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A new solver for rapidly obtaining magnetohydrodynamic (MHD) equilibria in toroidal systems in

the presence of islands and stochastic regions is described. It is based on the Kulsrud-Kruskal

MHD energy minimization principle. To carry out this minimization, small displacements are

made around a convenient set of curvilinear coordinates obtained from a nearby three-dimensional

equilibrium that assumes nested surfaces. Because the changes of the magnetic fields and pressure

are small, corresponding to small changes in the initial magnetic and kinetic energies, solutions for

the linearized perturbations can be used to rapidly and iteratively find lower energy states with

magnetic islands. A physics-based preconditioner is developed to accelerate the convergence of the

iterative procedure to obtain an ideal MHD equilibrium with broken magnetic surfaces (islands).
VC 2011 American Institute of Physics. [doi:10.1063/1.3597155]

I. INTRODUCTION

In the last decade, magnetohydrodynamic (MHD) equi-

librium codes such as VMEC (Ref. 1) and EFIT (Ref. 2)

have been the keystones of the optimization and data analy-

sis algorithms used to design tokamaks and stellarators,3 to

help reconstruct plasma states from experimental data,2,4 or

to initialize stability (COBRA (Ref. 5), TERPSICHORE

(Ref. 6), and CAS3D (Ref. 7)), neoclassical transport,8 and

extended MHD time-dependent codes (M3D (Ref. 9), NIM-

ROD (Ref. 10), and PIXIE3D (Ref. 11)). Many of these

codes rely on the underlying assumption of the existence of

nested magnetic surfaces at least for the initialization phase.

This assumption is also particularly crucial where fast and

accurate solutions are needed in the context of design optimi-

zation or experimental reconstruction.

An efficient MHD equilibrium solver that avoids such

restrictions without greatly impacting performance would

open up significant new possibilities in all the aforementioned

areas. For instance, it would allow targeting the control of

magnetic islands and stochasticity during the configuration

design phase and would extend the reconstruction capabilities

to situations with islands or stochastic regions. In addition, it

could also provide accurate, high-resolution magnetic fields

to initialize extended MHD time-dependent codes, which

could thus avoid the very slow physical island formation

phase and better utilize the computational resources to simu-

late pending critical problems such as neoclassical tearing

mode control.12 Such a solver should also be designed to be

useful for ITER-relevant scenarios.13 This requires that such

a code be highly scalable, being capable of advantageously

using the thousands (or even tens of thousands) of processors

needed to accommodate the very high spatial resolutions that

ITER analysis would require.

In this paper, we introduce a new MHD equilibrium

code called SIESTA intended to fill this need. SIESTA is a

three-dimensional spectral MHD equilibrium code that does

not assume the existence of nested magnetic surfaces. It

allows magnetic surfaces to tear—changing the magnetic to-

pology—by opening islands and/or stochastic regions to find

lower energy states for the confined plasma subject to certain

global constraints. Minimization of the total energy W (mag-

netic and internal) is used to find accessible lower energy

equilibrium states for the plasma. Algorithmically, SIESTA

has been designed to be highly scalable up to thousands of

processors.

SIESTA is an iterative fluid equilibrium solver14,15

which uses the linearized MHD equations to find lower

energy states of the plasma starting from nearby equilibria

with nested surfaces. Other iterative solvers—such as the

PIES code16—exist which use very different solution meth-

ods than described here. SIESTA uses the nested magnetic

flux surfaces computed by the VMEC (Ref. 1) code to pro-

vide both a set of quasi-polar background coordinates and an

initial guess for the equilibrium which is used to initialize

the iterative procedure. The curvilinear components of the

magnetic field vector, and the scalar pressure, are all

expanded in Fourier series in the background poloidal and

toroidal angles. The MHD energy principle is used, together

with pseudo-spectral methods to deal with the nonlinear

J � B force, to find unique truncated “evolution” equations

for these Fourier components. After several iterations, the

evolution equations lead to a numerical MHD equilibrium

state. The spectral nature of SIESTA provides a natural way

to implement conservative forms for the evolution equations

for the contravariant components of the magnetic field B and

the plasma pressure p. It departs from the BETAS (Ref. 17)

code which uses an inverse representation with an integrable

Hamiltonian perturbation to describe a single magnetic

island. SIESTA is not limited to such integrable (single reso-

nant surface) situations and only uses an inverse representa-

tion for the background coordinate system.

The initial nested equilibria obtained from VMEC usu-

ally provide very close approximations to the final plasma

equilibrium state. For this reason, the departures of the MHD

energy W from that given by the VMEC equilibria are quite
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small, even when islands (or stochastic regions) are present.

Typical values of dW=W � 10�4 � 10�6 depend on the rota-

tional transform profile and the fraction of the plasma vol-

ume occupied by magnetic islands [dW � ðw=aÞ4ði0Þ2].

Here, w is the island width; a is the plasma radius; and i0 is

the magnetic shear. In particular, this implies that the per-

turbed magnetic components and pressure will be small com-

pared to the nested equilibrium values.

