . 0.1:
Measured plasma pressure (black), the

Lorentz-fit initial guess (black, dashed),
Reconstruction #1, and Reconstruction #2.

See Table 5.3.
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Figure 5.31 QHS 50 kW, ρECRH . 0.1:
Measured plasma pressure (black),

Reconstruction #1, and the profile with the
minimum χ2 found during Parameter scan
#1. The pressure profiles from the scan that

satisfy χ2
ν ≤ χ2

ν,min + 1 are indicated in gray.
See Table 5.3.
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Figure 5.32 QHS 50 kW, ρECRH . 0.1:
The calculated enclosed current profile

(black), the arctan-fit initial guess (black,
dashed), Reconstruction #1, and

Reconstruction #2. See Table 5.3.
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Figure 5.33 QHS 50 kW, ρECRH . 0.1:
The calculated enclosed current profile

(black), Reconstruction #1, and the profile
with the minimum χ2 found during

Parameter scan #2. The current profiles from
the scan that satisfy χ2

ν ≤ χ2
ν,min + 1 are

indicated in gray. See Table 5.3.
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Figure 5.34 QHS 50 kW, ρECRH . 0.1: Br, Bθ, and Bt signal components of all 32 triplets of
the external diagnostic array: Measured (black, with unc.), initial guess (black, dashed),

Reconstruction #1, Reconstruction #2, listed in Table 5.3. The green line lies nearly on top of the
blue line.
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The reconstruction process does a good job at minimizing the differences between the measured

and modeled signals for the external diagnostic array, Figure 5.34. To do so, the reconstruction

increases the plasma pressure. The clearest way to see this is by inspecting the magnetic signals

due to the plasma pressure and current profile individually. This is done with V3FIT by calculating

the magnetic field due to the pressure profile while the current profile is set to zero, and then

calculating the magnetic field due to only the current profile by setting the pressure profile to

zero. Since HSX is a low beta machine, neither the plasma pressure nor plasma current drastically

alter the magnetic configuration. This allows the magnetic signals due to the plasma pressure and

current to be calculated approximately independently with V3FIT.

Bplasma,total ≈ Bplasma,pressure only +Bplasma,current only (5.2)

This is done for both the initial guess and the reconstructed profiles and the signals for Br

and Bθ for diagnostics with poloidal index 1-16 are shown in Figure 5.35. The pressure profile is

responsible for generating a dipole-like magnetic field, which appears as am = 1 poloidal variation

in the Br and Bθ signals. The current profile contributes a net offset (m = 0) to the Bθ component.

In addition to this, the net current produces an m = 2 variation in the Br and Bθ signals. This

difference between the plasma pressure and plasma current signals is what allows the V3FIT to

reconstruct the details of both the plasma pressure and current profile. To go from the initial guess

to the measured signals, Figure 5.36, adjusting the current profile alone will not improve the fit,

but, increasing the pressure profile, while also slightly decreasing the current, improves the match

for most of the diagnostic signals.

While the majority of the external diagnostics show better agreement with the reconstructions,

the signals for the internal poloidal array show better agreement with the initial guess than with

the reconstructions, Figure 5.37. V3FIT tries to minimize the total χ2, and the contribution to

χ2 from the 96 external diagnostic signals is larger than that from 15 internal diagnostics. The

reconstruction with the internal diagnostics alone, Table 5.2, Figures 5.24 and 5.26, also reinforces

this. The reason for the difference in reconstruction results based on the internal poloidal array

compared to ones including the external diagnostic set is not known at this point. This will be

discussed more in Chapter 6.
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Figure 5.35 Magnetic diagnostic signals due
to the current profile and pressure profile,
calculated separately. Initial guess (black,
dashed) and reconstruction (blue) signals.
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Figure 5.36 The total magnetic signal for the
initial guess (black, dashed) and

reconstruction (blue), from Figure 5.34.

5.4 100 kW QHS with Balanced Fueling

The Thomson profiles for QHS, 100 kW ECRH, ρECRH . 0.1 are shown in Figure 5.38 and

5.39. Plasmas made with the magnetic field in both CCW and CW direction are shown. The stored
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Figure 5.37 QHS 50 kW, ρECRH . 0.1: Signal components for the internal poloidal array:
Measured (black, with unc.), initial guess (black, dashed), Reconstruction #1, Reconstruction #2,

listed in Table 5.3.

energy calculated from the measured profiles for the CCW and CW cases is, respectively, 80 J and

85 J . The measured stored energy from the flux loop (not shown) for the two cases is 78 J and

72 J , respectively. There is good agreement, for the CCW case, and for the CW case, about a 15%

difference, which may indicate the presence of a small suprathermal population of well-confined

electrons. The net toroidal current and loop voltage for the both the CCW (blue) and CW (red)

plasmas are shown in Figures 5.40 and 5.41. The measured current and voltage are reversed, and

nearly identical in magnitude. The extrapolated steady state current, |Itor(t =∞)| ∼ 350 A, and

N e ∼ 4x1018#/m3, listed in Table 5.1, are within a few percent of each other in magnitude, and,

for the current, of opposite sign.

The measured temperature and density profiles are used as input for PENTA, which calculates

the neoclassical ambipolar solutions for Er both with and without MC, shown in Figure 5.42. The

parallel current density profile for each case is shown in Figure 5.43 (with MC) and Figure 5.44

(without MC).

Compared to the QHS 50kW, ρECRH . 0.1 case, the basic features of the radial electric field

are similar, except that the value of Er in the electron root solution is increased by about 100 A in
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Figure 5.38 QHS 100 kW, ρECRH . 0.1:
Te for CCW (blue) and CW (red). Ti

measurement from ChERS (black, dashed).
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Figure 5.39 QHS 100 kW, ρECRH . 0.1:
Ne for CCW (blue) and CW (red).
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Figure 5.40 QHS, 100 kW, ρECRH . 0.1:
Measured net toroidal current for an
ensemble average of 6 shots with the

magnetic field in the CCW (blue) and CW
(red) directions.
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Figure 5.41 QHS, 100 kW, ρECRH . 0.1:
Measured loop voltage (ens. avg.).

the 100kW case. In previous 100 kW experiments, [1], it was found that no stable ion-root solution

existed for Φ/ΦLCFS . 0.04 (ρ . 0.2), and the shear in the radial electric field was suggested to

be responsible for suppressing turbulent transport near the core in QHS plasmas. For this case

the no stable ion-root exists for Φ/ΦLCFS . 0.02 (ρ . 0.14). The current density without MC is
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Figure 5.42 QHS 100 kW, ρECRH . 0.1: Stable ambipolar Er solutions with MC (blue) and
without MC (green). Calculation by PENTA.

about 3 times higher in the 100 kW case, Figure 5.44, and again, the total current is almost entirely

electron current. When MC is included, Figure 5.43, the current density profile has the same basic

characteristics with 100 kW ECHR as it did with 50 kW , i.e., relative magnitude of the ion and

electron parallel current, and behavior in the ion root an electron root, with small differences in

the electron current for ρ . 0.1 (see figure). In the 100 kW case, compared to the 50 kW case,

there is slightly larger region near the axis that has no stable ion-root solution and only a stable

electron root. This electron-root current density is the opposite sign of the ion-root current density

and will reduce the total enclosed current profile a small amount, relative to the 50 kW case. The

conductivity with 100 kW is shown in Figure 5.46, which is about 1.6− 1.8 times higher than the

50 kW case, mostly because of the ∼ 1.5 times increase in Te with 100 kW and σ‖ ∼ T
3/2
e .

The enclosed current profile both with and without MC is shown in Figure 5.45. The total

enclosed current without MC is around 500 A for i-root dominant current density profiles, and

reduced by about 100 A in the e-root dominant profile. With MC, the total current would be about
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Figure 5.43 QHS 100 kW, ρECRH . 0.1, with MC: Ion (blue), electron (red) and total (black)
parallel current. Solid lines coincide with the ion root solution and and dashed lines coincide with

the electron root solution. Calculation by PENTA.

−100 A in the e-root dominant case, a complete reversal from the i-root dominant case, which

would have about 250 A. If the current density for the ion-root solution is extrapolated to 0 on the

axis, the ion-root only case, then the total current would be about 305. The extrapolated steady

state current was around 350 A, exceeding all of estimates that include MC. Regardless, the i-root

only solution, with MC, is chosen for the time evolution. The only difference is the current density

near the magnetic axis where the reconstruction is unlikely to be sensitive enough to be able to

resolve the current profile well enough to discern the difference.

The IEG code takes the conductivity and the current density profiles and simulates the current

profile, from which the current density and  ι profile are calculated, Eqn 3.39. The measured and

simulated toroidal loop voltage are shown in Figure 5.47. Neither simulation matches the mea-

surement, but the one with the higher net steady state current (i-root only) comes closer. This is
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Figure 5.44 QHS 100 kW, ρECRH . 0.1, without MC: Ion (blue), electron (red) and total (black)
parallel current. Solid lines coincide with the ion root solution and and dashed lines coincide with

the electron root solution. The ion current is nearly zero in each case. Calculation by PENTA.

because of the extra parallel loop voltage that would be required to continue driving an increasing

current after the net amount exceeds that of the predicted bootstrap current.

The simulated current profile and pressure profile at tsim = 50 ms are shown in Figures 5.52

and 5.54. A Lorentz-fitline is shown in the pressure profile, which serves as the initial guess in the

reconstruction process. An arctan-fitline is shown for the current profile, which also serves as the

initial guess profile. The reconstruction results are shown in each figure, as are the profiles found

during parameter scans that satisfy χ2
ν ≤ χ2

ν,min + 1. The reconstruction in this case uses only the

internal poloidal array, Rogowski, and the limiter as reconstruction data. The parameters for the

initial guess, reconstruction, and both parameter scans are shown in Table 5.4.

The reconstructions with the internal array agree well with the initial guess. Again there is

some ambiguity regarding the pressure and pressure density near the core, and the current density

is not well constrained for ρ . 0.5. The reconstruction completed with χ2
ν = 0.75.
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Figure 5.45 QHS 100 kW, ρECRH . 0.1:
Enclosed current profile for different

possible scenarios of current density. With
MC (blue) and without MC (green).

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10

7

Φ/Φ
LCFS

S
 /m

 

 

Figure 5.46 QHS 100 kW, ρECRH . 0.1:
Parallel conductivity of the plasma,

including the effects of trapped particles, for
QHS 100 kW near-axis heating. Calculation

by PENTA.
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Figure 5.47 QHS 100 kW, ρECRH . 0.1: Measured and simulated loop voltage for the i-root
dominant and i-root only profiles of the bootstrap current. Calculation by IEG.

Figures 5.52, 5.54, and Table 5.5 show the same information with reconstructions using all of

the external diagnostic signals along with the internal array, Rogowski and limiter. The reconstruc-

tions find solutions for which the pressure profiles do not satisfy χ2
ν ≤ χ2

ν,min+1. The reconstructed

pressure profiles are higher than the measured profile by a factor of ∼ 2. The reconstructed total
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Figure 5.48 QHS 100 kW, ρECRH . 0.1:
Measured plasma pressure profile (black),

the Lorentz-fit initial guess (black, dashed),
and Reconstruction. See Table 5.4.
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Figure 5.49 QHS 100 kW, ρECRH . 0.1:
Measured plasma pressure profile (black),
Reconstruction, and the profile with the

minimum χ2 found during Parameter scan
#1. The pressure profiles from the scan that

satisfy χ2
ν ≤ χ2

ν,min + 1 are indicated in gray.
See Table 5.4.

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

Φ/Φ
LCFS

I en
cl

os
ed

, A
m

ps

Figure 5.50 QHS 100 kW, ρECRH . 0.1:
The calculated enclosed current profile

(black), the arctan-fit initial guess (black,
dashed), and Reconstruction. See Table 5.4.
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Figure 5.51 QHS 100 kW, ρECRH . 0.1:
The calculated enclosed current profile

(black), Reconstruction, and the profile with
the minimum χ2 found during Parameter

scan #2. The current profiles from the scan
that satisfy χ2

ν ≤ χ2
ν,min + 1 are indicated in

gray. See Table 5.4.
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Parameter PRES SCALE AM(2) AM(3) PHIEDGE

Value σ Value σ Value σ Value σ

Initial Guess 1214. - 1 - 0.361 - 0.0424 -

Reconstruction 1209. 4944. 1. ∗ - 0.300 1.312 0.0408 0.0108

Parameter Scan #1 ∗∗ 400. - 4. - 0.936 - 0.0408∗ -

Parameter Scan #2 ∗∗ 1209.∗ - 1. ∗ - 0.300∗ - 0.0408∗ -

CURTOR AC(2) AC(3) χ2 ν χ2
ν Fχ

Value σ Value σ Value σ

255 - 10. - 1.5 - 14.6 - - -

244. 8. 9.98 8.90 1.5∗ - 8.3 11 0.75 -

244.∗ - 9.98∗ - 1.5∗ - 7.1 10 0.71 -

244. - 15.00 - 0.8 - 4.8 10 0.48 -

Table 5.4 QHS, 100kW, ρECRH . 0.1. V3FIT reconstruction results using internal poloidal
array, Rogowski coil, and limiter signal. Black: Initial guess. Reconstruction with 5 free

parameters. Scan of pressure profile parameters, holding the current profile constant. Scan of
current profile parameters, holding the pressure profile constant. The χ2, χ2

ν and Fχ values are
also shown, were relevant. (∗) Quantity was not a fit parameter for this case. (∗∗) The limiter

signal was disabled and PHIEDGE was not a fit parameter.

enclosed current is smaller than that measured by the Rogowski coil by ∼ 25 A. The reconstruc-

tion completed with χ2
ν = 1.24, which indicates that the model is in reasonably agreement with

the measurements.

5.5 50 kW QHS, ρECRH ∼ 0.3

The Thomson profiles for QHS, 50 kW ECRH, ρECHR ∼ 0.3 are shown in Figure 5.56 and

5.57. Plasmas made with the magnetic field in both CCW and CW direction are shown. In the

CCW case, the calculated stored energy from the measured profiles is 34 J , and the stored energy

from the flux loop measurement (not shown) is 35 J . In the CW direction, the calculated and

measured stored energy are 33 J and 28 J , respectively. The net toroidal current and loop voltage

for the both the CCW (blue) and CW (red) plasmas are shown in Figures 5.58 and 5.59. The

measured current and voltage are reversed, and nearly identical in magnitude. The extrapolated
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Figure 5.52 QHS 100 kW, ρECRH . 0.1:
Measured plasma pressure profile (black),

the Lorentz-fit initial guess (black, dashed),
and Reconstruction. See Table 5.5.

