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1.  Introduction

The radial electric field (Er) plays an important role in the 
plasma confinement in stellarators. It significantly affects 
the neoclassical particle, impurity and heat transport. Non-
ambipolar transport in stellarators generates the Er, which 
can take one of multiple stable values at which the ambipo-
larity condition is satisfied. It is well known that the increased 
neoclassical transport in the low collisionality regime in stel-
larators (called /ν1  transport) is greatly reduced if a large Er 
is present [1]. Also, a positive Er near the plasma core could 
expel impurities [2]. A large Er can also lead to changes in the 
MHD equilibrium configuration by its effect on the bootstrap 
current [3, 4]. An accurate measurement of Er is therefore 
important to understand the transport properties of a stellar-
ator device.

The radial electric field in fusion devices is usually 
obtained from impurity ion flows or from the electric poten-
tial profile measured by a heavy-ion beam probe. Previously, 
the Er in the HSX stellarator has been obtained from the radial 
force balance equation, using the measured C+6 impurity ion 
flows [5, 6]. This technique involves measuring both poloidal 
and toroidal flows accurately and simultaneously. Because 

the diagnostic neutral beam width can be comparable to the 
plasma diameter near the core, poloidal flow measurements 
in this region are subjected to large uncertainties. This is 
because the beam intersection with the optical sight-lines cut 
through regions with different velocity vectors. However, by 
observing the carbon emission parallel to the magnetic field at 
the inboard and outboard side of the torus (or any two points 
on a flux surface where large flow variation is expected), it is 
possible to calculate the radial electric field and the mean ion 
flow from the Pfirsch–Schlüter effect.

The Pfirsch–Schlüter flows manifest in the form of an 
inboard/outboard asymmetry in the measured parallel flows. 
Recently, Pfirsch–Schlüter flows deduced from such asym-
metry have been used to verify the compressible and incom-
pressible nature of ion flows in the TJ-II stellarator [7, 8]. 
Measurements of the Pfirsch–Schlüter current in HSX using 
magnetic coils agreed well with a neoclassical calculation 
that assumed incompressibility [9]. The measurements con-
firmed the helical nature of the Pfirsch–Schlüter current and 
its reduced magnitude because of the high effective transform. 
The ion and electron flow both depend on the pressure gra-
dient and the electric field. However, when flows are summed 
(as in the measurement of Pfirsch–Schlüter current), the 
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electric field drops out. Results presented in this paper utilize 
the asymmetry of the observed ion flow to calculate the mag-
nitude and direction of the radial electric field (Er), as well as 
the mean flow, using computed magnetic geometry factors.

The rest of the paper is organized as follows: in section 2, 
a theoretical background of the Pfirsch–Schlüter flows and 
the derivation of the Er are presented. The experimental tech-
niques and the results are presented in section 3. Comparison 
of the experimental results with neoclassical calculations are 
also presented in this section. Section 4 discusses the results in 
the light of similar measurements made in other machines and 
presents possible reasons for the discrepancy between experi-
ment and neoclassical calculations. Conclusions are given in 
section 5.

2. Theoretical background

The Pfirsch–Schlüter flows are flows parallel to the magnetic 
field lines in a toroidal plasma that arise due to incompress-
ibility. For ions, the incompressibility leads to the condition 
that

( )∥
→ →∇ ⋅ + =⊥v v 0i i� (1)

where →
⊥v i and ∥

→v i are ion flow velocities in the perpendicular 
and parallel directions to the magnetic field line respectively. 
There is no external momentum injection in the HSX plasma, 
so all flows described in this paper are intrinsic. Perpendicular 
flows are generated by the radial electric field (Er) and the ion 
pressure gradient (∇Pi).
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where φ is the electrostatic potential and ψ is the toroidal flux. 
The parallel ion flow at any location in the plasma is given by,

∥
→ → →= +v v vi BS PS� (3)

where the ‘bootstrap’ portion of the flow (→vBS) is a flux surface 
quantity (divergence-free) and the Pfirsch–Schlüter flow (→vPS) 
varies over a flux surface such that the flux-surface average 
is zero. Using equations (1), (2) and (3), the Pfirsch–Schlüter 
flow can be written as [10, 11]
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In HSX, the ions are cold (∼50 eV) and the ion temperature 
profile is relatively flat throughout most of the plasma radius 
(figure 1(d)). Therefore, the pressure gradient contribution 
to the Pfirsch–Schlüter flow is small compared to the elec-
tric field, and can be neglected. Considering only the scalar 
quantity along the direction of the magnetic field,

φ
ψ

=v hB
d

d
.PS� (6)

Therefore, the flux surface constant, /φ ψd d , can be written 
as,
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Here, ∥v i can be obtained from CHERS flow measurements, 
the hB factor at the measurement location can be calculated 
and the vBS can be obtained from two point flow measure-
ments on a flux surface as explained below. The flux surface 
constant, /φ ψd d , can thus be determined from the Pfirsch–
Schlüter flows.

