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This paper describes an initial description of the resilient divertor properties of quasi-symmetric

(QS) stellarators using the HSX (Helically Symmetric eXperiment) configuration as a test-case.

Divertors in high-performance QS stellarators will need to be resilient to changes in plasma config-

uration that arise due to evolution of plasma pressure profiles and bootstrap currents for divertor

design. Resiliency is tested by examining the changes in strike point patterns from the field line fol-

lowing, which arise due to configurational changes. A low strike point variation with high configu-

ration changes corresponds to high resiliency. The HSX edge displays resilient properties with

configuration changes arising from the (1) wall position, (2) plasma current, and (3) external coils.

The resilient behavior is lost if large edge islands intersect the wall structure. The resilient edge

properties are corroborated by heat flux calculations from the fully 3-D plasma simulations using

EMC3-EIRENE. Additionally, the strike point patterns are found to correspond to high curvature

regions of magnetic flux surfaces. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4978494]

I. INTRODUCTION

The “divertor” problem is a major issue for next genera-

tion stellarators.1–5 A proper divertor needs to (1) limit heat

loads on the first wall to acceptable levels,6–9 (2) allow suffi-

cient neutral pressure for pumping,10–13 and (3) prevent the

influx of impurities into the main plasma.14–17 The basic idea

of a divertor concept in any confinement scheme is to move

the region where the hot plasma interacts with the solid ves-

sel away from the last closed flux surface.18 In tokamaks,

this is most commonly achieved by creating one or two nulls

in the poloidal field, which define a separatrix. The confined

plasma that crosses the separatrix is swept to target plates,

which can be positioned a distance from the main confined

plasma.

In stellarators, the divertor problem is not solved, and

there are a variety of concepts under consideration. This

paper focuses on the outlook for divertors for quasi-

symmetric (QS) stellarators. While QS stellarators possess

desirable properties for core plasmas,19–21 they are not able

to take advantage of the divertor designs used in devices

with helical coils (such as LHD, the Large Helical Device22)

or in configurations that optimize for low bootstrap current

(such as Wendelstein 7-X23,24).

To examine divertor behavior in QS stellarators, we

introduce the concept of resilient divertors.25 A resilient

divertor is a divertor configuration that is robust to changes

that arise from the plasma evolution. As a plasma evolves

from start-up to its steady state operating point, the magnetic

configuration can alter as bootstrap currents and plasma pres-

sure evolve and increase. These can affect both the core and

edge behaviors. In this paper, we will examine the alteration

of divertor behavior in stellarators as the configuration is

changed. The goal is to find characteristics of the edge that

make the divertor structure resilient to changes in the plasma

shape, the plasma pressure, and even the magnetic topology.

If the plasma surface interaction region is robust to evolving

plasma conditions, divertor armor, baffles, and other struc-

tures can be more easily designed. The key element is that

we seek divertor configurations that are not dependent on a

resonance at the edge that is susceptible to large island for-

mation. The appearance of magnetic islands that intersect

target surfaces can eliminate the resilient divertor feature.

Therefore, low order resonances, n/m, where n is a multiple

of the field periods, should be avoided.

In this paper, we explore some properties of non-

resonant divertors using the magnetic geometry of Helically

Symmetric eXperiment (HSX) as a test case. HSX is opti-

mized for quasi-symmetry26 and therefore can serve as a

test-bed for QS stellarators.

The layout of the paper is as follows: Before introduc-

ing the details of the HSX geometry, it is first necessary to

provide some broad introduction to stellarator divertors and

to explain how they differ from their simpler tokamak cous-

ins. Thus, Section II discusses some background to stellara-

tor edge geometries. In Section III, we discuss two

methodologies for calculating the strike lines, which will be

used for the test of resilience. In Section IV, we describe

various ways to vary the configuration. Section V gives the

results of the calculations and shows that strike point pat-

terns are robust as long as wall elements do not intersect

large edge islands. Section VI discusses a basic metric to

evaluate whether a configuration is resilient or not. Section

VII verifies the simple strike point model in specific cases

with the full wall heat flux calculation from EMC3-

EIRENE. Finally, Section VIII discusses the results and

provides some geometrical properties for the behavior of

various magnetic configurations.
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II. STELLARATOR EDGE GEOMETRIES

Before addressing the stellarator edge, first we consider

the simpler two dimensional edge of a diverted tokamak. In

a tokamak, there exists one or more poloidal nulls where the

magnetic field in the poloidal direction goes to zero. We con-

sider first the simplest case of an ideal single poloidal null.