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

3000

3500

Φ/Φ
LCFS

P
a

Figure 5.53 QHS 100 kW, ρECRH . 0.1:
Measured plasma pressure profile (black),
Reconstruction, and the profile with the

minimum χ2 found during Parameter scan
#1. The pressure profiles from the scan that

satisfy χ2
ν ≤ χ2

ν,min + 1 are indicated in gray.
See Table 5.5.
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Figure 5.54 QHS 100 kW, ρECRH . 0.1:
The calculated enclosed current

profile(black), the arctan initial guess (black,
dashed), and Reconstruction. See Table 5.5 .
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Figure 5.55 QHS 100 kW, ρECRH . 0.1:
The calculated enclosed current

profile(black), Reconstruction, and the
profile with the minimum χ2 found during

Parameter scan #2. The current profiles from
the scan that satisfy χ2

ν ≤ χ2
ν,min + 1 are

indicated in gray. See Table 5.5.
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Parameter PRES SCALE AM(2) AM(3) PHIEDGE

Value σ Value σ Value σ Value σ

Initial Guess 1214. - 1. - 0.361 - 0.0424 -

Reconstruction 1213. 542. 1. ∗ - 0.662 0.376 0.0408 0.0016

Parameter Scan #1 ∗∗ 1000. - 2.32 - 0.657 - 0.0408∗ -

Parameter Scan #2 ∗∗ 1213.∗ - 1. ∗ - 0.662∗ - 0.0408∗ -

CURTOR AC(2) AC(3) χ2 ν χ2
ν Fχ

Value σ Value σ Value σ

255. - 10. - 1.5 - 342.5 107 - -

232. 3.2 9.97 2.32 1.5∗ - 132.8 107 1.24 -

232.∗ - 9.97∗. - 1.5∗ - 132.6 106 1.25 -

232. - 11.81 - 1.5 - 132.3 106 1.25 -

Table 5.5 QHS, 100kW, ρECRH . 0.1. V3FIT reconstruction results using the signals from the
external magnetic diagnostic array, internal poloidal array, Rogowski coil, and limiter signal.

Black: Initial guess. Reconstruction with 5 free parameters. Scan of pressure profile parameters,
holding the current profile constant. Scan of current profile parameters, holding the pressure

profile constant. The χ2, χ2
ν and Fχ values are also shown, were relevant. (∗) Quantity was not a

fit parameter for this case. (∗∗) The limiter signal was disabled and PHIEDGE was not a fit
parameter.

steady state current, Itor(t = ∞) ∼ 160 A, and N e ∼ 3x1018/m3, listed in Table 5.1, are within

a few percent of each other in magnitude, and, for the current, of opposite sign. An operational

density as high as N e ∼ 4x1018/m3 was not possible for this resonance location. Compared to

50 kW, ρECRH . 0.1 case, the electron temperature is reduced in the core region, ρ . 0.25. and

the density is slightly reduced. The profiles are used as input for PENTA, which calculates the

neoclassical ambipolar solutions for Er both with and without MC, shown in Figure 5.60. The

parallel current density profile for each case is shown in Figure 5.61 (with MC) and Figure 5.62

(without MC).

In the QHS 50kW, ρECRH ∼ 0.3 case, there is only a single stable ambipolar Er root across the

plasma profile. Compared to the 50 kW, ρECRH . 0.1 case, the current density is reduced in both

MC and non-MC calculations, but the reduction is much larger in the non-MC case. The enclosed

current profiles with and without MC, shown in Figure 5.63 show that the net toroidal current is
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Figure 5.56 QHS, 50kW, ρECRH ∼ 0.3: Te
for CCW (blue) and CW (red). Ti estimate

from ChERS (black, dashed).
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Figure 5.57 QHS, 50kW, ρECRH ∼ 0.3: Ne

for CCW (blue) and CW (red).
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Figure 5.58 QHS, 50kW, ρECRH ∼ 0.3:
Measured net toroidal current for an
ensemble average of 7 shots with the

magnetic field in the CCW (blue) and CW
(red) directions.
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Figure 5.59 QHS, 50kW, ρECRH ∼ 0.3:
Measured loop voltage (ens. avg.).

expected to be around 180 A when MC is included, and only about 55 A when MC is not included

in the model. The extrapolated net current from the Rogowski measurement is ∼ 165 A, which

agrees better with the calculation that includes MC. This is the profile used in the time evolution

simulation. The parallel conductivity profile is shown in Figure 5.64.
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Figure 5.60 QHS, 50kW, ρECRH ∼ 0.3: Stable ambipolar Er with MC (red) and without MC
(green). Calculation by PENTA.
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Figure 5.61 QHS, 50kW, ρECRH ∼ 0.3, with MC: Ion (blue), electron (red) and total (black)
parallel current. Only ion root solutions exist for this case. Calculation by PENTA.

The measured and simulated loop voltage signals are shown in Figure 5.65, and they are in

excellent agreement. The simulated current profile and pressure profile at tsim = 50 ms are

shown in Figures 5.66 and 5.68. A Lorentz-fitline is shown in the pressure profile, which serves
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Figure 5.62 QHS, 50kW, ρECRH ∼ 0.3, without MC: Ion (blue), electron (red) and total (black)
parallel current. Only ion root solutions exist for this case. Calculation by PENTA.
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Figure 5.63 QHS, 50kW, ρECRH ∼ 0.3:
Enclosed current profile for different
possible scenarios of current density.
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Figure 5.64 QHS, 50kW, ρECRH ∼ 0.3:
Parallel conductivity of the plasma,

including the effects of trapped particles.
Calculation by PENTA.

as the initial guess in the reconstruction process. An arctan-fitline is shown for the current profile,

which serves as the initial guess profile for the reconstruction. The reconstruction here uses only

the Rogowski, limiter, and the Br and Bθ signals from the external diagnostic array. The internal
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Figure 5.65 QHS, 50kW, ρECRH ∼ 0.3: Measured (black) and simulated (blue) loop voltage.
Calculation by IEG.

poloidal array was not configured for equilibrium reconstruction measurements at the time this data

was taken. The reconstruction results are shown in each figure, as are the profiles found during

parameter scans that satisfy χ2
ν ≤ χ2

ν,min + 1. The parameters for the initial guess, reconstruction,

and both parameter scans are shown in Table 5.6.

Similar to the previous reconstructions using the signals from the external array, the recon-

structed plasma pressure is∼ 1.8 times larger than the measured profile, and the measured pressure

profile is on the edge of the χ2
ν ≤ χ2

ν,min + 1 set. The net toroidal current is predicted well, but,

as with the pressure profile, the calculated current profile is on the edge of the χ2
ν ≤ χ2

ν,min + 1

parameter scan. The reconstructed profiles have χ2
ν = 0.68.

5.6 Summary

For the 6 cases in Table 5.1, the total enclosed current was calculated for the limiting cases

listed in Table 5.7. The cases are, with MC, i-root dominant, e-root dominant, and without MC,

i-root dominant. The estimate of the steady state current that is closest to the extrapolated value

with the estimate that includes MC and is in the ion-root wherever the ion-root is a stable ambipolar

Er solution. The MC i-root dominant solution also correctly predicts little change or even a small

reduction in current going from the 50 kW, ρECRH . 0.1 case to the 100 kW, ρECRH . 0.1. This
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Parameter PRES SCALE AM(2) AM(3) PHIEDGE

Value σ Value σ Value σ Value σ

Initial Guess 301. - 1 - 0.625 - -0.0400 -

Reconstruction 373. 180. 1.∗ - 1.177 0.985 -0.0419 0.0011

Parameter Scan #1 ∗∗ 900. - 0.38 - 0.657 - -0.0419∗ -

Parameter Scan #2 ∗∗ 373.∗ - 1. ∗ - 1.177∗ - - 0.0419∗ -

CURTOR AC(2) AC(3) χ2 ν χ2
ν Fχ

Value σ Value σ Value σ

-147 - 10. - 1.5 - 152. 60 - -

-148. 3. 1.00 4.13 1.5∗ - 41. 60 0.68 -

-148.∗ - 1.00∗ - 1.5∗ - 40. 59 0.67 -

-148. - 0.47 - 2.2 - 28. 59 0.47 -

Table 5.6 QHS, 50kW, ρECRH ∼ 0.3. V3FIT reconstruction results using the signals from the
external magnetic diagnostic array, Rogowski coil, and limiter signal. Black: Initial guess.

Reconstruction with 5 free parameters. Scan of pressure profile parameters, holding the current
profile constant. Scan of current profile parameters, holding the pressure profile constant. The χ2,
χ2
ν and Fχ values are also shown, were relevant. (∗) Quantity was not a fit parameter for this case.

(∗∗) The limiter signal was disabled and PHIEDGE was not a fit parameter.

was because in the 100 kW case, the ion-root was not stable for a slightly larger region near the

axis. The electron-root current density is the opposite sign to that in the ion-root, and since it is the

only stable root in this region, increasing the radial extent of this region decreases the total current

a small amount. The e-root dominant case tends to underestimate the total current. The estimates

from the non-MC solution exceeds the measurement in the 100 kW, ρECRH . 0.1 case by 100 A

or more, while it is smaller than the measurement by 100 A or more in the 50 kW, ρECRH ∼ 0.3

case and by about 200 A in the 50 kW, ρECRH . 0.1 case.

For each of the reconstruction cases presented here, either the i-root dominant or i-root only

current profile and parallel conductivity profile were used in the IEG code to simulate the current

profile. The reconstructions based on the internal diagnostics show good agreements with mea-

sured pressure profile and calculated (time-evolved) current profile. When the diagnostics signals

from the external array are used in the reconstruction, the reconstructed pressure profile is about
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Figure 5.66 QHS 50 kW, ρECRH ∼ 0.3:
Measured plasma pressure profile (black),

the Lorentz-fit initial guess (black, dashed),
and Reconstruction. See Table 5.6.
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Figure 5.67 QHS 50 kW, ρECRH . 0.1:
Measured plasma pressure profile (black),
Reconstruction, and the profile with the

minimum χ2 found during Parameter scan
#1. The pressure profiles from the scan that

satisfy χ2
ν ≤ χ2

ν,min + 1 are indicated in gray.
See Table 5.6.
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Figure 5.68 QHS 50 kW, ρECRH ∼ 0.3:
The calculated enclosed current

profile(black), the arctan initial guess (black,
dashed), and Reconstruction. See Table 5.6.
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Figure 5.69 QHS 50 kW, ρECRH . 0.1:
The calculated enclosed current

profile(black), Reconstruction, and the
profile with the minimum χ2 found during

Parameter scan #2. The current profiles from
the scan that satisfy χ2

ν ≤ χ2
ν,min + 1 are

indicated in gray. See Table 5.6.
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Field ρECRH PECRH , N e Itor(t =∞) I b, w/ MC, I b, w/ MC, I b, w/o MC,

Configuration launched i-root dom e-root dom i-root dom

QHS CCW∗ ρ . 0.1 50 kW 4.1 386.±23. A 261. 6. 202.

QHS CW ρ . 0.1 50 kW 4.2 -411.±46. A -285. 60. - 173.

QHS CCW∗ ρ . 0.1 100 kW 4.1 352.±21. A 242. -110. 440.

QHS CW ρ . 0.1 100 kW 4.0 -343.±20. A -243. 281. -593.

QHS CCW ρ ∼ 0.3 50 kW 3.1 167.±14. A 162. - 64.

QHS CW∗ ρ ∼ 0.3 50 kW 3.0 -164.±11. A -179. - 56.

Table 5.7 Configuration space explored with balanced fueling in the QHS configuration.
Resonance location, heating power and operating N e(×1018/m3), extrapolated steady state

current, and net current with MC in i-root and e-root dominant solution, and without MC in the
i-root dominant solution. ∗ Reconstruction is presented in this chapter.

twice the measured profile, and the calculated current profile is near the edge or outside of the

χ2
ν ≤ χ2

ν,min + 1 boundary found from the parameter scans around reconstructed current profile,

indicating that the the model and reconstruction only agree marginally. A possible reason for the

poor agreement with the external diagnostics will be discussed in Section 6.3.
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Chapter 6

Conclusions and Future Work

In the previous chapter, results of the neoclassical modeling of the bootstrap current, the time-

evolution of the net toroidal current, and the reconstruction of the equilibrium plasma pressure and

current profile in the quasi-helically symmetric (QHS) magnetic configuration were presented. The

helical rotation of the Pfirsch-Schlüter current due to the lack of toroidal curvature was confirmed

by measurements with two ‘belts’ of magnetic diagnostic triplets separated by 1/3 of a field period

and mounted on the external side of the vacuum vessel. The reversal of the neoclassical bootstrap

current in QHS, compared to a tokamak, was confirmed with measurements by a Rogowski coil.

The measured radial profiles of the electron temperature and density and ion temperature in hy-

drogen plasmas were used as inputs for the neoclassical transport code, PENTA, which includes

the effects of momentum conservation between the electron and ion flows. The 3-D inductive

response of the plasma was simulated and the calculated current profile was used as the initial

guess for the 3-D equilibrium reconstruction code, V3FIT. V3FIT used the measured magnetic

diagnostic signals as constraints to reconstruct the plasma pressure and current profiles. Using the

internal magnetic diagnostics, the reconstructed pressure profile agreed well with measurements

from Thomson scattering. The reconstruction of the current profile is consistent with the calcu-

lated neoclassical bootstrap current. Because of the high effective transform, the magnitude of

both the Pfirsch-Schlüter and bootstrap currents are reduced by ∼ 3. The level of uncertainty in

the reconstructed pressure and current profiles is largest near the core of the plasma.

In the remainder of this chapter, possible topics for future research and unresolved questions

are discussed.
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6.1 Benchmarking PENTA

The PENTA code [1] calculates the neoclassical transport fluxes, radial electric field, and par-

allel flows, including the effects of momentum conservation between different plasma species. It

has been shown to reproduce intrinsic ambipolarity in symmetric devices. [2]. The PENTA code

is applicable for a large range of toroidal configurations with vastly different effective ripple, from

ITER which is estimated to have an effective ripple as low as 10−5 near the magnetic axis to

conventional stellarators with an effective ripple of ∼ 1.

The PENTA codes uses the DKES transport coefficients [3] in its calculation [4] of the neo-

classical quantities above. The DKES code has been benchmarked against several other codes [5],

including field-line integration codes, such as NEO [6], [7], full − f and δf Monte Carlo simu-

lations [8], [9], [10], [11], [12], and GSRAKE [13]. The results of the benchmarking show that

DKES does a good job accurately calculating the monoenergetic transport calculations in most

cases. DKES is limited in the sense that it takes a long time for DKES results to converge in

the extremely low-collisionality regime. DKES is also sensitive to a region near a ‘poloidal-

resonance’, [14],

Eres
r =

|n−m ι|
m ι

vTaBθ (6.1)

When this condition is satisfied, the poloidal precession of particles is reduced to zero, increas-

ing the particle diffusion, and for larger Er, the particles are detrapped [15] [16], and the diffusion

and flows are reduced. This condition is easily achieved in HSX plasmas. For example [17], at

ρ ∼ 0.2 with Ti ∼ 50 eV , Bθ ∼ ε41B0, ε41 ∼ 0.003, and Eres
r ∼ 70 − 90 V/cm, as shown in

Figure 6.1. It is this resonance condition that is responsible for predicting large parallel ion flows

and small parallel electron flows near the core of QHS plasmas. This predicted resonance is seen

in the DKES transport calculations, but it is known that the calculations are inaccurate near this

region (the E×B drift is modeled as incompressible, which may not necessarily be true [18]). The

validity of this calculation near this regime is of some concern, since the non-locality of the trans-

port near this condition violates the single-surface assumption of the DKES code, and changes the

results of subsequent calculations, i.e. PENTA.
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Figure 6.1 The relationship between parallel flow velocity and the radial electric field at r/a=0.2
as calculated by PENTA is plotted in purple. The ambipolar solutions, resonant value of Er and
relationship between V‖ and Er that would result in a net flow in the direction of symmetry are

shown for that radial location. Figure courtesy A. Briesemeister [17].