The iterative nature of SIESTA is required to solve the

time-asymptotic (steady-state) nonlinear MHD force balance

equation (see Eq. (2.6)). SIESTA departs from previous iter-

ative fluid solvers by using an accurate physics-based pre-
conditioner18 to accelerate the convergence of the solution

of the linear ideal MHD equations (the expansion of the non-

linear force FMHD around an instantaneous plasma state not
yet in equilibrium). The term preconditioning refers to trans-

forming this linearized system into one with more favorable

numerical convergence properties (smaller spectral radius or

condition number) for the iterative procedure.

In SIESTA, the preconditioner is related to the inverse of

the Hessian matrix of the full set of linearized MHD equa-

tions expressed in VMEC curvilinear coordinates. Physically,

the preconditioner allows the disparity in the different MHD

time scales associated with the linearized waves to be brought

close to unity, thus greatly improving the convergence rate

toward an equilibrium state. The efficient inversion of the

Hessian is achieved by using the tri-diagonal block solver

code BCYCLIC.19 Good scalability of the calculation and

application of the preconditioner have been achieved for real-

istic problem sizes on multiprocessor computers.

The minimum energy equilibria found by SIESTA

require allowance for the departure from ideal MHD during

the iterative convergence sequence. Physically, the ideal (par-

allel) current sheets, which form around resonant surfaces to

prevent the formation of islands in codes such as VMEC,

must be allowed to diffuse by breaking the ideal frozen-flux
theorem for the magnetic field.20 This is done in SIESTA by

interlacing (a form of time-splitting) the preconditioned ideal

iteration steps with resistive (non-ideal) steps to diffuse the

magnetic field and associated resonant parallel current. In real

devices, due to the large plasma temperature and consequent

small resistivity, this will be a very slow physical process.

SIESTA accelerates this by using an enhanced (non-physical)

value for the numerical resistivity. Since the resonant parallel

currents are strongly peaked around rational surfaces (at least

initially), this diffusion process can be done without signifi-

cantly perturbing the main (non-resonant) currents.

The paper is organized as follows. In Sec. II, the MHD

energy principle is briefly reviewed. The curvilinear coordi-

nates used in VMEC and SIESTA are described in Secs. III–V.

The numerical representation for the displacement vector and

MHD evolution equation in curvilinear coordinates is given in

Sec. VI. Boundary conditions are described in Sec. VII. Section

VIII discusses the initial surface-breaking perturbations used in

SIESTA. The SIESTA iterative scheme and parallelization of

the preconditioner are described in Sec. IX. Section X presents

examples of SIESTA equilibria for both a tokamak and a stella-

rator plasma configuration. Finally, conclusions are presented

in Sec. XI.

II. MHD EQUILIBRIUM ENERGY PRINCIPLE

The MHD energy of a stationary plasma (velocity v¼ 0)

with magnetic field B and pressure p is21

W ¼
ð

B2

2l0

þ p

c� 1

� �
dV: (2.1)

Here, the integral is over the volume V of the plasma.

Taking the time derivative of Eq. (2.1) and using Faraday’s

law for the evolution of the magnetic field

@B

@t
¼ �r� E; (2.2)

together with particle conservation and adiabatic law p � nc,

@p

@t
¼ ðc� 1Þv � rp� cr � ðpvÞ; (2.3)

allows us to express the change in W as follows:

@W

@t
¼
ð
½�E � J þ v � rp�dV �

þ
S � dA;

l0J ¼ r� B ðAmpere0s LawÞ;

S ¼ E� B=l0 þ
c

c� 1
pv ðPoyntingþKinetic FluxesÞ:

(2.4)

With the appropriate boundary conditions, the net flux S

at the boundary can be zero and therefore ignored. Using

Ohm’s law E0 � Eþ v� B ¼ gJ yields the desired MHD

energy principle

@W

@t
¼ �

ð
½v � ðJ � B�rpÞ þ gJ2� dV: (2.5)

If the velocity field v in Eq. (2.5) is treated as a

“variational” parameter (as described below), then for suffi-

ciently small resistivity (g! 0), an equilibrium state is

reached where W becomes quasi-stationary only when the

ideal MHD force balance is satisfied

F � J � B�rp ¼ 0: (2.6)

In Sec. III, these equations will be expressed in a con-

venient basis set of curvilinear coordinates.