The location of this null defines the last closed flux surface

(LCFS), with normalized flux surface label r¼ a. All field

lines with normalized r< a are confined, and all field lines

with r> a are unconfined. Field lines that asymptotically

approach the poloidal null are on the separatrix that divides

the confined and unconfined regions. Any field line in the

unconfined region will strike a target plate, and the charac-

teristic distance for a field line from target to target, referred

to here as 2Lc, is the pitch of the magnetic field times the cir-

cumferance, or 2pRq or, in terms of the rotational transform,

i�, 2pR=i�. For a tokamak with multiple null points, the charac-

teristic length is given by 2pR=Ni�, where N is the number of

null points.

As a first departure from tokamak geometry, we exam-

ine the edge of a torsotron or a heliotron, such as LHD,

where the field line pitch is generated by a set of external

helical coils. There is also a null that determines a separatrix

in this geometry as well, but the null rotates helically. In an

idealized periodic cylindrical limit, for each helical coil,

there is a corresponding null. The helical pitch of the exter-

nal coils causes the nulls to rotate around the edge.

Nevertheless, the connection length for points outside the

separatrix is still given 2pR=Ni�. As helical symmetry cannot

be enforced in a toroidal configuration, this idealized picture

is only an approximation given a set of helical coils. The

presence of 3D fields and field line resonances complicates

this simple description.

In stellarators with modular coils, it is not possible to

create an axisymmetric divertor like the poloidal divertor in

tokamaks. Also, with the absence of helical coils, a helically

continuous divertor, like the helical divertor in LHDs, may

not be available. One solution is to use an “island

divertor.”24 In this geometry, there are multiple nulls, the

number of which is determined by the periodicity of the

machine and the value of i�. Wendelstein 7-X (W7-X) is a

five period machine that typically operates with edge near

i�¼ 1. Thus, the dominant resonant mode has n¼ 5, m¼ 5.

There are five nulls. The major difference between the island

divertor and the helical divertor is not the number of nulls

but rather that the connection length to the target is governed

by the field line pitch of the island separatrix. This island

pitch is given by rii�
0 , where ri is the width of the island and i�

0

is the shear in the iota profile.27 Thus, the characteristic con-

nection length in an island divertor is 2pR=Nrii�
0. One imme-

diate consequence of this difference is that optimized

stellarators are usually designed to have low shear to avoid

magnetic resonances;28 therefore, the connection length can

be many times longer in stellarators with island divertors

than in tokamaks.29 Due to these differences, a number of

properties of stellarator divertors differ from tokamaks.27

The island divertor has met with success in W7-AS30 and

is the basis for the W7-X design, where the i�¼ 1 resonance

surface produces a 5/5 island. The main difficulty with the

island divertor is that the position of the edge island chain is

highly sensitive to the rotational transform profile, which can

change with plasma pressure and bootstrap current.31 The

Helias line of stellarators is specifically designed to reduce

the bootstrap currents so that the position of the edge island

can be carefully controlled. The island divertor idea is only

suitable for stellarators with limited bootstrap currents. It is

considerably more difficult to design an island divertor for a

quasi-symmetric stellarator where substantial bootstrap cur-

rents are expected as plasma pressure rises. Such a device

would require accurate models of pressure and bootstrap cur-

rents in order to determine an operating point at which the

divertor structures are designed. Furthermore, an island

divertor for a QS stellarator would require accurate control

of the plasma current using either current drive or external

coils in the start-up phase. A non-resonant divertor simplifies

these requirements greatly.