The PENTA code has not been benchmarked against other codes that include momentum con-

servation. One other such code is the VENUS+δf code [19], which uses a δf Monte Carlo method

to calculate D31 and D33, the transport coefficients related to the parallel flow (current) and con-

ductivity. In the future, some effort should be made to benchmark PENTA against VENUS+δf (or

similar code) to check under which conditions the PENTA calculations are valid and where they

need further refinement.

6.2 Improving the Reconstruction

For the reconstructions presented in this thesis, it is clear the certainty of the plasma pressure

gradient and the current density profile near the axis is low. This section will discuss ways to

improve the reconstruction and to increase the level of certainty on the reconstructed profiles.

6.2.1 Improve S/N ratio

As the SVD study in Appendix G suggests, the reconstruction of the plasma profiles with the

internal diagnostic array, where the typical uncertainty for each signal is±0.25−0.5G, is probably
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limited to 5 or 6 reconstruction parameters, Figure G.6. This was seen in Section 5.3.1, where

the number of parameters was adjusted from 5 to 7. The reconstruction with 6 free parameters

was only marginally better than that with 5 free parameters, and adding a 7th parameter did not

improve the reconstruction any better. To increase the number of parameters that can be used in

the reconstruction, improving the signal-to-noise ratio (S/N) for the diagnostics may help, although

only marginally. Even with only±0.05 G of noise, the number of parameters that can be extracted

from the data will only increase to 7 or 8. For this same level of noise (±0.05 G), the SVD

study shows that reconstructions with the external diagnostic array may be able to resolve up to 9

parameters in the reconstruction. This result holds even for a diagnostic set consisting of the entire

‘vitual triplets’, Figure G.3, indicating that even a small level of noise, or uncertainty in the signal

has a large impact in the ability to reconstruct the plasma profiles.

6.2.2 Optimize the Diagnostic Set

In the design of National Compact Stellarator Experiment (NCSX), an optimized set of mag-

netic diagnostics were chosen to accurately reconstruct the plasma pressure and current profiles

[20]. The process began by calculating the magnetic signal normal to the vacuum vessel on a

dense mesh (20 × 60) of points for ∼ 2500 different plasma pressure and current profiles. It was

predicted that 19 unique eigenvalues, each corresponding to a reconstruction parameter, could be

extracted from the data collected by the diagnostics. Starting with a trial set of 600 diagnostics cov-

ering the vacuum vessel and measuring the flux normal to the vacuum vessel, the magnetic signal

for each diagnostic for the ∼ 2500 equilibria were calculated. A selection process was performed

to rank the diagnostics according to how effective each was in determine the reconstruction, and

diagnostics were eliminated if they were redundant or ineffective. It was found that there was a

high correlation between important (low rank #) diagnostics and the distance from the vacuum ves-

sel to the plasma. Diagnostics located closer to the plasma were better suited for reconstruction.

At the end of the ranking process, 225 diagnostic loops were selected for reconstruction purposes.
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V3FIT calculates the signal effectiveness of a diagnostic, which is defined as [21]

Rji =
d log σpj
d log σi

(6.2)

Here, j refers to the reconstruction parameter index, i is the diagnostic index, σpj is the uncertainty

in the reconstructed parameter, Eqn 4.85, and σi is the signal uncertainty. Rji is a measure of

how much the uncertainty of the reconstructed parameter improves (decreases) if the noise level

on the ith signal is reduced. R is dimensionless and non-negative, and
∑
i

Rji = 1. Rji provides

a measure of how effective a diagnostic is for reconstructing a fit parameter. For instance, for the

reconstruction of the net toroidal current, CURTOR in VMEC, theRij parameter is largest for the

Rogowski signal. The value of Rji is local in parameter space, i.e. for a particular plasma pressure

and current profile, and so different diagnostics may be more significant for different equilibrium.

By inspecting the signal effectiveness matrix, it may be possible to identify specific locations on

the vacuum vessel that are important for reconstruction, and either improve the diagnostics at that

location, or install better ones.

6.2.3 Other Methods of Measuring Magnetic Fields

As discussed in the Chapter 1, there are other methods to measure the magnetic field strength

in toroidal plasmas. Two methods making use of polarimetry are possible. Measuring the Faraday

rotation of a probe beam [22] and another is to measure the polarization due to the motional Stark

effect [23]. These do not appear feasible in HSX.

6.2.4 Other Reconstruction Constraints

V3FIT is an on-going project and the types of diagnostics that can be used for reconstruction

constraints is being expanded [24]. Soft x-ray and Thomson scattering data are in the process

of being included in the reconstruction routine, which should improve the reconstruction of the

plasma pressure profile.
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6.3 Vessel Eddy Currents

The reconstructions with the internal diagnostics agreed better with the measured pressure and

calculated current profiles than did the reconstructions with the external diagnostics. In particular,

the pressure profile from the reconstructed profile based on the external diagnostics had about 2×
the total stored energy than measured. The effects of the vacuum vessel were not included in the

modeling. It’s possible that eddy currents are produced in the vacuum vessel by the parallel electric

field induced in the plasma by the bootstrap current.

The parallel current density, J ·B, at three toroidal locations along a 1/2-field period is shown

in Figure 6.2 for tsim = 10 ms and tsim = 50 ms for the plasmas discussed in Section 5.1.

Early in the shot the dipole Pfirsch-Schlüter current density is the dominant current density, but by

the end of the shot the bootstrap current has become the largest component, making most of the

current density unidirectional. The magnetic field generated by the evolving current profile was

calculated for a dense mesh of points covering the vacuum vessel and plotted for several times

during the simulation, Figure 6.3. The figure shows the |B| and ~B caused by the plasma current

(the main field contribution has been suppressed). As the simulation moves forward in time, helical

‘stripes’ in |B| can be seen grow in intensity on the vessel. The direction of the magnetic field is

predominately in a poloidal-like direction. The magnetic field is changing in time because of an

induced electric field,

∂B
∂t

= −∇× E (6.3)

Since the vessel itself is conductive, a current in the vessel will be

J = σE (6.4)

This current will generate a magnetic field

J = ∇× B

µ
(6.5)

By substituting Eqn 6.5 into 6.4 and then into 6.3,

∂B
∂t

= −∇×∇× B

σµ
(6.6)
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By solving Eqn 6.6 on the vacuum vessel, and then for J, modifications to the measured field

outside of the vacuum vessel due to the eddy currents in the vessel can be determined. By including

the effect of the conductive vacuum vessel, the reconstruction with the external diagnostics should

improve.
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Figure 6.2 J ·B at three toroidal locations during the plasma evolution. Calculation by VMEC.

Eddy currents due to changes in current in external field coils have been modeled on the W7-

AS stellarator [25] and on the NSTX spherical tokamak [26]. In each of those cases, the modeling

improved the measurement of the plasma beta. Eddy currents from the plasma column shift has

been detected by vibrational measurements with accelerometers in the vacuum vessel of LHD,

but the analysis indicates that more sensors are required to determine the distribution of the eddy

current in the vacuum vessel [27].

6.4 Magnetic Islands

Magnetic islands can have detrimental effects on plasma confinement. Islands have the poten-

tial to form near rational surfaces, where  ι = n/m and n and m are low-order integers. When

an island is present in the plasma volume, it forms a region with its own separatrix. The field
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Figure 6.3 |B| and ~B on the vacuum vessel during the plasma evolution.



151

lines on the separatrix travel along the surface and eventually sample the space on every side of

the island. They are short-circuiting or connecting the region just inside and just outside of the

location of the island. This increases the radial transport in the area around the island, decreasing

the confinement [28]. In some cases, islands have been found to be beneficial for confinement,

particularly when located near the last-closed flux surface. In W7-AS, an improved confinement

regime, an H-mode, was found when rational surfaces were located just outside the last-closed flux

surface [29]. It is of interest to be able to detect and identify the presence of island.

The V3FIT code uses VMEC as its equilibrium solver, which does not allow for the possibility

of magnetic islands on the computational grid. V3FIT is modular and can be adapted to use any

equilibrium solver. The Scalable Island Equilibrium Solver for Toroidal Applications code, or

SIESTA, is designed to be a 3-D MHD equilibrium solver that resolves islands and stochastic

regions [30]. SIESTA uses the same background coordinates system and spectral representation as

VMEC, so it well suited to be used with V3FIT.

With SIESTA and V3FIT, the expected response for magnetic diagnostics can be calculated for

the case when islands are in the plasma. HSX has ability to lower and raise the rotational transform

of the QHS configuration. By lowering the rotational transform to  ι = 1, a set of n/m = 4/4

islands can form in the vacuum field, Figure 6.4. If the islands produce a unique signature in the

diagnostic signals, it may be possible to study the effects that islands have on plasma in HSX, i.e.

changes in confinement or transport properties.

6.5 Mirror Flip Field

In Appendix H, the results of plasmas made in the Mirror configuration are presented. An

attempt was made to match the temperature and density profiles achieved in QHS to study the

effects that the Mirror magnetic spectrum, which has symmetry-breaking terms, as shown in Figure

1.7, has on the bootstrap current. The results of the Mirror flip-field experiments indicate that the

net toroidal current depends on the direction of the main magnetic field. The reason for this is not

understood.
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Separatrix

Figure 6.4 Poicaré plot of surfaces in the Hill 6% configuration with 4/4 island structure.

6.6 Near-ECH Fueling

The fueling source for the plasmas discussed in this dissertation was the puff valve located far

away from the ECH launch mirror, at the opposite side of the machine near boxport A, Figure 5.2.

In Appendix I, the results of flip field experiments with the fueling provided by a puff valve in field

period C, located only a short distance away toroidally from the ECH antenna, are presented. For

four different operating line-averaged operating densities, N e = (2, 3, 4, 5)×1018/m3, differences

in the measured density profiles and net toroidal current were observed when the direction of

the main field was switched from CCW to CW. At present, only speculative ideas regarding the

interaction of the neutral fueling gas with the plasma have been made.
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Appendix A: Variational Moments Equilibrium Code

A.1 VMEC Overview

The MHD equilibrium code, VMEC [1], solves the MHD force balance equation, Ampere’s

and Guass’s laws in a 3D-toroidal geometry:

F = −J× B +∇p = 0 (A.1)

∇× B = µ0J (A.2)

∇ · B = 0 (A.3)

The code assumes a set of nested, closed flux surfaces exist. The plasma pressure, p(s), is constant

on each surface. The innermost surface is the magnetic axis and the outermost surface is the

last closed flux surface (LCFS). The radial coordinate is s = Φ/ΦLCFS , where Φ is the toroidal

flux enclosed within a surface. Two angular coordinates are defined: ζ and θ are toroidal and

poloidal angles, respectively. Each has a range of (0 → 2π). The toroidal angle, ζ , is the same

as the geometric (laboratory) toroidal angle. The surfaces are defined by the inverse coordinate

transformation

R = R (s, θ, ζ) (A.4)

Z = Z (s, θ, ζ) (A.5)

A magnetic stream function, λ (s, θ, ζ), is introduced to define another poloidal angle, θ∗ = θ+ λ,

which makes the magnetic field lines straight in the coordinate system. The magnetic field lines

can be written as

B =
 ι

2π
∇ζ ×∇Φ +

1

2π
∇Φ×∇θ∗ (A.6)

With the toroidal and poloidal mode numbers given by n and m, respectively, a general Fourier

series expansion in the VMEC coordinate system is

f(s, θ, ζ) =
∑
m

∑
n

[fmn,sin sin (mθ − nζ) + fmn,cos cos (mθ − nζ)] (A.7)
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Stellarator symmetry implies that at some toroidal plane, say ζ = 0, the vacuum symmetry

of the external coils system imposes vertical symmetry, such that R(s, θ, 0) = R(s,−θ, 0) and

Z(s, θ, 0) = −Z(s,−θ, 0). This implies that the inverse coordinate transformation can be written

as the sums

R(s, θ, ζ) =
∑
m

∑
n

Rmn,cos(s) cos (mθ − nζ) (A.8)

Z (s, θ, ζ) =
∑
m

∑
n

Zmn,sin(s) sin (mθ − nζ) (A.9)

This also has the consequence that the stream function can be written as [1]

λ (s, θ, ζ) =
∑
m

∑
n

λmn,sin(s) sin (mθ − nζ) (A.10)

The plasma energy in the volume of the plasma is defined as the sum of magnetic and kinetic

energy:

W =

∫
Vpl

dV

(
|B|2
2µ0

+
p

γ − 1

)
(A.11)

Here, γ is the adiabatic index. Minimizing the variation of the energy, δW , leads to a volume-

averaged residual force of

F = −J× B +∇p = 0 (A.12)

The selection of the poloidal angle, θ, accelerates the convergence with minimal spectral content

[2]. The boundary conditions at the plasma edge are that the total pressure is continuous across the

LCFS, and that the normal component of the magnetic field is 0:

|Bin|2
2µ0

+
p

γ − 1
=
|Bout|2

2µ0

B · ∇Φ = 0 (A.13)

The numerical minimization is performed by a conjugate gradient steepest descent method.

A.2 VMEC Input file

The VMEC input file, input.configuration contains a list of the following (it is generally not

case-sensitive except in the specification of filenames):
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• RBC, ZBS: Initial guess of Fourier spectrum ofR- and Z- components of the last closed flux

surface, or boundary

• RAXIS, ZAXIS: Initial guess of the Fourier spectrum of the magnetic axis.

• NS ARRAY: The number of radial surfaces in the computation grid.

• NFP: The number of field periods.

• MPOL: The number of poloidal harmonics to include in the Fourier series.

• NTOR: The number of toroidal harmonics to include in the Fourier series.

• NTHETA: The number of poloidal grid points in the computational grid.

• NZETA: The number of toroidal grid points in the computational grid.

• PHIEDGE: The toroidal magnetic flux enclosed by the last closed flux surface.

• FTOL ARRAY: The minimum value which the volume-averaged residual force, F , must

reach before the equilibrium is considered to have reached convergence.

• PMASS TYPE: The type of specification of the radial pressure profile.

• AM: Parameters or coefficients of the pressure profile.

• PRES SCALE: A scaling factor of the pressure profile (default = 1).

• PCURR TYPE: The type of specification of the radial current profile.

• AC: Parameters of coefficients of the current profile.

• CURTOR: The toroidal current enclosed by the LCFS.

• LFREEB: Logical flag to indicate if the equilibrium is a free-boundary, ’T’, or fixed bound-

ary, ’F’.
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• MGRID FILE: A string in single quotes ‘’ for the path to the mgrid file for the magnetic

configuration. This is required for free-boundary calculations.

