Effects of Quasisymmetry on Particle and Thermal Transport in HSX

J.M. Canik

HSX Plasma Laboratory

The University of Wisconsin-Madison

15th International Stellarator Workshop

Madrid, Spain Oct. 3-7, 2005

Outline

- HSX operational configurations for studying transport with and without quasisymmetry
- Particle Transport
 - H_{α} measurements and neutral gas modeling give plasma source rate
 - Without quasisymmetry, density profile is flat/hollow due to thermodiffusion
 - With quasisymmetry, density profiles are peaked
- Electron Thermal Transport
 - Absorbed power profile is measured at ECRH turn-off
 - With quasisymmetry
 - Central electron temperature is higher
 - Core electron thermal diffusivity is lower

HSX Machine Parameters

Major Radius	1.2 m
Minor Radius	0.12 m
Number of Field Periods	4
Coils per Field Period	12
Rotational Transform	1.05 →1.12
Magnetic Field	0.5 T
ECH Power (2 nd Harmonic)	50 kW 28 GHz

HSX is a Quasihelically Symmetric Stellarator

HSX has a helical axis of symmetry in |B| ⇒ Very low level of neoclassical transport

Symmetry can be Broken with Auxiliary Coils

The Two Mirror Configurations have Different Axis Shifts

Particle Source is Measured with H_{α} Array

- HSX has 15 absolutely calibrated H_α detectors forming two arrays
 - Toroidal array: 7 detectors on magnetically equivalent ports

3D DEGAS Modeling Coupled to H_α **Measurements Gives Radial Particle Flux**

• With single point normalization, numerically integrated DEGAS H_{α} emission matches experimental profile

• Atomic hydrogen profile is flat ($\lambda_H \sim 1m$) Molecular hydrogen profile decays towards core ($\lambda_{H2} \sim 3cm$)

 H_α measurements + modeling yields the particle source rate density ⇒ total radial particle flux

Mirror Plasmas Show Hollow Density Profiles

- Thomson scattering profiles shown for plasma with central heating in Standard Mirror
 - On-axis heating, no on-axis Thomson scattering
- Density profile in Mirror is similar to those in other stellarators with ECRH: flat or hollow in the core

– Evidence of outward convective flux -> Thermodiffusion?

Mirror Density Profile Peaks with Off-axis Heating

- Profiles shown for a plasma with heating at $r/a \sim 0.4$
- Core temperature flattened, density profile peaked
 - Anticorrelation between temperature and density gradients
- Support for large thermodiffusive flux with on-axis heating

Neoclassical Thermodiffusion Accounts for Hollow Density Profile in Mirror Configuration

- Figure shows experimental particle flux from H_{α} + DEGAS, neoclassical prediction
- In region of hollow density profile, neoclassical and experimental fluxes comparable

• The ∇T driven neoclassical flux is dominant

$$\Gamma = -n \left\{ D_{11} \left(\frac{n'}{n} - \frac{qE_r}{T} \right) + D_{12} \frac{T'}{T} \right\}$$

Quasisymmetric Configuration has Peaked Density Profiles with Central Heating

- Both the temperature and density profiles are centrally peaked in QHS
 - Thermodiffusive flux not large enough to cause hollow profile

$$\Gamma = -n \left\{ D_{11} \left(\frac{n'}{n} - \frac{qE_r}{T} \right) + D_{12} T' \right\} \quad D_{12} \text{ is smaller due to quasi-symmetry} \right\}$$

Neoclassical Particle Transport is Dominated by Anomalous in QHS

 Neoclassical particle flux now much less than experiment

 Assuming diffusive anomalous transport, effective diffusion coefficient can be estimated:

 $D_{eff} = -\Gamma/\nabla n$

 D_{eff} ~ 0.5 m²/s in core, increases towards edge

Outline

- HSX operational configurations for studying transport with and without quasisymmetry
- Particle Transport
 - H_{α} measurements and neutral gas modeling give plasma source rate
 - Without quasisymmetry, density profile is flat/hollow due to thermodiffusion
 - With quasisymmetry, density profiles are peaked
- Electron Thermal Transport
 - Absorbed power profile is measured at ECRH turn-off
 - With quasisymmetry
 - Central electron temperature is higher
 - Core electron thermal diffusivity is lower

Thermal Transport Measurements

• Absorbed power profile can be obtained from time evolution of plasma profiles after the ECRH turn-off:

$$p_{ECRH} = \frac{\partial}{\partial t} \left[\frac{3}{2} n_e T_e \right] \left(t = t_0^{-} \right) - \frac{\partial}{\partial t} \left[\frac{3}{2} n_e T_e \right] \left(t = t_0^{+} \right)$$

 t_0 is the ECH turn-off time

- Time-dependent plasma profiles are measured with the Thomson scattering system
 - ~100 similar plasma discharges, 6 time points
 - Thomson timing changed in increments of 100 μ s ($\tau_{E} \sim 1.5$ ms)
 - Profiles are measured through ECRH turn-off

The Absorbed Power Profile has been Measured

- Figure shows 3/2 nT for each Thomson scattering spatial location vs. time (t=0 is ECH turn-off)
- Total absorbed power is 10 kW (40 kW injected)
 - 25% absorption consistent with ray-tracing

Phase Shifted Mirror has Core Thermal Transport Close to Neoclassical

- In Phase Shifted Mirror (PSM), heating is slightly off axis (r/a ~ 0.1), Thomson scattering can make onaxis measurements
- Density, temperature and absorbed power profiles yield electron thermal diffusivity:

$$q_e = \frac{1}{r} \int_{0}^{r} r' p_{abs}(r') dr' = -n \chi_e \nabla T_e$$

 Core diffusivity is close to the neoclassical value (~ 3 m²/s)

Quasisymmetric Configuration has Higher Electron Temperature

- Heating in QHS at r/a ~ 0.1 to mimic
 PSM p_{abs} profile
 - Total absorbed power in both configurations is ~ 10 kW
- Central temperature in symmetric configuration ~ 200 eV higher
- Thermal diffusivity at r/a~0.3 is reduced in QHS compared to Mirror (~1 vs. ~3 m²/s)
- QHS has longer confinement time: $\tau_E^{QHS} \sim 1.5 \text{ ms}, \tau_E^{PSM} \sim 0.9 \text{ ms}$

Phase Shifted Mirror Plasmas also have Hollow Density Profile

• Similar to Standard Mirror, but with measurements on-axis

Quasisymmetry has a Large Impact on Plasma Profiles

- 1. Density
 - Thermodiffusion causes hollow profiles when symmetry is broken
 - In QHS, reduced thermodiffusion leads to peaked profiles
- 2. Temperature
 - The core electron thermal diffusivity is reduced in QHS
 - With the same absorbed power, central temperature is almost 200 eV higher than in Mirror configuration