In reality, in addition to the null points induced by the

helical coils in the helical divertor and the low order reso-

nance of the island divertor, there are many other resonances

present. In these geometries, the main effect of the resonan-

ces is to cause island overlap induced magnetic stochasticity

between the good flux surfaces of the confined plasma and

the well-defined field lines internal to the magnetic island or

in the divertor legs.32,33 That is to say, there is a stochastic

layer between the confined plasma and the unconfined

plasma. A consequence of this stochastic layer is that the

separatrix is not well defined. Connection lengths approach

infinity as you near the confined plasma and approach the

ideal limit, Lc, as you approach the unconfined region. This

behavior can also be induced in tokamaks with the presence

of magnetic perturbations.34

At this point, it is possible to discuss the edge geometry

of the non-resonant divertor. In Boozer’s description of non-

resonant divertors,25 the dominant feature for these geome-

tries is the presence of sharp ridges in flux surfaces near the

LCFS. These can be visualized as regions of high curvature

of the flux surface shape. Poloidally local to these ridges,

field lines are forced to follow along them, meaning that the

direction of the peak curvature is perpendicular to the field

line. This is reminiscent of an X-point on the tokamak diver-

tor, although it rotates helically, and it only exists for a fixed

toroidal extent of the surface where the ridges are sharp. In

this case, the edge is dominated by the presence of higher

order resonances. However, magnetic islands that do exist

tend to be not well formed.

The calculation of the principal curvature of the surface

is made in the following manner. First, the surface is

parametrized into two coordinates. In the following, we use

a poloidal-like direction, u, and a toroidal-like direction, v.

Let X, Y, and Z be points on the surface in Cartesian coordi-

nates. Define the vector ru ¼ Xuiþ Yujþ Zuj, where Xu, Yu,

and Zu are the partial derivatives in the poloidal direction.

Similarly, define rv and the second derivative vectors

ruu; ruv, and rvv. Then, the coefficients of the first fundamen-

tal form are given by

E ¼ ru � ru; (1)
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F ¼ ru � rv; (2)

G ¼ rv � rv: (3)

Next, we define a unit normal to the surface

n ¼ ðru � rvÞ=jru � rvj: (4)

Then, the coefficients of the second fundamental form are

given by

L ¼ ruu � n; (5)

M ¼ ruv � n; (6)

N ¼ rvv � n: (7)

The mean curvature is given by

Km ¼ ðEN þ GL� 2FMÞ=2ðEG� F2Þ: (8)

The Gaussian curvature is

KG ¼ ðLN �M2Þ=ðEG� F2Þ: (9)

Finally, the two principal curvatures are given by

Kp1 ¼ Km þ ðK2
m þ KgÞ1=2; (10)

Kp2 ¼ Km � ðK2
m � KgÞ1=2: (11)

The first principal curvature represents the maximum

curvature at a given point. In order to provide a simple nor-

malization, in all plots in this paper, the principal curvature

is multiplied by the local minor radius.

A. HSX as a non-resonant divertor

As a case study, we use the HSX geometry as an example

of a divertor that in its normal operation does not rely on large

islands at the magnetic boundary. HSX is a four field period

configuration and is therefore susceptible to island formation

when the toroidal mode numbers are integer multiples of four.

While an n¼ 8, m¼ 7 magnetic island does exist just outside

the LCFS of this configuration the edge does exhibit some fea-

tures similar to those of resonant island divertors,35,36 the

islands do not have internal well-formed helical flux surfaces

and, as we will see, the dominant heat flux pattern is resilient

to moderate changes in the edge topology.

A 3-D image of the LCFS of HSX is shown in Figure 1.

Also, plotted are a few field lines that follow along the sharp

ridges. However, because the ridges do not close on them-

selves, the field lines will eventually leave the regions of the

peak curvature. This can be more clearly seen in Figure 2.

Here, we show the principal curvature of the LCFS for one

field period. In addition, two field lines are followed from

the points of the peak curvature. The field lines follow the

region of high curvature until the value drops below approxi-

mately 50% of the peak.

III. STRIKE POINT CALCULATION METHODOLOGY

As a means of evaluating the edge properties of a given

magnetic configuration, we focus mainly on strike-point

calculations. In these calculations, magnetic field lines are

followed from inside the plasma out to the edge and the loca-

tions at where they intersect the wall are recorded. These cal-

culations have the advantage of being relatively fast

compared to more detailed heat and particle flux calculations

from 3-D simulations like EMC3-EIRENE.

The field line following is done by first starting with a

random assortment of points inside the LCFS. The points are

followed along the field line by solving the equation

dl � B ¼ 0. In cylindrical coordinates, this is given by

dr=df ¼ rBr=Bf; (12)

dz=df ¼ rBz=Bf; (13)

where r; z; f represent the coordinates in cylindrical geome-

try, and Br;Bz;Bf are the components of the magnetic field

in the respective directions, i.e., Br ¼ B � rr.

Of course, field lines that start inside the plasma will

never intersect a wall outside the plasma. Therefore, in this

paper, we use two different methods to move or “diffuse”

the field lines outward. The first method is as follows: After

each explicit step, a random displacement is supplied to the

trajectory in a direction perpendicular to the magnetic field.