There is are also a set of parameters that deal with the minimization algorithm and preconditioners,

which will not be discussed here. The logical flag, LFREEB, which is set to ’T’ (true) to indicate

that the equilibrium represents a free-boundary solution where the VMEC code permits the R and

Z spatial coordinates to evolve. If the flag is set to ’F’ (false), then the LCFS is fixed. This is

often desirable when calculating vacuum equilibria p(s) ≡ 0, J(s) ≡ 0. However, when the pres-

sure and current profiles are non-zero, clamping the LCFS to its vacuum value results in poorly

understood inconsistencies in the calculations of the magnetic field, via V3FIT, and this is unde-

sirable and avoided by using the free-boundary solution. Two of the parameters, NS ARRAY and

FTOL ARRAY must be the same length. In general, VMEC allows one to specify an NS ARRAY

with an increasing number of radial surfaces. But, when V3FIT is controlling the VMEC calls,

only the first element of the NS ARRAY is used.

The default specifications of the pressure and current density profiles are power series, explic-

itly specified by PMASS TYPE = ’POWER SERIES’ or PCURR TYPE=’POWER SERIES’. In

each of these cases, the coefficients of the power series are contained in the AM and AC arrays.

The pressure profile is

p(s) = PRES SCALE ·
(
AM(0) + AM(1) · s+ AM(2) · s2 + AM(3) · s3 + ...

)
(A.14)

and the current density profile and normalization is

J(s) ∝ ac(0) + AC(1) · s+ AC(2) · s2 + AC(3) · s3 + ... (A.15)
1∫

0

dsJ(s) = CURTOR (A.16)

The power series expansions are convenient for simple profile specifications, but for the pur-

poses of representing realistic experimental profiles, they are not ideal. Many terms are required

to reproduce the typically peaked pressure profiles in QHS plasmas, and often the power-series fit

will have regions of negative plasma pressure. The current density profile also suffers from similar
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problems. In addition to the ill-fitting characteristics, the reconstruction process of V3FIT does not

perform well with the large number of free parameters required to model the profiles.

Another possible specification of the pressure profiles is a Lorentz-type profile, PMASS TYPE

= ’TWO LORENTZ’.

p(s)

PRES SCALE · AM(0)
=

AM(1)

N0

 1(
1 +

(
s

AM(2)2

)AM(3)
)AM(4)

− c0

 (A.17)

+
1− AM(1)

N0

 1(
1 +

(
s

AM(5)2

)AM(6)
)AM(7)

− c1


The normalization terms are

c0 =

(
1 +

(
1

AM(2)2

)AM(3)
)−AM(4)

c1 =

(
1 +

(
1

AM(5)2

)AM(6)
)−AM(7)

(A.18)

Ni = 1− ci

With AM(0) ≡ 1, The number of free parameters is 8. The number of free parameters can be

reduced to 4 if AM(1) ≡ 1. This specification is positive-definite, and does a good job of approx-

imating pressure profiles derived from Thomson Scattering, either with 4 or 8 free parameters.

Figures A.1 - A.3 show example pressure profiles made by the ’TWO LORENTZ’ pressure

profile with AM(0) = AM(1) = AM(5) = AM(6) = AM(7) = 1), while the parameters

AM(2), AM(3) and AM(4) are scanned around the value of unity. The scan of AM(3) shows the

widest variation of achievable plasma pressure profiles for a 1-parameter scan. The scans of the

AM(2) and AM(4) values show that if the rest of the parameters are set to 1, flat pressure profiles

(near the plasma core) are unlikely to be modeled well.
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Figure A.1 P (s) for AM(0) =
AM(1) = AM(3) = AM(4) =
AC(5) = AC(6) = AC(7) = 1

and AM(2) = (0.25, 1, 4).
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Figure A.2 P (s) for AM(0) =
AM(1) = AM(2) = AM(4) =
AC(5) = AC(6) = AC(7) = 1

and AM(3) = (0.25, 1, 4).
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Figure A.3 P (s) for AM(0) =
AM(1) = AM(2) = AM(3) =
AC(5) = AC(6) = AC(7) = 1

and AM(4) = (0.25, 1, 4).

An alternate current profile specification is PCURR TYPE = ’SUM ATAN’, where the en-

closed toroidal current profile is described by a sum of arctangent functions:

Ienclosed(s) ∝ AC(0) + (A.19)
5∑
i=1

AC(1 + 4 (i− 1))
2

π
arctan

(
AC(2 + 4 (i− 1))sAC(3+4(i−1))

(1− s)AC(4+4(i−1))

)
The normalization is determined by the total enclosed toroidal current:

Ienclosed(s = 1) = CURTOR (A.20)

Figures A.4 - A.6 are examples of enclosed current and current density profiles modeled by the

‘SUM ATAN’ basis function, with only a single arctan-function in the sum. In each, the location

of the current and current density is compared for different function parameters near unity. In

Figure A.4, AC(0) = 0, AC(1, 4) = 1, and two parameters are varied: AC(2) = (0.25, 1, 4),

AC(3) = (1, 1.5, 2). The current density profiles for this case show that it can represent situations

where the current density is peaked, near-axis, mid-radius, or near the edge of the plasma. When

AC(0) = 0, AC(1) = AC(2) = AC(4) = 1, AC(3) = (0.25, 1, 4), Figure A.2, current density

profiles that are peaked near-axis or the mid-radius may not be modeled very well with this set

of parameters. In Figure A.6, AC(0) = 0, AC(1) = AC(2) = AC(3) = 1, and AC(4) =

(0.25, 1, 4). Here, current density profiles that are not peaked on-axis or that are not flat may not

be modeled very well.
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Figure A.4 I(s) and I ′(s) for
AC(0) = 0, AC(1, 4) = 1,
AC(2) = (0.25, 1, 4),
AC(3) = (1, 1.5, 2).
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Figure A.5 I(s) and I ′(s) for
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AC(1) = AC(2) = AC(4) = 1.
AC(3) = (0.25, 1, 4).
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Figure A.6 I(s) and I ′(s) for
AC(0) = 0,

AC(1) = AC(2) = AC(3) = 1.
AC(4) = (0.25, 1, 4).

A.3 VMEC Input file: QHS

The RBC and ZBS coefficients in the input file serve as an initial guess of the last closed flux

surface of the plasma column. If the initial guess is too far away from the final converged solution,

the VMEC solver may not be able to find the solution by the steepest decent method and it will

not converge. It is important to start from a reasonable initial guess of the LCFS. The vacuum last

closed flux surface serves as a good starting point.

To determine the Fourier series of the last closed flux surface, Poincaré plots were generated

for a set of 200 surfaces separated equiangular in the laboratory toroidal angle, 50 surfaces per

field period. The Poincaré plots used a field-line following code that calculated the magnetic

field of the QHS magnetic configuration using a Biot-Savart code, without using magnetic field

interpolation. The field line was followed for a total of 200 orbits around the machine and because

of the 4 symmetric field periods, 800 points were generated for each of the 50 surfaces in a field

period. Next, these points are used in the DESCUR/SCRUNCH [2] code to calculate the VMEC-

compatible Fourier series expansion that best fits these points in a least-squares sense.

The level of agreement between the Poincaré plots and the Fourier expansion depends strongly

on the presence of vacuum magnetic islands or island remnants, as seen in Figures A.7 and A.8. In

Figure A.8, the surfaces are labeled by the R-value of the launch point of the field-line following

(Z = 0 for all launch points). Near the LCFS of the QHS configuration, a (n,m) = (12, 11) island
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chain lies between the surfaces with starting launch points ofR = 1.509m and 1.510m. Outside of

the R = 1.5161 m surface, a (n,m) = (20, 18) island chain causes significant corrugation of that

flux surface. The effect of the ability to closely match the magnetic surfaces with a finite Fourier

series with only a few terms is limited due to these corrugations. The surface with R = 1.513 m is

chosen as the initial guess for the LCFS in the QHS VMEC input file.
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Figure A.7 Poincaré plot of flux surfaces
(black) and Fourier series expansions

(red) for surfaces near the LCFS of the
QHS magnetic configuration.
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Figure A.8 The same surfaces as in Figure A.7,
zoomed in to the region near the top of the D-shape.
The R-value of the launch point of each flux surface

labels each set of points.

Like the initial guess of the LCFS, VMEC also converges faster and more consistently if the

initial guess of the magnetic axis is close to the actual one. The DESCUR code finds an initial

guess of the magnetic axis by calculating the Fourier series expansion of the geometric center of

the points that define the LCFS. For the highly shaped surfaces of the QHS plasma, this tends to

be a poor estimate. A better initial guess of the magnetic axis is generated by running DESCUR

with a set of surfaces that were generated with a launch point very close the the magnetic axis,

R = 1.4454 m, Z = 0 m. The location of the magnetic axis along one half of a field period
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calculated with these two method is compared in table A.1. The axis generated from LCFS points

is several mm to cm away from the axis generated by near-axis points.

The VMEC equilibrium and subsequent calculations depend on the choice of the LCFS. In

particular, the Boozer coordinate transformation and DKES and PENTA transport calculations are

modified depending on which LCFS is chosen. These effects are discussed elsewhere [3].

The magnetic diagnostic signals from V3FIT depend strongly on the minimum tolerance level

achieved by the VMEC code. Figure A.9 shows how the magnetic signals for a single triplet

due to the plasma currents varies with the inverse residual force balance, 1/FTOL. A linear

pressure gradient (in s) and a constant toroidal current density were chosen for this equilibrium:

p(s) = 2000 · (1 − s) Pa, and J(s) = 400 A/s, Itotal = 400 A. In practice, the minimum FTOL

is set to 1e-15 to ensure that the VMEC equilibrium and magnetic signals are well converged.

The number of poloidal and toroidal harmonics and the number of radial surfaces in the equilib-

rium has a large effect on the minimum residual force balance that can be achieved. To consistently

reach a value of FTOL≤ 1e-15, and to maintain reasonable radial resolution of the plasma column,

the VMEC input file has the following settings:

• NS ARRAY = 32

• MPOL = 6

• NTOR = 8

A.4 Information generated by VMEC

VMEC generates a set of output files. The spectrum and spectral coefficients of the inverse

coordinate transformation, Eqns A.8 and A.9, magnetic field strength, current density, are stored

in output files wout configuration.nc and jxbout configuration.nc. For example, the inverse

coordinates are used to find the location of the computation grid. In the wout configuration.nc

file, the poloidal and toroidal mode numbers are stored in arrays respectively as

xm(1 : mn mode) xn(1 : mn mode) (A.21)



164

R = 1.513 m R = 1.4454 m Difference

Toroidal Angle

[∗π/(2 ∗ 50)]
R [m] Z [m] R [m] Z [m] ∆ R [m] ∆ Z [m]

0 1.426E+00 1.157E-04 1.445E+00 -3.750E-09 0.019 -1.157e-05

1 1.424E+00 2.341E-02 1.443E+00 2.498E-02 0.019 0.00157

2 1.417E+00 4.612E-02 1.437E+00 4.939E-02 0.02 0.00327

3 1.406E+00 6.759E-02 1.426E+00 7.266E-02 0.02 0.00507

4 1.392E+00 8.718E-02 1.411E+00 9.423E-02 0.019 0.00705

5 1.374E+00 1.045E-01 1.393E+00 1.136E-01 0.019 0.0091

6 1.353E+00 1.192E-01 1.372E+00 1.305E-01 0.019 0.0113

7 1.330E+00 1.311E-01 1.349E+00 1.446E-01 0.019 0.0135

8 1.306E+00 1.400E-01 1.323E+00 1.555E-01 0.017 0.0155

9 1.281E+00 1.459E-01 1.297E+00 1.634E-01 0.016 0.0175

10 1.255E+00 1.490E-01 1.269E+00 1.681E-01 0.014 0.0191

11 1.230E+00 1.494E-01 1.242E+00 1.697E-01 0.012 0.0203

12 1.206E+00 1.472E-01 1.215E+00 1.683E-01 0.009 0.0211

13 1.182E+00 1.428E-01 1.189E+00 1.640E-01 0.007 0.0212

14 1.160E+00 1.364E-01 1.165E+00 1.573E-01 0.005 0.0209

15 1.140E+00 1.284E-01 1.142E+00 1.485E-01 0.002 0.0201

16 1.121E+00 1.189E-01 1.121E+00 1.379E-01 0 0.019

17 1.104E+00 1.083E-01 1.102E+00 1.256E-01 -0.002 0.0173

18 1.089E+00 9.675E-02 1.085E+00 1.122E-01 -0.004 0.01545

19 1.077E+00 8.445E-02 1.071E+00 9.780E-02 -0.006 0.01335

20 1.066E+00 7.148E-02 1.059E+00 8.267E-02 -0.007 0.01119

21 1.057E+00 5.789E-02 1.049E+00 6.688E-02 -0.008 0.00899

22 1.050E+00 4.381E-02 1.042E+00 5.055E-02 -0.008 0.00674

23 1.045E+00 2.939E-02 1.036E+00 3.386E-02 -0.009 0.00447

24 1.042E+00 1.476E-02 1.033E+00 1.697E-02 -0.009 0.00221

25 1.041E+00 2.255E-05 1.032E+00 -5.000E-09 -0.009 -2.2555e-05

Table A.1 Comparison between the (R,Z)-coordinates of the magnetic axis calculated by
DESCUR for two set of flux surfaces with different launch points. The R = 1.513 m is the launch

point that generates the LCFS, while the R = 1.4454 m is a launch point close to the vacuum
magnetic axis. The extent of the toroidal angle starts at toroidal cut near the boxport (0) and ends

at a vertical cut at the joint flange region (25).
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Figure A.9 The magnetic signals due to plasma currents for an external magnetic diagnostic
triplet. The signal varies with the residual force balance tolerance achieved by VMEC. In

practice, FTOL=1e-15 is chosen for reconstruction attempts.

The coefficients are stored in arrays

rmnc(1 : ns, 1 : mn mode) (A.22)

for the R-coordinate, and

zmns(1 : ns, 1 : mn mode) (A.23)

for the Z-coordinate. Now, the sums A.8 and A.9 for any surface can be calculated as the cumula-

tive sum over the poloidal and toroidal mode numbers. The derivatives of R and Z as a function
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of the VMEC coordinates, for radial surface number s is,

Rs,ζV (s, θV , ζV ) =
∂R

∂ζV
=

∑
mn=1:mn mode

n · rmnc∗(s,mn) sin (mθV − nζV ) (A.24)

Rs,θV (s, θV , ζV ) =
∂R

∂θV
=

∑
mn=1:mn mode

−m · rmnc∗(s,mn) sin (mθV − nζV ) (A.25)

Rs,θV (s, θV , ζV ) =
∂R

∂s
=

∑
mn=1:mn mode

d(rmnc∗(s,mn))

ds
cos (mθV − nζV ) (A.26)

Zs,ζV (s, θV , ζV ) =
∂Z

∂ζV
=

∑
mn=1:mn mode

−n · zmns∗(s,mn) cos (mθV − nζV ) (A.27)

Zs,θV (s, θV , ζV ) =
∂Z

∂θV
=

∑
mn=1:mn mode

m · zmns∗(s,mn) cos (mθV − nζV ) (A.28)

Zs,θV (s, θV , ζV ) =
∂Z

∂s
=

∑
mn=1:mn mode

d(zmns∗(s,mn))

ds
cos (mθV − nζV ) (A.29)

where rmnc∗(s,mn) = sxm/2 · rmnc†(s,mn) and zmns∗(s,mn) = sxm/2 · zmns†(s,mn) are

derived from a radial spline fit to the normalized coefficients

rmnc†(s,mn) = splinefit

(
rmnc(s,mn)

sxm/2

)
(A.30)

zmns†(s,mn) = splinefit

(
zmns(s,mn)

sxm/2

)
(A.31)

where the poloidal mode number, xm, is used as a normalization factor. This radial derivatives are

also evaluated from the spline fit coefficient, and the derivatives found this way are more accurate

than from an unnormalized spline fit or partial differences [4].