3.  Experimental results and analysis

Experiments are made in the HSX stellarator, which is a 
medium sized stellarator (average minor radius  =  0.12 m, 
average major radius  =  1.2 m) that is optimized for neo-
classical transport [12, 13]. For the results reported in this 
paper, plasmas heated using a 100 kW electron cyclotron 
heating system have been used. Measurements are made 
for the standard quasi-helically symmetric (QHS) magnetic 
geometry with an on-axis magnetic field of 1 T. The core 
electron density and temperature measured using a Thomson 
scattering diagnostic are ∼ ×4 1018 m−3 and  ∼2 keV respec-
tively (figures 1(b) and (c)).

Flow measurements are made using charge exchange 
recombination spectroscopy (CHERS). A 30 keV, 3 ms, 4 A 
hydrogen diagnostic neutral beam is injected radially into the 
plasma during the stationary phase of the discharge, as shown 
in figure 1(a). The CVI emission at 529.1 nm (n  =  8–7 trans
ition) is measured using two Czerny–Turner spectrometers 
equipped with electron multiplying CCD cameras that capture 
a series of images during the plasma discharge. Each image 
consists of emission averaged over  ∼5 ms duration. The 
image captured before the beam is fired is subtracted from 
the image obtained when the beam is fired to get the beam 

Figure 1.  (a) Line averaged electron density measured by an 
interferometer, (b) radial profile of electron density and (c) electron 
temperature measured at t  =  0.82 s using Thomson scattering 
diagnostic, and (d) C+6 ion temperature measured using CHERS. 
Vertical dashed lines on (a) represent start and end times of the 
diagnostic neutral beam used for CHERS measurements. Data are 
averaged over nine similar discharges used for the flow analysis.

Nucl. Fusion 57 (2017) 036030
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induced charge-exchange emission (see [5] for details). Since 
boronization is used for wall conditioning in HSX, the carbon 
signal level in a pure hydrogen plasma is too low to be used 
for CHERS. Therefore, for the results presented in this paper, 
methane is used as the working gas instead of hydrogen. 
Emission spectra from nine similar discharges are averaged 
for the analysis.

For this experiment, the toroidal view (due to the helical 
axis of the device, the views are only approximately toroidal 
in HSX) of the HSX CHERS diagnostic that measured flows 
at radial locations along the beam axis (see figure 1 of [6]) 
has been modified to view the inboard and outboard side of 
the beam axis, within the beam width, as shown in figure 2. 
The collection optics of the diagnostic has also been modified 
to make the views focused at the beam rather than using the 
larger diameter collimated sight-lines used in the past. These 
modifications reduced the spot size radius from 10 to 1.5 mm 
and improved spatial localization. The inboard and outboard 
locations are separated from the beam axis by about 1 cm on 
each side. The parallel ion velocity ( ∥

→v i) is obtained from the 
measured toroidal flows (→vtor) by accounting for the small 
angles (θ) the sight-lines make with the magnetic field vector 
[ / ( )∥

→ → θ=v v cosi tor ]. The hB factor at these locations is calcu-
lated by solving the magnetic differential equations (equation 
(5)) for the QHS geometry of HSX following [10, 11]. These 

values are plotted in figure 3. A synthetic diagnostic for beam 
emission spectroscopy is used to account for the finite beam 
width by taking the weighted average of these variables along 
the measurement sight-line within the beam width [14].