Thus, the magnetic field lines diffuse, and the motion is that

of a particle with diffusion but without any drifts or bounces.

This method has been used in many previous calculations

(see, for example, Ref. 37) and in general appears to be a

good approximation for calculating locations of the peak

FIG. 1. 3 quarters of the LCFS for the HSX standard configuration with two

field lines overplotted in magenta. The field lines follow the ridges for some

finite extent.

FIG. 2. Contour plot of the principal curvature of the LCFS for one field

period normalized to the local minor radius. Overplotted in magenta pluses

are the trajectories of two field lines on the surface.
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particle and heat flux. In this paper, we will call this method

the “diffusion” method.

In addition, it is interesting to determine the location of

the field line strike points in the limit as the magnetic diffu-

sion goes to zero. In practice, this is difficult to calculate,

even with the efficient field line following algorithms.

However, the calculation becomes tractable if instead of dif-

fusing in a random perpendicular direction, the field lines

always diffuse outward radially. In this manner, the field

lines “spiral” out from inside the plasma, through the separa-

trix and into the unconfined region.38 Provided that the coef-

ficient for diffusion is small enough, the calculation yields

the strike point location for the first escaping flux tube. We

will call this second method the “spiraling” method. In the

limit of very small diffusion coefficients, both methods

approach the same answer (see Figure 5 and discussion in

Section V).

For a proper calculation, it is imperative that starting

points lie inside the confined region. This is necessary

because the flux through the last closed surface is not neces-

sarily uniform. However, in the confined region, constant

density on any flux surface is a reasonable assumption. If

points were begun in the unconfined region, as was common

in early calculations,37 the starting point locations may be

locations where no actual plasma will ever reach.

IV. CONFIGURATION VARIATIONS

There are three different methods of varying configura-

tions. The first method of varying configuration involves

changing the spacing between the last closed flux surface

and the target plates. For the basic analysis presented in this

paper, we generate a vessel by stepping out from a last

closed flux surface. The last closed flux surface is generated

from VMEC40 in a free boundary mode with no internal cur-

rents, no plasma pressure, and only contributions from the

main set of coils. Then, a vessel is formed by generating a

new surface with uniform distance from that last closed flux

surface. The leftmost plot of Figure 3 shows the results for

various wall positions along with Poincar�e plots for flux

surfaces in the standard HSX configuration. Calculating

strike points as a function of wall positions is fast to com-

pute, as it does not require making a magnetic grid and only

varying the termination condition for the field line following.

The second method of varying configurations includes

internal plasma currents directly. In order to include the

internal currents, we again use VMEC in a free boundary

mode to generate an equilibrium that includes finite plasma

current and pressure. The choice of current and pressure pro-

files used for the simulation are described in Section V C.

After a VMEC equilibrium is obtained, a magnetic grid is

generated using the FIELDLINES module.39 For the extrap-

olation outside the LCFS, the method is similar to that

described in the appendix of Ref. 41.

One limitation of VMEC is that magnetic islands are not

properly represented inside the core plasma; therefore, we

are limited to examining equilibria that do not contain low

order resonances at or near the edge. For these calculations,

we avoid current values where the i�¼ 1 resonance is near the

edge.

The third method is to use additional external coils to

modify the plasma profiles. Specifically, these can be used to

alter the iota profile and thus change the structure of the

plasma edge. This method has the advantage in that some of

the variations are available for experimental testing.