The Jacobian on this ‘full-mesh’ is

J = eρ · eθ × eζ (A.32)

=
(
RsR̂ + ZsẐ

)
·
(
RθV R̂ + ZθV Ẑ

)
×
(
RζV R̂ + ZζV Ẑ +Rζ̂

)
(A.33)

= R (ZsRθV −RsZθV ) (A.34)

The (s, θV , ζV ) part is suppressed, but each of the quantities in the expression varies on the flux

surface.
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A.5 QHS-Equivalent Tokamak

The VMEC input code for a tokamak with a circular cross-section that has the same average
minor and major radius, and same effective transform as HSX is below:

&INDATA

MGRID_FILE=’NONE’

DELT=0.99

NFP=1

NCURR=0

MPOL=10 NTOR=20

NS_ARRAY=16 101

NITER=4000

NSTEP=250

NVACSKIP=4

GAMMA=0.E+0

FTOL_ARRAY=1.0E-06 1.E-11

CURTOR=0.E+0

PHIEDGE=-0.039418

AM=0.E+0

AI=1.0604E+00 -4.72E-02 1.058E-01 -2.16E-02

AC=0.E+0

RAXIS=1.2138E+00

ZAXIS=0.00E+00

RBC(0,0) = 1.2138E+00 ZBS(0,0) = 0.000000E+00

RBC(0,1) = 1.215076937910504e-001 ZBS(0,1) = 1.215076937910504e-001

/
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Appendix B: Limiter Specification for V3FIT

The V3FIT reconstruction can include a specification of a limiter in a number of ways, such

as concave polynomials, lines, circles and more through the use of a function, f , and an auxiliary

function, g [1]:

f(R,Z) ≡ g(R, z)

|∇g(R,Z)| (B.1)

g(R,Z) ≡
4∑

i,j=0

aRZ(i, j) (R−RC)i (Z − Zc)j (B.2)

∇g(R,Z) ≡ R̂

(
4∑

i,j=0

aRZ(i, j) i (R−RC)i (Z − Zc)j
)

(B.3)

+ Ẑ

(
4∑

i,j=0

aRZ(i, j) j (R−RC)i (Z − Zc)j
)

The upper limit of 4 is arbitrary and can be changed in the source code. As it is, there are 27 free

parameters for the specification of f : Rc, Zc, aRZ(i, j).

The plasma edge, as calculated by following field-line launched at 20 different poloidal angles,

at a single toroidal angle. As long as the value along the field line, which is tracing out the last-

closed flux surface, of f(R,Z) < 0, the plasma edge has not intersected the limiter. If f(R,Z) > 0

along the field-line at some point, then it has intersected the limiter and the value of χ2 increase

Two examples [1] of simple limiters are circles and lines. A circular zero-contour with radius a

centered at R = RC , Z = Zc is given by

aRZ(0, 0) = −a2 aRZ(2, 0) = aRZ(0.2) = 1

aRZ(i, j) = 0 for all other (B.4)

g(R,Z) = (R−RC)2 + (Z − Zc)2 − a2

The interior of the circle has negative values for f .
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A line segment on the R− Z plane that connects points (RC , ZC) and (R2, Z2) is given by

aRZ(0, 0) = 0 aRZ(1, 0) = (Z2 − Zc) aRZ(0, 1) = −(R2 −RC)

aRZ(i, j) = 0 for all other (B.5)

g(R,Z) = (Z2 − ZC)(R−RC)− (R2 −RC)(Z − ZC)

The values of f on the left side of the segment directed from (RC , ZC) to (R2, Z2) are negative.

Multiple limiters may be defined. Concave polygons can be constructed by using multiple lines

to define/construct the outside edge of the polygon.

B.1 HSX Limiter

A graphite limiter mounted on an adjustable feed-through is installed on HSX at a single field

period [2]. The limiter is installed at the boxport location and intersects the plasma column along

a chord that perpendicular to the helical axis, and can be adjusted, Figure B.1. Figure B.2 shows

the calculated outline of the limiter, without the stainless steel support tube, in a retracted position

in red. The outline with the limiter positioned so that its inner edge is at the calculated last closed

flux surface is shown in black, and strike points of field lines launched just outside the last closed

flux surface are marked as blues×’s. An (n,m) = (8, 7) island remnant is partially resolved in the

pattern.

The V3FIT limiter specification does not permit a limiter that does not lie at a single laboratory

toroidal angle. Instead, the limiter used in this dissertation was defined to lie on a vertical plane at

a toroidal angle of 0◦ (the boxport), to be up-down symmetric and follow a contour similar to the

QHS LCFS at this location. It The V3FIT description of the limiter is:

n_lif = 1,

n_phi_lif = 1,

lif_rc = 1.44585,

lif_zc = 0,

lif_on_edge = T,

lif_sigma = 0.0010,

lif_arz(1,0,0) = -0.0003818,

lif_arz(1,0,2) = 0.008286,
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Figure B.1 The limiter at the boxport location.

lif_arz(1,0,4) = 0.02888,

lif_arz(1,1,0) = -0.0006503,

lif_arz(1,1,2) = 0.1527,

lif_arz(1,1,4) = 0.009945,

lif_arz(1,2,0) = 0.08481,

lif_arz(1,2,2) = -0.005776,

lif_arz(1,2,4) = 0.009752,

lif_arz(1,3,0) = 0.01129,

lif_arz(1,3,2) = 0.0003575,

lif_phi_degree(1,1) = 0.0,

sdo_data_a(66)=0.0, ! mathrm{the limiter is the 66th signal for this example}

sdo_sigma_a(66)=1e-3,



172

1.38 1.4 1.42 1.44 1.46 1.48

0.2

0.22

0.24

0.26

0.28

0.3

QHS Strike Points in Plane of Helical Cut for Integrations in +/− Phi

HSX X Coordinate (m)

D
is

ta
nc

e 
F

ro
m

 M
id

lp
la

ne
 (

m
)

Figure B.2 Outline of graphite limiter in a retracted position (red) and with its inner edge at the
LCFS of the QHS configuration (black). Strikes points of field lines launched from points outside

of the LCFS are indicated by blue ×’s. Image courtesy C.Clark

A contour plot of f(R,Z) is shown in Figure B.1, showing negative values in the plasma col-

umn region and negative values outside of the LCFS. A Poincaré plot with the field lines launched

at (R,Z,Φ) = (1.514, 0, 0) is also shown (note, the surface used to define the LCFS for VMEC

was derived from the surface with launch point (R,Z,Φ) = (1.513, 0, 0), but the differences are

imperceptible). The uncertainty was chosen to be 1e-3. The limiter is touches the LCFS at certain

location, but does not intersect the plasma column significantly.

The presence of the limiter in the numerical calculation is useful because it prevents the recon-

struction from increasing the net toroidal flux to the point where the plasma volume exceeds the

dimensions of the computational grid. Experimentally, no significant change in plasma parameters

were observed with the limiter at the LCFS or in its retracted position. All results shown in this
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Figure B.3 Contour plot of f(R,Z) on a vertical slice at the boxport location and Poincaré plot
of the LCFS (white x’s).

thesis were obtained with the limiter located with its edge near the calculated QHS LCFS, with

about 5 mm of uncertainty.
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Appendix C: MHD Relationships

The standard magnetohydrodynamic (MHD) equations are stated here and relations among the

various surface quantities are derived. These will be useful in the derivation of the time-evolution

of the toroidal current in the plasma column. The original form of these equations, presented in a

left-handed coordinate system, appear in a paper by Kruskal and Kulsrud [1]. The derivation here

uses slightly different definitions of surface quantities and is in a right-handed coordinate system.

The fundamental MHD equations relate the plasma pressure gradient,∇p, plasma current den-

sity, J, and the magnetic field (more precisely, the magnetic flux density), B.

∇p = J× B (C.1)

µ0J = ∇× B (C.2)

∇ · B = 0 (C.3)

The last equation is not a property of plasma, but of magnetic fields in general: In the absence of

magnetic monopoles, the magnetic field is divergence-free. By taking the dot products, B· and J·
(Eqn C.1),

B · ∇p = 0 (C.4)

J · ∇p = 0 (C.5)

If p is continuous and constant on some surface, then by Eqns C.4 and C.5 the surface is also a

magnetic surface and a current surface, in that the magnetic field lines and current lines do not

leave that surface. If this surface is 1) closed and continuous (no edges), 2) exists within a bounded

region of space, and 3) if either B or J are non-zero on the surface, then, if it is to be realizable

in physical 3-D space, the surface is a toroid [2]. A ‘toroidal’, ζ and ‘poloidal’ angle, θ, can be

defined. Each angle increases by 2π after one passing around the torus in some direction. The

direction for the ζ-loop is along the direction of the magnetic axis, and the direction of the θ-loop

is the ‘short way’ around the torus, which is, in general, orthogonal to the toroidal direction. See

Figure C.1. The pressure, p, is assumed to increase monotonically going in toward the axis of the
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torus. The pressure can be parameterized by p = p(ρ), where ρ is some radial coordinate. ρ = 0 at

the magnetic axis and increases in an outward direction from the axis. The three values, (ρ, θ, ζ)

form a right-handed coordinate system. The Jacobian is defined as

θ

ζ

Figure C.1 A torus.

J =
1

∇ρ · ∇ζ ×∇θ (C.6)

The volume of interior to a toroidal surface with radius ρ is

V =

ρ∫
0

dρ

2π∫
0

dθ

2π∫
0

dζJ (C.7)

The radial derivative of the volume is

V ′ =

2π∫
0

dθ

2π∫
0

dζJ (C.8)

The flux-surface-average operator, 〈 〉, of the value Q is defined as

〈Q〉 =
1

V ′

2π∫
0

dθ

2π∫
0

dζJ Q (C.9)
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The following surface quantities are defined:

2πΦ(ρ) =

ρ∫
0

dρ

2π∫
0

dθ

2π∫
0

dζ J B · ∇ζ

=

ρ∫
0

dρ V ′ 〈B · ∇ζ〉 (C.10)

2πΨ(ρ) =

ρ∫
0

dρ V ′ 〈B · ∇θ〉 (C.11)

2πI(ρ) =

ρ∫
0

dρ V ′ 〈J · ∇ζ〉 (C.12)

2πF (ρ) =

ρ∫
0

dρ V ′ 〈J · ∇θ〉 (C.13)

2πU(ρ) =

∞∫
ρ

dρ V ′ 〈B · B〉 (C.14)

2πK(ρ) =

ρ∫
0

dρ V ′ 〈J · B〉 (C.15)

Suppose that w is some single valued vector field that satisfies

∇p · (∇× w) = 0 (C.16)

Let the vector z(ρ) be a set of points defined on the toroidal surfaces. For each point in the toroidal

volume, x, define the integral

ν(x) =

x∫
z(ρ)

dx · w (C.17)

The integration path is on a surface. For any two paths that can be continuously deformed into one

another, Stokes’ theorem,
∫
S

dS ·(∇×A) =
∮
C

dl ·A, and Eqn C.16, show that ν(x) is independent

of the path connecting the starting and finishing points and is single valued with value λ. If the

path wraps around the torus one or more times in either the poloidal or toroidal direction, additional
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contributions to the integral exists:

ν(x) = λ+
ζ

2π

∮
θ=0

dx · w +
θ

2π

∮
ζ=0

dx · w (C.18)

The value of ∇ν has a component in the ∇ρ-direction and a component that is equal to w. The

∇ρ-part arises because the points z are a function of ρ. Since∇p×∇ρ = 0,

∇p× (∇ν − w) = 0 (C.19)

The quantity (∇ν − w) is parallel to∇p. By Eqns C.4 and C.5,

B · (∇ν − w) = 0 (C.20)

J · (∇ν − w) = 0 (C.21)

Two more surface quantities may be defined:

2πQ(ρ) =

ρ∫
0

dρ V ′ 〈B · w〉 (C.22)

2πR(ρ) =

ρ∫
0

dρ V ′ 〈J · w〉 (C.23)

Radial derivatives are found by using Eqns C.10-C.13, C.18, C.20, and C.21:

2πQ′ = V ′ 〈B · w〉 = V ′ 〈B · ∇ν〉 (C.24)

=
V ′

2π

〈
B · ∇ζ

∮
θ=0

dx · w + B · ∇θ
∮
ζ=0

dx · w
〉

(C.25)

= Φ′
∮
θ=0

dx · w + Ψ′
∮
ζ=0

dx · w (C.26)

2πR′ = I ′
∮
θ=0

dx · w− F ′
∮
ζ=0

dx · w (C.27)

Now, consider two possible options for the quantity w:

w = B (C.28)

w =
B×∇p
(∇p)2

(C.29)
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For the first option, Q = U and R = K. Ampere’s law can be applied to the loop integrals above:∮
ζ=0

dx · B = µ0I (C.30)

∮
θ=0

dx · B = µ0F (C.31)

Then, the radial derivatives can be written as:

2πU ′ =
〈
B2
〉
V ′ = µ0 (FΦ′ + IΨ′) (C.32)

2πR′ = 〈J · B〉V ′ = µ0 (FI ′ − IF ′) (C.33)

For the second option, Q = 0 and 2πR = V . The loop integrals in this case are∮
ζ=0

dx · w =
1

2π

∮
ζ=2π

dx · wζ −
∮
ζ=0

dx · wζ (C.34)

=
1

2π

2π∫
0

dθ

2π∫
0

dζ (∇× (wζ)) · ∇p|∇p| (C.35)

The first step is a simple construction, and the next step uses Stokes’ theorem. With Eqn C.16,∮
ζ=0

dx · w =
1

2π

2π∫
0

dθ

2π∫
0

dζ (w×∇ζ) · ∇p|∇p| (C.36)

For this case,∇p× w = B, and so∮
ζ=0

dx · w =
1

2π

2π∫
0

dθ

2π∫
0

dζ
B · ∇ζ
|∇p| (C.37)

=
Φ′

p′
(C.38)

Likewise, ∮
θ=0

dx · w = −Ψ′

p′
(C.39)

The radial derivative, 2πR′, is then

2πR′ = V ′ = −I ′Ψ
′

p′
− F ′Φ

′

p
or − p′V ′ = I ′Ψ′ + F ′Φ′ (C.40)
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Appendix D: Boundary Conditions for Current Diffusion Equa-
tion