Figure 4 shows the parallel flows obtained from CHERS 
as a function of normalized radius for the inboard (solid red) 
and outboard (solid green) locations. Inboard–outboard asym-
metry in the parallel flow is apparent from the measurements. 
The bootstrap flow, vBS, is calculated from the measured 
inboard/outboard flows using the condition that the /φ ψd d  and 
vBS on both sides of the same flux surface (same r/a values, 
where r/a is the square root of the normalized toroidal flux) are 
the same. Therefore, for inboard and outboard measurements 
on a flux surface,
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Figure 2.  Poloidal cross-section of HSX magnetic flux surfaces 
where CHERS measurements are made. The vertical shaded band 
represents the approximate 1/e width of the neutral beam injected 
from the top as it traverses the plasma. Red and green dots represent 
inboard and outboard measurement locations respectively (spot 
radius 1.5 mm). For clarity, the spot size in the figure is enlarged by 
a factor of three.

Figure 3.  The hB factor and the toroidal flux (ψ) calculated for the 
QHS geometry at the measurement locations. The values shown are 
the weighted-average along the sight-line within the beam width. 
Horizontal error bars indicate the radial spread of each sight-line.

Figure 4.  Parallel flow velocity obtained from CHERS at the 
inboard (solid red squares) and outboard (solid green squares) 
locations. The open red squares are the interpolated values on the 
inboard side. Also plotted is the bootstrap contribution to the flow 
(vBS). Larger vertical error bars for r/a  >  0.6 for the inboard side 
measurements are due to lower signal levels. Therefore, vBS could 
not be calculated at these locations.

Nucl. Fusion 57 (2017) 036030
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where subscripts IN‘ ’ and OUT‘ ’ represent inboard and  
outboard measurement locations. The measurement locations 
are not exactly at the same r/a values on either side as can be 
seen from figures 3 and 4. To align the data points on the same 
flux surface, the inboard data points are interpolated as shown 
by the open red squares in figure 4. We assumed ∥( / ) ==v 0r a 0  
to obtain the innermost data point. The solid green points 
on the outboard side and the open red points on the inboard 
side are used to obtain /φ ψd d  and vBS. The calculated vBS is 
between the inboard and outboard flows as shown in figure 4. 
The Pfirsch–Schlüter flows are therefore counter-streaming: 
parallel to the magnetic field lines in the outboard region and 
anti-parallel to the field lines at the inboard region as expected 
(from figure 3(a)) for a positive radial electric field.

Neoclassical calculations of the flows and the electric field, 
for the experimental parameters reported here, are done using 
the PENTA code [15, 16]. Along with the electron and ion 
temperatures and densities, the fractional abundance of carbon 
impurity calculated using ADAS [17] and scaled for methane 
(CH4) proportion, is used in the calculation. The PENTA code 
uses a radial coordinate system based on the toroidal magnetic 
flux ( /ψ π=r BPENTA T , where ψ and BT are the toroidal 
magnetic flux and toroidal magnetic field respectively). The 
calculated value of /φ ψd d  based on the flow asymmetry can 
be converted into a PENTA variable /φ= −E rd dr PENTA by 
multiplying by a factor /ψ π ψ= − = −f r Bd d 2PENTA T . The 
toroidal flux, ψ, calculated at the measurement location is 
given in figure 3(b). The parallel ion flow calculated by the 
PENTA code ( /∥

→
v B B2) can be directly compared to the vBS 

obtained from Pfirsch–Schlüter flows as B  =  1 T.
The Er calculated by the PENTA code is given in figure 5. 

It can be seen that there are locations where multiple solu-
tions (‘roots’) exist; electron root, ion root and the unstable 
root. In general, if electrons are preferentially heated as in 
the case of HSX plasmas, the electron radial flux can exceed 
that of ions and the electron root is attained [18]. From 
the PENTA calculated electric field values, two possible 
scenarios for the radial Er profile have been selected for 

comparison with experiment, the electron root case and the 
ion root case, as shown in figure 5. As the name suggests, 
the electron root case takes electron root Er values and the 
ion root case takes ion root Er values wherever multiple 
solutions exist. For both cases, ( / ) ==E 0r ar 0  is imposed and 
radial profiles are formed by fitting the respective data sets 
with cubic spline (dashed lines in figure 5). The weighted 
average of Er over the line of sight is then calculated. A 
similar procedure was applied to ion flow velocities calcu-
lated by PENTA.

Figures 6 and 7 show a comparison of experimental values 
of velocity and radial electric field to the two cases selected 
from the PENTA results. It can be seen that the experimental 
flow velocities are slightly lower, but the profile shape quali-
tatively agrees with the PENTA electron root case profile. 
However, the experimental Er exhibits a large discrepancy 
with the electron root case, both in magnitude and profile 
shape. In the core region, the experimental Er agrees better 
with the PENTA ion root case.