Poincar�e plots for two configurations made by altering exter-

nal coils are shown in the right two plots of Figure 3. The

disadvantage is that the ultimate goal is to test for configura-

tions with an internal plasma current profile. Internal currents

can only be approximated with external coils.42

V. ANALYSIS OF STRIKE POINT CALCULATIONS

A. Comparison of field line following methodologies

As a first result, we compare the calculation for the dif-

fusion and spiraling methodologies. The strike point posi-

tions on the wall are converted into poloidal angle via a

length-normalized mapping. Because the machine is periodic

with N¼ 4, the toroidal angle is taken modulo p=2. All plots

in this paper will show only one period in the toroidal direc-

tion. The field lines are followed forwards and backwards

and are plotted for both methods in Figure 4. For the diffu-

sion calculation, D¼ 0.5 m2/s, and the calculation assumes

an 80 eV proton. For the spiral method, the calculation takes

outward steps of 20 lm every 20�. The most salient results

are the following. For the magnetic diffusion case, the field

lines lie on helical lines, usually two separate strike locations

for any toroidal angle. For the spiraling method, the strike

points lie in discrete locations in both toroidal and poloidal

space. We note that the results are nearly exactly symmetric

for both simulations. The symmetry is a result of following

in both directions. It is somewhat easy to verify that the

strike locations for the spiraling method in the forward direc-

tion are the mirror image of the strike locations for the

reverse direction. This is true for the diffusion method as

well. Because of the symmetry, for most of the rest of the

calculations in this paper, we only follow in one direction,

with the knowledge that the reverse direction will be the mir-

ror image.

FIG. 3. Poincar�e plot with the wall position for small island configuration.

Poincar�e plots are in blue. Wall positions are 7 cm outside LCFS (magenta),

4 cm (green), 2 cm (red), and 0 cm (black).
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In Figure 5, the strike point patterns are plotted for dif-

ferent values of the diffusion coefficient. As the diffusion

value is lowered, the strike points become toroidally distinct

and approach the results from the spiraling method.

B. Comparison of different wall positions

As a first test of the resiliency of the HSX configuration,

the wall is placed at different positions from the LCFS.

Results are shown in Figures 6 and 7 where it is seen that

using either the diffusion or the spiraling method, the posi-

tion of the helical strike lines does not differ significantly

between the 4 cm and 7 cm positioning. At the 2 cm position-

ing, the strike lines do differ a little bit. It is possible to see a

splitting of the strike lines in both the diffusion and the

spiraling method, but it is more clearly delineated in the

spiraling method (Figure 7). Nonetheless, it is clear from

these calculations that the strike point patterns are robust

with respect to the wall location.

C. Including plasma current

Next, we examine equilibria with finite plasma current.

To calculate configurations with finite plasma current, we

first calculate an equilibrium with VMEC and then generate

a magnetic grid with the FIELDLINES module.39 To calcu-

late the equilibria, we must choose current and pressure pro-

files. For the choice of the plasma current profile that crudely

approximates a bootstrap current, we assume that J � B is

zero at the magnetic axis and at the edge. A parabolic repre-

sentation of J � B, as shown in Figure 8, is a simple approxi-

mation that satisfies these constraints. Three equilibria

are examined: a zero current case that corresponds to the

FIG. 4. Strike point scatter plot for magnetic diffusion (red/magenta) and

spiral (blue/black) for forward (pluses) and reverse (squares) directions.

FIG. 6. Strike point scatter plot for magnetic diffusion at three different wall

positions 2 cm outside LCFS (black squares), 4 cm (blueþ), and 7 cm (red dot).

FIG. 7. Strike point scatter plot for spiraling out at three different wall posi-

tions, 2 cm outside LCFS (black squares), 4 cm (blueþ), and 7 cm (red dot).

FIG. 5. Strike point scatter plot for magnetic diffusion, D¼ 0.5 m2/s

(magenta), D¼ 0.03 m2/s (green), and spiral (black).

FIG. 8. Current and plasma pressure profiles for the 8 kA and 20 kA configu-

rations from VMEC.
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standard configuration from Section IV, a medium current

case, and a high current case. The current and pressure pro-

file inputs are provided in Figure 8. In the standard case,

i�> 1 throughout the entire plasma volume (Figure 9). In the

cases with current, i�passes through the i�¼ 1 surface near the

plasma core and is below one in the majority of the plasma.

Most importantly, the i�¼ 1 surface is far from the edge in all

cases.

In addition to altering the i� profile, the inclusion of

plasma current also has a significant effect on the shape of

the LCFS. The plasma current tends to unwind the vacuum

transform that causes the sharp edges of the flux surfaces to

be smoother and hence reduces the peak curvature. Flux sur-

faces for f ¼ 0�; 22:5�, and 45� are shown in Figure 10.

To move from the VMEC equilibrium to the magnetic

field, we use the FIELDLINES module.39 This code provides

a magnetic grid based on the equilibrium, which can then be

used for the field line integration in the same manner as the

vacuum fields examined in Section V B. The results for the

field line strike points for the zero, medium, and high current

configurations are shown in Figure 11. There is little differ-

ence in the strike point patterns when plasma current is intro-

duced. The conclusion is that for these configurations, the

strike point locations are robust to changes in the shape of

the core plasma caused by additional plasma current and

pressure. The implication is that a single physical structure

should be usable as a QS stellarator transitions from startup

to high-pressure/bootstrap current operation.