The boundary condition for the diffusion equation of the rotational transform, Eqn 3.67, is

specified by a combination of Dirichlet and Neumann boundary conditions,

α ι+ β ι′ = γ (D.1)

At the center of the plasma column, ρ = 0, there is finite current density so

d ι

dρ

∣∣∣∣
ρ=0

= 0 (D.2)

At the edge of the plasma column, ρ = 1, a few options exist. The measured net toroidal current,

I (ρ = 1) can be used to set the value of  ι at the edge, Eqn 3.39

 ι|ρ=1 =

(
µ0I

S11Φ′
− S12

S11

) ∣∣∣∣
ρ=1

(D.3)

Another option is to use the measured loop voltage to determine the edge condition. From Eqn

3.51,

VLoop = Vζ−loop (ρ = 1) =
dΨ

dt

∣∣∣∣
ρ=1

+ Vζ−loop (ρ = 0) (D.4)

After substitutions with Eqns 3.58 and 3.60,

VLoop = η‖〈(J− Jn.i.) · B〉
dV

dΦ

∣∣∣∣
ρ=1

+  ι (ρ = 1)
dΦ

dt

∣∣∣∣
ρ=1

(D.5)

If the net toroidal flux is constant, which is correct to within 1% for 1 Tesla QHS plasmas (HSX is

a low β machine), then last term is zero and

VLoop
η‖

+ 〈Jn.i. · B〉
dV

dΦ

∣∣∣∣
ρ=1

= 〈J · B〉dV
dΦ

∣∣∣∣
ρ=1

(D.6)

With Eqn C.33

VLoop
η‖

+ 〈Jn.i. · B〉
dV

dΦ

∣∣∣∣
ρ=1

=
µ0

Φ′
(FI ′ − IF ′)

∣∣
ρ=1

(D.7)
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Using Eqns 3.64 and 3.65 for (FI ′ − IF ′) and simplifying:

VLoop
η‖

+ 〈Jn.i. · B〉
dV

dΦ

∣∣∣∣
ρ=1

=
µ0

Φ′
dV

dΦ

(〈B2〉
µ0

I ′ + p′I

) ∣∣∣∣
ρ=1

(D.8)

and then using Eqn 3.37 for I ,

VLoop
η‖

+ 〈Jn.i. · B〉
dV

dΦ

∣∣∣∣
ρ=1

=
µ0

Φ′
dV

dΦ

(〈B2〉
µ0

I ′ + p′I

) ∣∣∣∣
ρ=1

=
µ0

Φ′
dV

dΦ

(〈B2〉
µ2

0

d

dρ
(Φ′ (S11 ι+ S12)) +

p′Φ′

µ0

(S11 ι+ S12)

) ∣∣∣∣
ρ=1

=
dV

dΦ

(〈B2〉
µ0Φ′

d

dρ
(Φ′ (S11 ι+ S12)) + p′ (S11 ι+ S12)

) ∣∣∣∣
ρ=1

(D.9)

Applying the radial derivative, simplifying and separating the terms for  ι and  ι′:

VLoop
η‖

+ 〈Jn.i. · B〉
dV

dΦ

∣∣∣∣
ρ=1

= (D.10)[
 ι

(
p′S11 +

〈B2〉
µ0

(
S ′11 +

Φ′′

Φ′
S11

))
+  ι′
〈B2〉S11

µ0

+ p′S12 +
〈B2〉
µ0

(
S ′12 +

Φ′′

Φ′
S12

)]
dV

dΦ

∣∣∣∣
ρ=1

In this last expression, all quantities are calculated on the last closed flux surface (LCFS).

If the radial variable is the square-root normalized flux, ρr, Eqn 3.69, then Φ′ = Φ′′ = 2Φa,

where Φa is the flux enclosed by the LCFS and Eqn D.10 simplifies to:

VLoop(2Φa)

η‖V ′
+ 〈Jn.i. · B〉 = (D.11)

 ι

(
p′S11 +

〈B2〉
µ0

(S ′11 + S11)

)
+  ι′
〈B2〉S11

µ0

+ p′S12 +
〈B2〉
µ0

(S ′12 + S12)

If the radial variable is the normalized flux, ρs, Eqn 3.68, then Φ′ = Φa and Φ′′ = 0, and Eqn D.10

simplifies to

VLoopΦa

η‖V ′
+ 〈Jn.i. · B〉 =  ι

(
p′S11 +

〈B2〉
µ0

S ′11

)
+  ι′
〈B2〉S11

µ0

+ p′S12 +
〈B2〉
µ0

S ′12 (D.12)

Eqns D.11 and D.12 are the boundary conditions for the diffusion equation in which the loop

voltage, VLoop is specified. V ′ is the radial derivative of the plasma volume. Each of the quantities

are evaluated on the LCFS.
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Another boundary condition, relevant to free resistive decay, is determined by the external

inductance of the plasma column. In a toroidal conductor, the measured loop voltage is related to

the change in net toroidal current by Faraday’s Law. The direction of the induced voltage is oposite

to the non-inductive current.

VLoop = −LExt
d

dt
I (ρ = 1) (D.13)

The external inductance for a cylindrical toroid is [1]

LExt ' µ0Reff

[
ln

(
8
Reff

reff

)
− 2 + Fshaping

]
(D.14)

Reff and reff are the effective major and minor radii of the torus, respectively. The shaping

factor, Fshaping, varies from 0 when the current is distributed along the surface of the conductor

(the plasma column, in this case) to 1/4 when the current is uniformly distributed over the cross

section of the conducting region. Fshaping = 0.25 is closer to the actual case in most toroidal fusion

experiments.

Non-inductive changes in the current profile induce currents that diffuse and decay resistively.

The loop voltage associated with the change in net current, Eqn D.13, can be substituted in Eqn

D.11 or D.12.

−LExt
η‖

d

dt
I (ρ = 1) + 〈Jn.i. · B〉 = (D.15)

 ι

(
p′S11 +

〈B2〉
µ0

(S ′11 + S11)

)
+  ι′
〈B2〉S11

µ0

+ p′S12 +
〈B2〉
µ0

(S ′12 + S12)

−LExt
η‖

d

dt
I (ρ = 1) + 〈Jn.i. · B〉 = (D.16)

 ι

(
p′S11 +

〈B2〉
µ0

S ′11

)
+  ι′
〈B2〉S11

µ0

+ p′S12 +
〈B2〉
µ0

S ′12

Eqn D.15 corresponds to the choice of the radial variable, ρr, and Eqn D.16 is for the choice of

radial variable, ρs.
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Appendix E: Numerical Implementation of the Diffision Equa-
tion

In this appendix, the numerical implementation of the radial diffusion equation for the toroidal

current is presented. The software package, MATLAB [1] and its partial differential equation

solver, pdepe, is used to perform the calculation. A set of codes called ‘iota evolution generate’

and ‘iota evolution view’ (IEG+IEV) evaluate, save, and display the information about the time-

evolution of quantities such as toroidal current profile, parallel electric field and rotation transform.

Recall the 1-D radial diffusion equation and boundary conditions, Eqns 3.70, 3.73 and 3.74,

reprinted here for convenience, with the explicit variable substitution of s ≡ ρs and the time-

varying net toroidal flux set to 0:

d ι

dt
=

1

Φ2
a

d

ds

(
η‖V

′
(〈B2〉

µ0

d

ds
(S11 ι+ S12) + p′ (S11 ι+ S12)− 〈Jn.i. · B〉

))
(E.1)

d ι

ds

∣∣∣∣
s=0

= 0 (E.2)

 ι|s=1 =

(
µ0I

S11Φ′
− S12

S11

) ∣∣∣∣
s=1

(E.3)

For the pdepe solver, the diffusion equation needs to be cast into the form given by [2]:

c

(
x, t, u,

du

dx

)
du

dt
= x−m

d

dx

(
xmf

(
x, t, u,

du

dx

))
+ s

(
x, t, u,

du

dx

)
(E.4)

Here, u is the diffusing quantity of interest. The spatial coordinate is x and time is t. The inital

condition is set as u (x, t0) = u0 (x) and the boundary conditions are satisfid by p and q such that:

p (x, t, u) + q (x, t) f

(
x, t, u,

du

dx

)
= 0 (E.5)
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The following definitions are appropriate to recast the diffusion equation into the form required

for pdepe (x ≡ s):

m = 0 (E.6)

u = S11 ι+ S12 =
µ0I

Φ′
(E.7)

c =
Φ2
a

S11

(E.8)

f = η‖V
′
(
p′u+

〈B2〉
µ0

du

dx
− 〈J · B〉

)
(E.9)

s = 0 (E.10)

u (x, t = 0) = 0 (E.11)

p (x = 0, t) = u (x = 0, t) (E.12)

q (x = 0, t) = 0 (E.13)

p (x = 1, t) = u (x = 1, t)− µ0I

Φ′
(E.14)

q (x = 1, t) = 0 (E.15)

For the case of free inductive-resistive relaxation of the net current, the above definitions hold,

with the exception of the last two. These are replaced with:

p (x = 1, t) = 2Φ′η‖
Reff

r2
eff

I∞ exp−t/τL/R (E.16)

q (x = 1, t) = 1 (E.17)

Here, I∞ is the net toroidal current in steady state, Reff and reff are the effective major and minor

radii, respectively, and

τL/R =
Lextr

2
eff

2η‖Reff

(E.18)

where Lext is the external inductance defined in Eqn D.14 and the resistivity, η‖ is evaluated at the

edge of the plasma column.
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Appendix F: Alignment of the Magnetic Diagnostics

F.1 External Magnetic Vector Diagnostic Array

The location and orientation of the external magnetic vector diagnostic array is known by

measuring their location with a coordinate measurement machine (cmm) Romer Cimcore, Model

5028 [1]. The measurements are made on the test vessel section and the diagnostics are then

transferred to the vacuum vessel by using the form marking and mechanical reference points. To

check the alignment in-situ, the magnetic fields generated by main coil set and individual coils of

the auxiliary field coil set were measured by the triplets. The measurement was compared to the

calculated response calculated from a Biot-Savart code. For the tests here, the following auxiliary

coils were charged: A3, A4, A6, D1, and D6. These coils are indicated in Figure F.1. The different

magnetic fields generated provide a variety of fields at the location of each of the triplets, allowing

each of the orthogonal channels of the triplets to be tested.

Figure F.1 A subset of the auxiliary coil set, the vacuum vessel and diagnostic ports. The
approximate locations of the external magnetic diagnostic belts are indicated.

A capacitor bank is used to apply ≈ 30 A of current through the auxiliary coils. The time

trace of the current through auxiliary coil A3 is shown in Figure F.2. The components of the

magnetic field vector for triplet #17, as a function of time, are shown in Figure F.3. The Bx, By,
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Figure F.3 Signal response on triplet #17
due to the applied current in Figure F.2 on

auxiliary coil A3.

Bz components approximately correspond, respectively, to the local poloidal, radial, and toroidal

components of the magnetic field with respect to the vacuum vessel. The field components take

several 10’s of ms to reach steady state. The input current pulse is not quite constant, so the

field has a small drift. The mean values of the current and magnetic field vector are calculated

during the window from t = 0.830 → 0.835 sec. The calculated magnetic field at each triplet,

excluding the effects of any eddy currents, are calculated for the measured mean current. This field

value is then compared to the actual measurement. This comparison for the 32 triplets is shown

in Figure F.4. Each component and the total magnitude of the field vector is compared for each

triplet location. From the comparison, it can be seen that there is good agreement among the Bx

and By components, but for the Bz component, the measured value tends to a few percent smaller

than the calculated value. This is likely due to eddy currents in the vacuum vessel and structure

causing the toroidal component of the field to slowly approach steady state. The magnitude of the

measured and calculated magnetic field vectors are also compared, and measurement is smaller

than the calculation, as seen in Figure F.4.
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Figure F.4 Comparison between calculated and measured signals of the external magnetic
diagnostic array.

The main field coil set was also used to check the alignment of the triplets. The main field was

energized with ≈ 400 A of current. A 3rd-order polynomial is fit to the measurement during part

of the rise time and its derivative is calculated, Figure F.5. With that time-derivative, the dB/dt

for each triplet is calculated as a function of time and compared to that which is measured. The

normalized vector components and the magnitude of the vector for each triplet, averaged from

t = 0.345 → 0.435 s, are compared in F.6. The magnitude of the measured vectors agree with
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the calculation to within 1-4% for all diagnostics. The uncertainty in the magnitude for triplet with

poloidal index i is designated as σi,Mag.
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Figure F.5 The main field current, as measured by the main shunt resistor, a 3rd-order fit
polynomial, and its derivative as a function of time.

The angle of the misalignment between the calculated vector, Btheory and the measurement,

Bmeasure can be calculated by

γMisalign = arccos

(
Btheory · Bmeasure

|Btheory||Bmeasure|

)
(F.1)

The unit vector that Bmeasure is rotated about by θMisalign to align it with Btheory is given by

n̂Rotate =
Bmeasure × Btheory

|Btheory||Bmeasure| sin (θMisalign)
(F.2)

The misalignment for each triplet is shown in the bottom panels of Figures F.4 and F.6. Typical

misalignment is in the range of a few degrees.

The components of the rotation vector and misalignment angle for each triplet, during each

auxiliary coil test and the main field coil test is shown in Figure F.8. The components of the

rotation vector are in the laboratory-coordinate system. The rotation vector is not the same when

different auxiliary coils or when the main coil set are used to produce the magnetic field. The

reason for this has not been identified. The magnitude of the misalignment angles are similar

for a particular triplet, regardless of the auxiliary coil. The mean value of the magnitude of the
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Figure F.6 Comparison between calculated and measured signals of the external magnetic
diagnostic array.

misalignment angle for a particular triplet is used as the systematic error due to misalignment of

that particular triplet. This random error is typically a 1-3◦ for the majority of the triplets, with the

maximum misalignment angle being 5◦. This misalignment angle for triplet with poloidal index i

is designated as γi.

To account for the uncertainty in the location and orientation of the external magnetic vector

diagnostics, the local magnetic vector needs to be calculated. The magnetic vector at the location
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of triplet i is given by

B̃i(t) = B̃i,x(t)x̂+ B̃i,y(t)ŷ + B̃i,z(t)ẑ (F.3)

B̃i,x(t), B̃i,y(t), and B̃i,z(t) are the magnetic field signals due to the plasma, given by Eqn 4.22.