Figure 5.  Neoclassical values for Er calculated by the PENTA code 
(points). Dashed lines are two possible scenarios selected from the 
PENTA results, which are cubic smoothing splines of the selected 
data sets with a constraint, ( / ) ==E 0r ar 0 .

Figure 6.  The bootstrap flow (vBS) obtained from the Pfirsch–
Schlüter flows compared to the neoclassical calculations. The 
PENTA profiles are the weighted average over the line of sight. 
Horizontal error bars indicate the radial spread of each sight-line.

Figure 7.  The radial electric field obtained from the Pfirsch–
Schlüter flows compared to the PENTA calculated Er. The PENTA 
profiles are the weighted average over the line of sight. Horizontal 
error bars indicate the radial spread of each sight-line.

Nucl. Fusion 57 (2017) 036030
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4.  Discussion

Previously, poloidal asymmetry in the parallel flow has been 
observed in the H-mode pedestal region of tokamaks where a 
large ion pressure gradient exists [20, 21]. These observations 
are consistent with the expectation that the impurity flows could 
become compressible in the steep gradient region. Flow com-
pressibility in this case arises due to the redistribution of impu-
rity ions resulting from the parallel friction caused by large ion 
diamagnetic velocities [22]. In a different scenario, experiments 
from the TJ-II stellarator showed, by analyzing the flow asym-
metry and the Pfirsch–Schlüter component of the flow, that ion 
flows are incompressible in a low density electron cyclotron 
heated plasma [8], but a compressible flow variation occurs 
at higher density in ion-root neutral beam heated plasmas [7]. 
However, results reported in this paper are from a low density 
electron cyclotron heated plasma with negligible ion pressure 
gradients. Also, as mentioned in the introduction, measure-
ments of the Pfirsch–Schlüter currents in HSX using magnetic 
coils agreed well with a neoclassical calculation that assumed 
incompressibility [9]. Another assumption used in our analysis 
is that the electric potential on a flux surface is constant. A vari-
ation of electrostatic potential of several tens of Volts on a flux 
surface has been measured using Langmuir probes at the edge 
of TJ-II plasma [23]. The effect of such a variation in the impu-
rity dynamics has also been studied recently [24]. However, our 
measurements are near the core to mid radius of the plasma and 
calculations with the SFINCS code [25] for the neoclassically 
optimized QHS configuration used for the current experiment 
shows negligible (∼1 V) variation.

The reason for the discrepancy between experimental 
results and the PENTA code calculations is not understood 
at present. Investigations are underway to examine the role of 
some of the assumptions used in the PENTA code that may be 
invalid for the HSX plasma. For example, the PENTA code 
neglects the variation of electrostatic potential energy over 
the radial excursion of the ion orbit (called ‘mono-energetic’ 
assumption) that breaks down at the helical resonance [19]. 
Since the large positive electric field calculated by the PENTA 
code is the result of the increased ion radial flux at the helical 
resonance, correcting for the mono-energetic assumption may 
result in a lower electron-root Er. We are using the SFINCS 
code that does not have the mono-energetic ion assumption, to 
benchmark the PENTA code results. It could also be possible 
that the bootstrap ion flow evolves throughout the discharge, 
whereas the radial electric field reaches a steady state early in 
the discharge, as indicated by the previous measurements of 
bootstrap and Pfirsch–Schlüter current [9]. Evolution of the 
bootstrap flow may bring the experimental flow values to the 
steady-state values calculated by the PENTA code. This topic 
is left to future work.

5.  Conclusions

In summary, the counter-streaming Pfirsch–Schlüter flows 
have been obtained from the toroidal flows measured using the 
CHERS system in the HSX stellarator. These measurements 

enabled calculation of the radial electric field in the core 
region of the plasma where poloidal flow measurements have 
large uncertainties and the Er calculation from radial force bal-
ance equation is difficult. The Pfirsch–Schlüter flow method 
presented in this paper gives a way to obtain Er from toroidal 
flow measurements, instead of estimating it from the radial 
force balance equation. This method is especially useful in 
a stellarator plasma where core Er is important to understand 
bulk and impurity transport. This method also allows one to 
differentiate between Pfirsch–Schlüter and bootstrap flows.
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