D. Changing configurations with external coils

We now turn to configuration changes with the auxiliary

coils. The HSX experiment is equipped with auxiliary coils

that can be used to add or the subtract toroidal field. For core

transport, these coils can be used to weaken quasi-symme-

try;43 however, they can also be used to modify edge config-

urations by modifying the rotational transform profile. Using

Biot-Savart field line calculations with the external coils

allows for an examination of the role of edge islands on the

strike point calculation.

In the standard HSX configuration, the rotational trans-

form at the edge is 8/7, which gives the dominant magnetic

island chain of n¼ 8, m¼ 7. We term this the medium island

configuration. By lowering the rotational transform profile

with the external coils, the 8/7 islands can be moved further

out towards the wall. At some point, the largest island in the

edge is n¼ 16, m¼ 15. Since this dominant island chain is

small and the edge fields are stochastisized somewhat, we

call this the small island configuration. At higher currents in

the auxiliary coils, the i�¼ 1 surface can be moved towards

the edge creating very large m¼ 4, n¼ 4 islands and hence

the large island configuration. Poincar�e plots for all three

configurations are shown in Figure 3. These three configura-

tions were examined in detail in Ref. 36 where it was found

that the large island configuration possessed fundamentally

different edge behavior with regard to transitions to high

recycling and detached regimes.

For the small island configuration, the wall is moved to

three positions at varying distances from the LCFS. These

positions were included on the Poincar�e plot in Figure 3. In

order to keep the comparison simple, the shape of the wall is

derived from the medium island configuration. Therefore, it

is identical to the wall positions examined in Section V B.

FIG. 9. Rotational transform (i�) profiles for the 0 kA, 8 kA, and 20 kA con-

figurations from VMEC.

FIG. 10. Comparisons of flux surfaces for 0 kA, 8 kA, and 20 kA shown for

toroidal angles, 0�, 22.5�, and 45�.

FIG. 11. Comparisons of strike points for 0 kA (green dot), 8 kA (red o), and

20 kA (blue þ).
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With the auxiliary coils, it is also possible to introduce a

resonant or an island divertor. This is possible for the large

island configuration shown in Figure 3.

The strike lines for the three configurations with wall

positions at 4 cm and 2 cm are given in Figures 12 and 13. At

4 cm, the wall is mostly outside the island extent, and the

three configurations have roughly the same strike pattern,

although there are a few large island points that do fall in

areas not covered by the standard configuration. At 2 cm,

there are significant differences in the strike point location,

particularly in the large island case. There are two regions

where many points impact that do not appear in the standard

island configuration. These two regions have been circled in

Figure 13 for convenience. The result indicates that the HSX

standard configuration is not resilient to variations that intro-

duce large islands that intersect the wall.

We attempt to verify that it is actually the islands that are

causing a difference in the strike point calculation rather than

a shift of the magnetic axis, by eliminating the effect of the

axis shift. This is done by shifting the vessel the same direc-

tion and distance as the shift of the magnetic axis. An example

of the shifted vessel for the large island configuration is shown

in Figure 14. With the shifted vessel, the strike points still fall

on different areas (Figure 15), indicating that there is a sub-

stantial effect from the island on the edge field line topology.

It is clear that if a magnetic topology has large islands in the

edge, then the divertor structures will need to be designed to

handle it. More importantly, the results imply that it may be

very difficult to design a divertor that can operate well for

designs that have edge topologies with and without large edge

magnetic islands in the standard operational regimes.

VI. EVALUATING RESILIENCE

In this section, we attempt to provide some evaluation

on how resilient a configuration is to variations in its topol-

ogy. The methodology is outlined as follows: First, we

choose to vary the configuration, and for this paper, we

choose the HSX standard case as our base configuration.

Next, we determine the “central strike locations,” which rep-

resent the mean poloidal location or locations of the strike

points for each toroidal value. These represent the locations

for divertor plates, baffles, and pumps. For the HSX standard

case, two poloidal central locations are allowed for each

toroidal value, although for the standard configuration, there

is a section where there is only one poloidal center. Finally,

FIG. 12. Strike point scatter plot for three configurations with the wall at

4 cm outside LCFS. The configurations are standard (red x), large island

(green þ), and small island (black dot).