Misalignment of the diagnostic will result in a portion of the signal from one channel of the triplet

(x, y, or z) being projected onto the other channels. The level of angular misalignment has been

estimated for each triplet as γi. For an estimated misalignment, γi, a misaligned vector ~P =

Pxx̂+ Pyŷ + Pz ẑ is found with:

B̃i,xy = |B̃i,xx̂+ B̃i,yŷ| (F.4)

λi = arctan
|B̃i|
B̃i,xy

(F.5)

κi = λi + γi (F.6)

B̃′i,xy = |B̃i| cosκi (F.7)

Px = B̃i,x ·
B̃′i,xy

B̃i,xy

(F.8)

Py = B̃i,y ·
B̃′i,xy

B̃i,xy

(F.9)

Pz = |B̃i| sinκi (F.10)

The misalignment vector, P is then rotated about B̃i by Rodrigues’ rotation formula [2] [3] and

a circular locus of points, R, is generated. This set of points is projected on to the x-, y-, and z-

axes and half the difference between the minimum and maximum projected points (on each axis)

is the estimate of the uncertainty due to misalignment on the respective channel. With the x, y, and

z components of R denoted as Rx, Ry, and Rz, the uncertainty for a particular channel, which is

calculated for each time sample, is

σBi,k,MA
(t) =

1

2
|max (Rk)−min (Rk)| (F.11)

where k = (x, y, z). In Figure F.7, B̃i, is shown in blue, P, in red, the locus of points, R, in black

and the projections to the axes, Rx, Ry, and Rz, are shown in green.
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Figure F.7 The calculated magnetic vector, B̃i (blue), a misaligned vector, P (red), the locus of
points found by rotating this misaligned vector around the magnetic vector (black), and the

projections to the x-, y- and z- axes (green). Units are in Tesla

F.2 Internal Magnetic Diagnostics

To check the location of the internal poloidal array Section ??, their response to the magnetic

field generated by the main coil set was compared to the calculated response. The time-rate-of-

change of the main field current measured by a Rogowski coil around one of the main field coils

and the location of each coil is used to calculate its expected response. This expected response and

the measured response are both shown in Figure F.9 and are in good agreement. These diagnostics

only have a single channel at each location and can not measure the total field vector, only the

component along the axis of the diagnostic, so there is no estimate of the misalignment uncertainty.

The uncertainty due to the gain of the coil+amplifier system is estimated, conservatively, at 5%.
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Figure F.8 Rotation vector components and misalignment angle.
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Appendix G: Singular Value Decomposition

The reconstruction of plasma profiles in 3-D configurations has been an open question for many

years. In a 2-D axisymmetric system, the amount of information that can be extracted from the

external magnetic diagnostics is limited to a few quantities. Typically, the net toroidal current and

total diamagnetic current are easily resolved, but radial profile information of these two quanti-

ties is severely limited, based on magnetic signals. Trying to determine the plasma pressure and

current profiles based on external magnetic diagnostic signals tends to lead to many ambiguous

and indistinguishable possibilities [1]. Peaked pressure profiles and broad, flat pressure profiles

produce similar magnetic signatures, as do peaked and flat current density profiles with similar net

currents.

In a 3-D system, the magnetic fields generated by plasma currents reveal more information

regarding their radial distribution [2]. The plasma pressure and current distribution can be deter-

mined to a higher degree of certainty if enough information, i.e. measurements, of the plasma

boundary are possible. The plasma currents in a 3-D system produce magnetic fields that are more

sensitive to profile features than than in a 2-D axisymmetric system. The NCSX magnetic diag-

nostic system was designed by identifying which coils where optimal in reconstructing the plasma

profile. A singular value decomposoition (SVD) of the diagnostic and response matrix was used

to iteratively improve the virtual diagnostic set, such that most efficient subset was found [3]. The

number of eigenvalues found in the SVD that are above a certain threshold, and the amount of

noise in the signal, determines the number of ‘effective signal patterns’. The magnetic signals

for NCSX had 19 singular values above a noise threshold of 1 G. For the W7-AS stellarator, the

magnetic diagnostics were simulated for experimentally relevant plasma pressure files and no net

toroidal current and a Principle Component Analysis (PCA) was used to identify the most signifi-

cant eigenvectors and that were present in the dataset [4]. The recovery of the pressure profile was

strongly affected by the assumed noise level in the diagnostic signals. As the noise is increased,

the precision of the profile was reduced. For W7-X, the modeling and analysis has shown that
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the plasma energy and net current are well resolved, but profile information has uncertainties of

≈ 25% [5].

The result of an SVD study for the QHS configuration shows the the amount of profile infor-

mation that can be extracted depends strongly on the level of noise in the diagnostics. More infor-

mation is available when more diagnostics are included in the data set. A set of 1800 randomly

generated plasma pressure profiles and current profiles were generated. The pressure profiles,

which are characteristic of profiles achieved in the QHS configuration in HSX with carbonized

was, were generated by randomly selecting P0 − P2 and a0 in

P (s) = P0(1− s)a0 + P1 · (1− s)2 + P2 · s · (1− s); (G.1)

The current profiles were generated by randomly selecting coefficients on 5 polynomials. Samples

of the pressure profiles and current density profiles are in Figures G.1 and G.2. The magnetic
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Figure G.1 Sample pressure profiles.
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Figure G.2 Sample current density profiles.

diagnostic signals for the magnetic diagnostic mentioned in chapter 4 were calculated for each of

the random profiles by V3FIT. In addition, the diagnostic signals for a set of 192 virtual ’triplets’

that cover 1/2 of a field period, Figure G.3, were calculated and stored. Three signals for each

virtual triplet were generated, one signal in the poloidal direction, one in the radial direction, and

one in the toroidal direction. The data for each diagnostic was stored in a matrix, D, one column

for each random profile and one row for each diagnostic.
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Figure G.3 The vacuum vessel and virtual triplets.

The SVD, Eqn 4.75, decomposes the matrix, D, of size n×m into three matrices:

D = U ·W · VT (G.2)

The matrix U is orthonormal and has size n× n. V is also orthonormal and has size m×m. The

matrix W is a diagonal matrix with the same size as D, whose elements are sorted in decreasing

order, Wi,i ≥ Wi+1,i+1. The number of eigenvalues above some limit indicates the number of

significant patterns that can be extracted from the data set. Noise is added to the signal set by

adding uniformly distributed random signals to the matrix. The addition of noise reduces the

number of patterns that can be identified in the data.

The normalized quantity, Wi,i/W1,1, for the virtual triplet set is shown in Figure G.4. The ’No

noise limit’ is the ideal case with no noise added to the signal matrix. The results of the SVD

with ±.05 G, ±.25 G, and ±.5 G are also shown. As the level of noise increases, the minimum

value of the eigenvalues is increased. This probably indicates that the number of parameters that

can be extracted from the data is also reduced. The number of eigenvalues above the ’noise floor’

(the asymptote) gives an indication to the number of fit parameters that can be used to model the

pressure and current profiles. It does not give an indication of which parameters those may be.

More analysis is required to project the eigenvalues and eigenvectors back to the pressure and

current profiles to determine what information they may represent. The results of the SVD study

for the set of diagnostics that includes only the external magnetic diagnostic array, with and without
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noise, are shown in Figure G.5, and the results of an SVD with only the internal poloidal array,

which has 15 signals, is shown in Figure G.6. The differences in the SVD between the virtual set

and the external diagnostic array are small, indicating that the external set may already be partially

optimized to measure the plasma profiles. The SVD analysis of the internal array show that this

set is more sensitive to the noise level.

5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

w
ii / 

w
11

SVD eignenvalue indices

± .5 G

± .25 G

± .05 G

No noise limit

Figure G.4 Normalized eigenvalues for the SVD with the complete virtual diagnostic set.
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Figure G.5 Normalized eigenvalues for the SVD that includes the external magnetic diagnostic
triplets and internal poloidal array.
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Appendix H: Mirror Flip Field

Plasmas were made is the Mirror configuration, which adds the (n,m) = (4, 0) and (n,m) =

(8, 0) symmetry-breaking terms to the magnetic spectrum, Figure 1.7. For these cases, 100 kW of

ECRH (launched) was used and ρECRH . 0.1. The intention of these shots was to attempt to match

the temperature and density profiles achieved in QHS to study the effects that the differences in the

magnetic spectrum have on the bootstrap current. Plasmas were made with the main magnetic field

in both the CCW and CW directions. The electron temperature and density profiles are shown in

Figures H.1 and H.2. One of the cases is for plasmas with the field in the CCW directionN e ∼ 4.2,

as measured by the microwave interferometer. The other two cases are for plasmas made with the

field in the CW direction, and N e ∼ 4.2 and a case with a slightly higher line-averaged density.

The measured net toroidal current during the three cases is shown in Figure H.3.
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Figure H.1 Mirror, 100 kW, ρECRH . 0.1:
Te for CCW (black), and CW N e ∼ 4.2 (red)

and CW N e ∼ 5 (blue). Ti estimate from
ChERS (black, dashed).
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Figure H.2 Mirror, 100 kW, ρECRH . 0.1:
Ne for CCW (black), and CW N e ∼ 4.2

(red) and CW N e ∼ 5 (blue).

The temperature and density profiles for the two N e ∼ 4.2 cases (CCW and CW) are similar,

while for the higher density case (CW), the temperature is reduced on-axis and the density is

higher. The measured net toroidal current is different for all three cases. For the two N e ∼ 4.2

cases, the profiles are similar enough that PENTA calculations are very similar. The ambipolar Er
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Figure H.3 Measured net toroidal current for an ensemble average of shots with Mirror,
100 kW, ρECRH . 0.1: CCW N e ∼ 4.2 (9 shots, black), and CW N e ∼ 4.2 (8 shots, red) and

CW N e ∼ 5 (5 shots, blue).

Field Configuration ρECRH PECRH,launched N e × 1018/m3 Itor(t =∞)

Mirror CCW ρ . 0.1 100 kW 4.2 204.±18. A

Mirror CW ρ . 0.1 100 kW 4.2 -51.±9. A

Mirror CW ρ . 0.1 100 kW ∼ 5 -123.±14. A

Table H.1 Configuration space explored with balanced fueling in the Mirror configuration.

and current density for the CCW case, including and neglecting momentum conservation (MC),

net enclosed current profile, and conductivity are shown in Figures H.4 - H.8.

For theN e ∼ 4.2 cases (CCW and CW), with similar Thomson profiles, the PENTA calculation

shows that the net toroidal current should be around are 156 A if MC is neglected, for both i-root

and e-root dominated current density profiles. If MC is included, the net current should be about

118 A in the i-root dominated solution and reduced to 31 A in the e-root dominated solution. The

extrapolated net toroidal current from the measurement, Figure H.3, with the main field in the

CCW direction is 204. A, and agrees better with the i-root dominated solution, or even with the
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Figure H.4 Mirror, 100 kW, ρECRH . 0.1: Stable ambipolar Er solutions with MC (black) and
without MC (green). Calculation by PENTA.
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Figure H.5 Mirror, 100 kW, ρECRH . 0.1, With MC: Ion (blue), electron (red) and total (black)
parallel current. Solid lines coincide with the ion root solution and dashed lines coincide with the

electron root solution. Calculation by PENTA.
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Figure H.6 Mirror, 100 kW, ρECRH . 0.1, Without MC: Ion (blue), electron (red) and total
(black) parallel current. Solid lines coincide with the ion root solution and dashed lines coincide

with the electron root solution. The ion current is small for each case, so the total current is nearly
identical to the electron current. Calculation by PENTA.
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Figure H.7 Mirror, 100 kW, ρECRH . 0.1, Without MC: Enclosed current profile for different
scenarios of current density. With MC (black) and without MC (green)
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Figure H.8 Mirror, 100 kW, ρECRH . 0.1: Parallel conductivity of the plasma, including trapped
particle effect. Calculation by PENTA.

solution that ignores MC. With the main field in the CW direction, the net current has reached a

nearly steady state value of −51. A, and agrees better with the e-root dominated solution. (The

enclosed current profiles are shown for the CCW direction, and need to include a factor of × − 1

for the CW case.).

The current evolution calculation with IEG was completed for each of the cases. For the CCW

case, the enclosed current profile associated with the i-root dominated solution in Figure H.7 was

chosen as the steady-state current profile since its net current agreed better in magnitude with the

extrapolated state-state net current. For the CW case, the e-root dominated solution was chosen.

For both, the conductivity profile in the calculation is the one shown in Figure H.8.

For the CCW case, the simulated and measured loop voltage is shown in Figure H.9. The

simulated loop voltage goes to zero and switches sign early in the shot, while the measured loop

voltage is negative during the entire discharge. Like the case with QHS 50 kW, ρECRH . 0.1

in section 5.1, this indicates that the chosen enclosed current profile underestimates the total net

toroidal current and an extra parallel electric field, in the same direction as the total current and

opposite to the bootstrap-induced electric field, is required to drive this current.
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Figure H.9 Mirror CCW, 100 kW, ρECRH . 0.1: Measured(black) and simulated(blue) loop
voltage. Calculation by IEG.

For the CCW case, the measured pressure profile, a Lorentz-fit and the reconstructed pressure

profile are shown in Figure H.10. The measured pressure profile, reconstructed profile and profiles

that satisfy χ2
ν ≤ χ2

ν,min + 1 are shown in Figure H.11. The evolved current profile at t = 50ms,

an arctan-fit and the reconstructed profile are shown in Figure H.12. Profiles that satisfy χ2
ν ≤

χ2
ν,min + 1 are shown in Figure H.13. The results of the reconstruction are summarized in Table

H.2.

The reconstructed plasma pressure profile are similar to the measured ones. The pressure

gradient near the axis is poorly resolved. The reconstructed current profile agrees well in total net

current, but shows a low level of certainty regarding the current density, because a large number of

different enclosed current profiles produce similar signals to that of the reconstruction.

For the CW case, the simulated and measured loop voltage is shown in Figure H.14. The sim-

ulated loop voltage falls to zero much faster than the measurement, indicating that the calculated

current profile is probably incorrect. The measured pressure profile, a Lorentz-fit and the recon-

structed pressure profile are shown in Figure H.15. The evolved current profile at t = 50ms, an
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Figure H.10 Mirror CCW,
100 kW, ρECRH . 0.1: Measured plasma

pressure profile (black), the Lorentz-fit initial
guess (black, dashed), and Reconstruction.