FIG. 13. Strike point scatter plot for three configurations with the wall at

2 cm outside LCFS. The configurations are standard (red x), large island

(green þ), and small island (black dot). Strike regions that do not exist in

the standard configuration are circled.

FIG. 14. Poincar�e plot for the large island configuration showing vessel

positions at 4 cm (green), 0 cm (black), and 0 cm but with a shift to compen-

sate for the magnetic axis (orange-dashed).

FIG. 15. Strike point scatter plot for large island configuration with mag-

netic diffusion for wall positions 0 cm outside LCFS (black dots), 4 cm

(green þ), and a shifted wall (orange circles).
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we evaluate the degree in which the configurational varia-

tions adhere to the same strike pattern.

The calculation of the strike centers for the standard

configuration with a 4 cm wall position is shown in Figure

16. The strike points were calculated using the diffusion

method with D¼ 0.5 m2/s. The central strike locations were

determined by separating the strike points into toroidal bins

and then finding the poloidal mean value for each toroidal

group. For most toroidal bins, two groups are present, but for

the section between the toroidal angles �0.71 and 0.85 radi-

ans, corresponding to the “triangle” section of HSX, only

one poloidal group is present. Finally, the central strike lines

are smoothed to remove noise from the Monte Carlo

sampling.

Next, we determine how closely a given strike point pat-

tern adheres to the central strike locations. This is done by

determining the poloidal distance for each individual point

in the Monte Carlo sample to the nearest central strike loca-

tion. Then, we calculate the percentage of points that fall

outside a given poloidal section. Then, it is possible to com-

pare different variations of the standard configuration by cal-

culating the poloidal distances for each variation to the same

central strike locations. The three configurations where the

plasma current is varied are shown in Figure 17. All three

lines lie nearly on top of each other, indicating that there is

essentially no difference in the strike profile of the

configurations. This leads to the conclusion that the HSX

standard configuration is resilient to changes in plasma cur-

rent and pressure.

For the sake of comparison, we also show a variation

type where there is no resilience. We choose the HSX stan-

dard configuration with a wall at 1 cm from the LCFS and

adjust the auxiliary coils to introduce large islands into the

edge. The calculation of the strike point distance from the

central strike locations for the auxiliary coil calculation is

shown in Figure 18. It is clear that the configuration with

large islands has numerous strike points that are located a

significant distance from the central strike locations. Even

for the small island configuration, there are larger deviations

as compared to the standard configuration, although the devi-

ation is much smaller and the vast majority of the points lie a

small distance from the central strike lines. The conclusion

is the same as above, and resilience of HSX can be broken

with the introduction of large islands that intersect wall

components.

VII. EMC3-EIRENE SIMULATIONS

The strike point calculations are a useful initial step

where heat and particle flux are likely to fall. However, the

reality of calculating actual heat flux amounts is not possible

with these simple methods.

We engage in a deeper examination of the problem by

comparing the simple strike point calculation with more

detailed EMC3-EIRENE simulations.36,44 EMC3 is a 3-D

fluid Monte-Carlo code, and it is coupled to EIRENE, which

is a kinetic neutral solver. The coupled codes solve for the

electron and ion temperatures, electron and neutral densities,

and ion parallel flows at all points in the plasma edge. In

addition, it solves for the heat and particle fluxes on the tar-

gets. The input parameters for these simulations are the

plasma density at the inner simulation boundary and the

power through that boundary. The wall positioning is closest

to the 4 cm outside the LCFS (Figure 3). We examine the

three configurations corresponding to the small, medium,

and large islands discussed in Section V D, for wall positions

outside the island chains. These configurations were exam-

ined in more detail in Ref. 36; however, here we present the

FIG. 16. Average strike point locations for the standard configuration with

the wall at 4 cm from LCFS.

FIG. 17. Evaluation of resilience for three different values of plasma cur-

rent: 20 kA (blue solid), 8 kA (red dashed), and no current (green dotted).

FIG. 18. Evaluation of resilience for three different edge configurations rep-

resenting standard configuration (red solid), small islands (black dashed),

and large islands (green dotted).
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measurements of heat fluxes in the low recycling regime,

shown in Figure 19.

It is clear from these simulations that the heat flux is rel-

atively uniform between the three configurations. Also, the

helical stripes of the heat flux align with the strike point cal-

culations with the magnetic diffusion method.

Unfortunately, it is not yet possible to transition from a

VMEC equilibrium with finite current to a full EMC3 simu-

lation, so we are limited to examining the vacuum cases.

Nevertheless, the agreement between the simple strike point

model and the full EMC3-EIRENE plasma simulations indi-

cates that the equilibria with plasma currents should extrapo-

late similarly.

VIII. DISCUSSION

We pose the following question: do the locations of the

strike lines correlate with any easily understandable geomet-

rical property of either the vessel or the field lines? The

answer is yes. Figure 20 shows the strike lines for the stan-

dard configuration overlaid on a contour plot of the first prin-

cipal curvature of the vessel. Because the vessel shape is

conformal to the last closed flux surface shape, the result is

equivalent to the curvature of the LCFS. It is clear that strike

points lie along regions of the peak curvature, although they

are not exactly correlated with the toroidal peaks of the

curvature.

The connection between the curvature of the LCFS and

divertor resilience was discussed by Boozer in Ref. 25.

Boozer describes “sharp edges” as a necessary feature of

resilient divertors and that these should be a natural feature

of most optimized stellarator equilibria. The hypothesis is

that plasma flux is likely to preferentially leave through the

LCFS from regions of high curvature. Because the location

of the LCFS is not known, it is not easy to determine whether

this hypothesis is true. Nevertheless, the hypothesis is sup-

ported from measurements presented in Section V B. There

it was found that when moving the wall position inwards, the

location of the strike points remain constant and at regions of

high curvature.

Comparing Figure 20 with Figure 2 is useful, which

showed the curvature of the last closed flux surface and the

field lines that lay along the high curvature regions.

Unsurprisingly, the high curvature regions at the wall are in

the same locations as the high curvature regions of the

LCFS. This is because the wall and the LCFS are of the

same shape. However, the wall curvature regions are signifi-

cantly less sharp than on the LCFS. Nevertheless, the strike

lines still tend to favor the regions of the highest curvature.

An interesting point is that one of the defining features

of the equilibria with plasma current is a change in the mag-

nitude of the plasma curvature on the LCFS. However, this

alteration in the LCFS curvature did not degrade the loca-

tions of the strike points. A possible explanation is that there

are some critical curvature values that provide strike point

stability. Another possibility is that as long as the region of

maximum curvature exists, it does not matter how much

larger it is than other nearby regions. Nevertheless, more

work needs to be done in defining what link exists between

the curvature of the LCFS and the behavior of the divertor.

Another correlation can be seen in Figure 21 where the

strike lines are plotted over a contour plot of B � n at the ves-

sel wall. The strike lines lie on helical seams, where B � n is

close to zero and is between the regions of the strong normal

field in opposite directions. Therefore, unsurprisingly, the

strike lines appear on field lines that have the maximal radial

excursion. The system can also be thought of in a

Hamiltonian sense. The points where the field lines cross any

FIG. 19. EMC3-EIRENE calculation of heat flux deposition for medium (left), small (middle), and large (right) island configurations.

FIG. 20. Strike points for magnetic diffusion and spiral method overlaid

onto a plot of the curvature of the LCFS. Curvature values are normalized to

the machine major radius.
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near tangential surface outside the LCFS can be thought of

as Hamiltonian turnstiles.25,45 The results presented earlier

in this paper indicate that the areas of maximal radial excur-

sion are a property of the gross geometry. For conformal ves-

sels, in which the position of the targets is a uniform distance

from the LCFS, the strike lines will always lie in specific

regions.

IX. CONCLUSION

Quasi-helically symmetric configurations, as embodied

by the HSX design, demonstrate resilient divertor proper-

ties. The edge of HSX demonstrates resiliency to specific

configuration changes in that the strike point locations do

not move significantly. Most importantly, the strike point

profile remains consistent with variations in internal plasma

current. However, in configurations with large edge islands

that intersect wall components, resiliency is not maintained.

In large-island configurations, strike point patterns can vary

significantly.

The resiliency of the strike point position is necessary

but does not guarantee fulfillment of all the desired proper-

ties of an advanced divertor, namely, that the full edge

behavior including recycling properties, neutral pumping,

impurity penetration, particle flux, and heat flux is within

required limits and remains constant with configuration and

profile changes. On the broad topic of advanced divertor

behavior, the edge physics models are still under develop-

ment and require validation from the experiment. There is a

considerable need for high performance quasi-symmetric

stellarators that can test divertor resiliency directly.
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