See Table H.2.
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Figure H.11 Mirror CCW,
100 kW, ρECRH . 0.1: Measured plasma
pressure (black), Reconstruction, and the

minimum found during Parameter scan #1.
The pressure profiles from the scan that

satisfy χ2
ν ≤ χ2

ν,min + 1 are indicated in gray.
See Table H.2.
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Figure H.12 Mirror CCW,
100 kW, ρECRH . 0.1: The calculated

enclosed current profile(black), the arctan
initial guess (black, dashed), and
Reconstruction. See Table H.2.
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Figure H.13 Mirror CCW,
100 kW, ρECRH . 0.1: The calculated

enclosed current profile(black),
Reconstruction, and the minimum found
during Parameter scan #2. The current

profiles from the scan that satisfy
χ2
ν ≤ χ2

ν,min + 1 are indicated in gray. See
Table H.2.
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Parameter PRES SCALE AM(2) AM(3) PHIEDGE

Value σ Value σ Value σ Value σ

Initial Guess 748. - 1 - 0.419 - 0.0400 -

Reconstruction 748. 8799. 1∗ - 0.426 5.830 0.0397 0.0007

Parameter Scan #1 ∗∗ 300. - 4. - 0.657 - 0.0396∗ -

Parameter Scan #2 ∗∗ 748.∗ - 1∗ - 0.426∗ - 0.0397∗ -

CURTOR AC(2) AC(3) χ2 ν χ2
ν Fχ

Value σ Value σ Value σ

162 - 4.06. - 1.5 - 4.57 - - -

145. 1. 4.06 9.61 1.5∗ - 2.10 11 0.19 -

145.∗ - 4.06∗ - 1.5∗ - 1.96 10 0.20 -

148. - 9.68 - 1.15 - 1.76 10 0.18 -

Table H.2 Mirror CCW, 100kW, ρECRH . 0.1. V3FIT reconstruction results using internal
poloidal array, Rogowski coil, and limiter signal. Black: Initial guess. Reconstruction with 5 free

parameters. Scan of pressure profile parameters, holding the current profile constant. Scan of
current profile parameters, holding the pressure profile constant. The χ2 and χ2

ν values are also
shown. (∗) Quantity was not a fit parameter for this case. (∗∗) The limiter signal was disabled and

PHIEDGE was not a fit parameter.
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Figure H.14 Mirror CW, 100 kW, ρECRH . 0.1: Measured (black) and simulated (blue) loop
voltage. Calculation by IEG.
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arctan-fit and the reconstructed profile are in Figure H.17. The results of the reconstruction are

summarized in Table H.3.
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Figure H.15 Mirror CW,
100 kW, ρECRH . 0.1: Measured plasma

pressure profile (black), the Lorentz-fit initial
guess (black, dashed), and Reconstruction.

See Table H.3.
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Figure H.16 Mirror CW,
100 kW, ρECRH . 0.1: Measured plasma

pressure profile (black), Reconstruction, and
the minimum found during Parameter scan
#1. The pressure profiles from the scan that

satisfy χ2
ν ≤ χ2

ν,min + 1 are indicated in gray.
See Table H.3.

The reconstructed pressure profile agrees well with the measured profiles, but current profile

is not resolved very well. The net enclosed current is in agreement, but the enclosed current has a

large uncertainty for the majority of the profile. For this case, AC(0) was one of the fit parameters.

This parameter allows for a net current to exist on-axis. As can be seen in Figure H.18, the enclosed

current profile can take on large number of possible solutions, and the current density profile can

not be determined. The reversal of the current density, due to the electron root can not be detected

in this case.

For the CW case with the slightly higher line-averaged density, ∼ 5, the ambipolar Er and

current density, including and neglecting momentum conservation (MC), from the PENTA calcu-

lations are shown in Figures H.19 - H.23.
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Figure H.17 Mirror CW,
100 kW, ρECRH . 0.1: The calculated

enclosed current profile (black), the arctan
initial guess (black, dashed), and
Reconstruction. See Table H.3.
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Figure H.18 Mirror CW,
100 kW, ρECRH . 0.1: The calculated

enclosed current profile (black),
Reconstruction, and the minimum found
during Parameter scan #2. The current

profiles from the scan that satisfy
χ2
ν ≤ χ2

ν,min + 1 are indicated in gray. See
Table H.3.
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Figure H.19 Mirror CW, 100 kW, ρECRH . 0.1: Stable ambipolar Er solutions with MC (blue)
and without MC (green). Calculation by PENTA.
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Parameter PRES SCALE AM(2) AM(3) PHIEDGE

Value σ Value σ Value σ Value σ

Initial Guess 666. - 1 - 0.379 - -0.0400 -

Reconstruction 668. 6146. 1∗ - 0.491 5.194 -0.0397 0.0009

Parameter Scan #1 ∗∗ 1100. - 3.44 - 0.379 - -0.0397∗ -

Parameter Scan #2 ∗∗ 668.∗ - 1∗ - 0.491∗ - -0.0397∗ -

CURTOR AC(0) AC(2) χ2 ν χ2
ν Fχ

Value σ Value σ Value σ

-43 - 1. - 10. - 4.62 - - -

-57. 9. -1.001 1.185 10.0 62.9 1.28 10 0.13 -

-57.∗ - -1.001∗ - 10.0∗ - 1.13 9 0.14 -

-58. - -1. - 6.49 - 1.26 9 0.14 -

Table H.3 Mirror CW, 100kW, ρECRH . 0.1. V3FIT reconstruction results using internal
poloidal array, Rogowski coil, and limiter signal. Black: Initial guess. Reconstruction with 5 free

parameters. Scan of pressure profile parameters, holding the current profile constant. Scan of
current profile parameters, holding the pressure profile constant. The χ2 and χ2

ν values are also
shown, where relevant. (∗) Quantity was not a fit parameter for this case. (∗∗) The limiter signal

was disabled and PHIEDGE was not a fit parameter.

For this case, the PENTA results without MC included predict a steady state current of only

∼ 60 A, while the calculations that include MC predict a net current of 140 A (e-root dominated)

to 160 A (i-root dominated). Again, the PENTA calculation does not include a factor of × − 1 to

account for the field direction. The extrapolated steady-state current for the experiment is−123. A,

which agrees better with e-root dominated solution that included MC. The e-root dominated cur-

rent density profile and the conductivity profile in are used in the IEG code to calculate the time

evolution of the current profile. The simulated and measured loop voltage is shown in Figure H.24.

The simulated loop voltage is slightly smaller than the measured one. Indicating that the non-

inductive current density is underestimated and requires an additional parallel electric field to drive

the current. The calculated current profile reverses sign near the axis, but the arctan-fit was fixed

at zero on axis since the difference is small.
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Figure H.20 Mirror CW, 100 kW, ρECRH . 0.1, With MC: Ion (blue), electron (red) and total
(black) parallel current. Solid lines coincide with the ion root solution and dashed lines coincide

with the electron root solution. Calculation by PENTA.
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Figure H.21 Mirror, 100 kW, ρECRH . 0.1, Without MC: Ion (blue), electron (red) and total
(black) parallel current. Solid lines coincide with the ion root solution and dashed lines coincide

with the electron root solution. Calculation by PENTA..
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Figure H.22 Mirror, 100 kW, ρECRH . 0.1,: Enclosed current profile for different scenarios of
current density. With MC (blue) and without MC (green)
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Figure H.23 Mirror, 100 kW, ρECRH . 0.1, higher line-averaged density case: Parallel
conductivity of the plasma, including trapped particle effect. Calculation by PENTA.

The measured pressure profile, a Lorentz-fit and the reconstructed pressure profile are shown

in Figure H.25. The evolved current profile at t = 50ms, an arctan-fit and the reconstructed profile
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Figure H.24 Mirror CW, 100 kW, ρECRH . 0.1: Measured (black) and simulated (blue) loop
voltage. Calculation by IEG.

are shown in Figure H.27. Current profiles that satisfy χ2
ν ≤ χ2

ν,min + 1 are shown in Figure H.28,

along with the evolved current profile and reconstructed one. The results of the reconstruction are

summarized in Table H.4.

As with the other reconstructions, the reconstructed pressure profile is similar to the measured

pressure profile, and the pressure gradient is poorly resolved on-axis. The reconstructed current

profile is close to the calculated one, even though it is fixed to be 0 on axis and the calculation

predicts a sign switch in the enclosed current. The current density profile (not shown), which is the

radial derivative of current profile, is poorly resolved and has a large uncertainty associated.

The results of the Mirror flip-field experiments indicate that the net toroidal current depends on

direction of the main magnetic field. With similar Te, and Ne profiles, the measured net toroidal

current was larger in the CCW direction by more than 100 A. Raising the operating density while

operating in the CW direction had the effect of lowering the Te profile, but increasing the net

toroidal current. The reason for this is not known. The HSX machine is usually operated with the

main magnetic field in the CCW direction. It has been suggested that by reversing the magnetic
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Figure H.25 Mirror CW,
100 kW, ρECRH . 0.1: Measured plasma

pressure profile (black), the Lorentz-fit initial
guess (black, dashed), and Reconstruction.

See Table H.4.
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Figure H.26 Mirror CW,
100 kW, ρECRH . 0.1: Measured plasma

pressure profile (black), Reconstruction, and
the minimum found during Parameter scan
#1. The pressure profiles from the scan that

satisfy χ2
ν ≤ χ2

ν,min + 1 are indicated in gray.
See Table H.4.
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Figure H.27 Mirror CW,
100 kW, ρECRH . 0.1: The calculated

enclosed current profile (black), the arctan
initial guess (black, dashed), and
Reconstruction. See Table H.4.

0 0.2 0.4 0.6 0.8 1
−200

−150

−100

−50

0

50

Φ/Φ
LCFS

I en
cl

os
ed

, A
m

ps

Figure H.28 Mirror CW,
100 kW, ρECRH . 0.1: The calculated

enclosed current profile(black),
Reconstruction, and the minimum found
during Parameter scan #2. The current

profiles from the scan that satisfy
χ2
ν ≤ χ2

ν,min + 1 are indicated in gray. See
Table H.4.
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Parameter PRES SCALE AM(2) AM(3) PHIEDGE

Value σ Value σ Value σ Value σ

Initial Guess 524. - 1 - 0.587 - -0.0400 -

Reconstruction 530. 2389. 1∗ - 0.694 4.276 -0.0396 0.0008

Parameter Scan #1 ∗∗ 300. - 1.21 - 0.936 - -0.0396∗ -

Parameter Scan #2 ∗∗ 530.∗ - 1 ∗ - 0.694∗ - -0.0396∗ -

CURTOR AC(2) AC(3) χ2 ν χ2
ν Fχ

Value σ Value σ Value σ

-114 - 3.86 - 1.5 - 2.91 - - -

-126. 11. 3.86 10.37 1.5∗ - 1.25 11 0.11 -

-126.∗ - 3.86∗ - 1.5∗ - 1.22 10 0.12 -

-126. - 15. - 3.95 - 1.10 10 0.11 -

Table H.4 Mirror CW, 100kW, ρECRH . 0.1. V3FIT reconstruction results using internal
poloidal array, Rogowski coil, and limiter signal. Black: Initial guess. Reconstruction with 5 free

parameters. Scan of pressure profile parameters, holding the current profile constant. Scan of
current profile parameters, holding the pressure profile constant. The χ2 and χ2

ν values are also
shown. (∗) Quantity was not a fit parameter for this case. (∗∗) The limiter signal was disabled and

PHIEDGE was not a fit parameter.

field, the plasma may make contact with the vacuum vessel at slightly different strike points (re-

gions were open field lines outside the last closed flux surface strike the vacuum vessel), changing

the impurity content. The plasma flows for different impurity species can be different from the

bulk flow, even reversing direction [1]. To determine if this is the case, this set of experiments

should be performed again, making careful measurements of the impurity content of the plasma.

The radiated power measurement was not available for the plasmas made in the CCW direction for

this experiment, but the Fast Spectroscopy System (FSS), indicated that an impurity radiation line

associated with CV increases about 10%− 20% when operating in the CW direction compared to

the CCW direction.
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Appendix I: QHS Near-ECH Fueling

Up until now, the fueling source for the plasmas discussed in this dissertation was the puff valve

located far away from the ECH launch mirror, at the opposite side of the machine near boxport A,

Figure 5.2. Now, the results of flip field experiments with the fueling provided by the puff valve

in field period C will be presented and discussed. This puff valve is located only a short distance

away toroidally from the ECH antenna in the CCW direction.
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Figure I.1 QHS, N e = 2× 1018/m3,
50 kW, ρECRH . 0.1: Te for CCW (blue)
and CW (red). Ti estimate from ChERS

(black, dashed).
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Figure I.2 QHS, N e = 2× 1018/m3,
50 kW, ρECRH . 0.1: Ne for CCW (blue)

and CW (red).

Plasmas in the QHS magnetic configuration were made for four different operating line-averaged

operating densities, N e = (2, 3, 4, 5) × 1018/m3 (measured with interferometry), with the mag-

netic field in both the CCW and the CW direction. The ECRH power (launched) for these cases

was 50 kW, and the resonance location was ρECRH . 0.1. The measured electron temperature

and density profiles for these cases are shown in Figures I.1-I.8. For each individual operating

density the measured electron temperature profiles were similar, although not identical, with the

magnetic field in CCW or CW. However, the measured density profiles show some differences,
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Figure I.3 QHS, N e = 3× 1018/m3,
50 kW, ρECRH . 0.1: Te for CCW (blue)
and CW (red). Ti estimate from ChERS

(black, dashed).
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Figure I.4 QHS, N e = 3× 1018/m3,
50 kW, ρECRH . 0.1: Ne for CCW (blue)

and CW (red).
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Figure I.5 QHS, N e = 4× 1018/m3,
50 kW, ρECRH . 0.1: Te for CCW (blue)
and CW (red). Ti estimate from ChERS

(black, dashed).
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Figure I.6 QHS, N e = 4× 1018/m3,
50 kW, ρECRH . 0.1: Ne for CCW (blue)

and CW (red).
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Figure I.7 QHS, N e = 5× 1018/m3,
50 kW, ρECRH . 0.1: Te for CCW (blue)
and CW (red). Ti estimate from ChERS

(black, dashed).

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

ρ

10
18

/m
3

Figure I.8 QHS, N e = 5× 1018/m3,
50 kW, ρECRH . 0.1: Ne for CCW (blue)

and CW (red).

predominantly at the lower N e. At t N e = 2, 3 × 1018/m3, the plasmas made with the field in

the CW direction was higher for ρ . 0.4. The differences at higher densities are smaller. At the

highest density, N e = 5× 1018/m3, the profiles agreed well.

The measured net current for each case is shown in Figure I.9. The extrapolated steady-state

current for each of these cases is shown in Figure I.10. The value for plasmas in the CW direction

have been multiplied by−1 to make comparisons of the magnitude easier. The net toroidal current

increases with density when the magnetic field is in the CW direction. When the field is in the

CW direction, the extrapolated current saturates at operating densities of Ne = 4 × 1018/m3

and higher. For each case, PENTA was used to calculate the total enclosed bootstrap current for

the ion-root dominated case, and that is also plotted in the figure. The electron-root dominated

solution (not shown) was between 0 A and 60 A for each case. In the CW direction, the PENTA

calculation predicts the highest level of total bootstrap current at Ne = 2 × 1018/m3, and in the

CCW direction, PENTA predicts the current to increase with density, with a plateau for densities

from Ne = 3− 4× 1018/m3.
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Figure I.9 Measured toroidal current for the 4 densities with the magnetic field in the CCW
(blue) and CW (red) directions.

The level of agreement between the experiment and the PENTA calculations is poor. Currently,

the reason behind this is not understood, but seems to be associated with the location of the puff

valve used for fueling. It is speculated that the interaction of the neutral gas with the plasma likely

results in region of local cooling. This may alter the electron distribution function in a few ways.

The thermal temperature of the bulk electrons may be anisotropic along the field lines. Another

possibility is that the minority electrons, those that have been heated by the ECH, may have their

distribution function modified. It is unclear what other effects the location of the gas fueling may

have on the plasma and the neoclassical transport analysis.
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Figure I.10 Extrapolated steady state current (circles) and the net toroidal current predicted by
PENTA for an ion-root dominated solution. Results for the main field in the CCW direction are in

blue. Results for the main field in the CW direction have been multiplied by −1 and are in red.