III. VMEC CURVILINEAR COORDINATE SYSTEM

The set of nested magnetic surfaces from the VMEC

(Ref. 1) equilibrium code is convenient to use as background

coordinates for the variational calculation of the general

MHD equilibrium (i.e., including islands and stochastic

region) described by Eq. (2.6). (Example background coordi-

nates are given in Sec. X). This is because the VMEC equi-

librium magnetic fields will be close to the final equilibrium

fields—even in the presence of islands—since only very

small resonant perturbations of the magnetic field are

required to “tear” the nested surfaces and change their topol-

ogy. In this sense, the magnetic (and pressure) perturbations

from the VMEC state should be “small.” The VMEC flux

coordinates ðr ¼ ffiffi
s
p
; u; vÞ are defined as follows through
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inverse mapping relations for the cylindrical coordinates

ðR;u; ZÞ:

R ¼
X

RmnðrÞ cosðmuþ nvÞ;

Z ¼
X

ZmnðrÞ sinðmuþ nvÞ;
u ¼ v: (3.1)

Here, u is the VMEC poloidal angle and v is the VMEC

(cylindrical) toroidal angle (u). In SIESTA, the “radial” flux

coordinate s in VMEC is mapped to the “polar” coordinate

r ¼ ffiffi
s
p

to guarantee analyticity of the fields near the mag-

netic axis s¼ 0. For simplicity, “stellarator symmetry” has

been assumed in Eq. (3.1). Retaining all trigonometric terms

is routinely done in VMEC and is in principle straightfor-

ward to implement in SIESTA. The VMEC code outputs the

Fourier coefficients ½RmnðrÞ; ZmnðrÞ�, along with those for the

poloidal angle renormalization stream function kmnðrÞ. (Note

that VMEC uses the sign convention mu� nv for the argu-

ments in Eq. (3.1).) These can be used to calculate the con-

travariant magnetic field components as follows:

ffiffiffi
g
p

Bu ¼ U0ði� kvÞ;ffiffiffi
g
p

Bv ¼ U0ð1þ kuÞ;ffiffiffi
g
p

Br ¼ 0: (3.2)

The Jacobian of the transformation between cylindrical

and flux coordinates is denoted by
ffiffiffi
g
p � RðR0Zu � RuZ0Þ: It

can be calculated from the mapping in Eq. (3.1). The quan-

tity 2pUðrÞ is the toroidal flux enclosed between the mag-

netic axis r¼ 0 and the radial coordinate surface r¼ const
and i � dv=dU is the rotational transform, where 2pv is the

poloidal flux. Subscripts denote angular derivatives and

primes denote the radial (r) derivative.

IV. MAGNETIC ENERGY IN CURVILINEAR
REPRESENTATION

In this section, we express the MHD energy principle in the

fixed VMEC curvilinear background coordinates described in

Sec. III. The MHD energy given in Eq. (2.1) may be expressed

in these coordinates as

W ¼
ð

BiBi

2l0

þ p

c� 1

� �
j ffiffiffigp j drdudv: (4.1)

Henceforth, summation over repeated indices i 2 ðr; u; vÞ
is implied. There is a coordinate singularity at r¼ 0 whereffiffiffi

g
p ¼ 0. The cylindrical coordinate singularity at R¼ 0 is

assumed to lie outside the plasma. Although the VMEC solu-

tion satisfies Br ¼ 0 everywhere in the plasma volume, the

contravariant radial magnetic field Br in SIESTA is in general

nonzero in Eq. (4.1).

The covariant components of the magnetic field Bi in

Eq. (4.1) are linearly related to the contravariant components

Bi by the metric tensor elements gij

Bi ¼ gijB
j;

gij � RiRj þ ZiZj þ dvvR2: (4.2)

The subscripts on R; Z in Eq. (4.2) denote spatial partial

derivatives (Rr � @R=@r, etc.). Note that gij ¼ gji is a sym-

metric, positive definite tensor that may, like the Jacobianffiffiffi
g
p

, be computed from the VMEC coordinate transformation

in Eq. (3.1). Using Eq. (4.2), we can rewrite the variation of

Eq. (4.1) as follows:

dW ¼
ð
ðl�1

0
Bi dbiþ dPÞdrdudv;

bi � ffiffiffi
g
p

Bi;

P � ffiffiffi
g
p

p: (4.3)

Note that the variation is performed keeping the back-

ground geometry fixed (that is, both gij and
ffiffiffi
g
p

are held con-

stant during the variation). It is then convenient to combine

the Jacobian factor to define the new set of intrinsic physical

variables in Eq. (4.3). In Sec. V, the variations of the intrin-

sic variables will be computed explicitly.

V. VARIATIONAL PRINCIPLE IN CURVILINEAR
COORDINATES

The variational equations14 for the magnetic fields and

pressure are based on the discrete time-integrated forms of

Eqs. (2.2) and (2.3)

dB ¼ �r� ðEDtÞ ¼ r � ðn� BÞ;
dp ¼ ðc� 1Þn � rp� cr � ðpnÞ: (5.1)

Here, n � vDt is the perturbed displacement vector, which

now will be treated as an unconstrained variational variable.

The ideal MHD relation Eþ v� B ¼ 0 was used to elimi-

nate the electric field in terms of the displacement. (Note that

in order to allow breaking of magnetic surfaces, a small

amount of resistivity must be applied periodically during the

relaxation to an equilibrium state. This is primarily important

for relaxing the large parallel current perturbations that

would otherwise arise at rational surfaces where the rota-

tional transform i is rational.)

Equation (5.1) can be used to obtain the variations of the

contravariant magnetic components required in Eq. (4.3).

The following vector identity22:

ra � r � A � r � ðA�raÞ; (5.2)

is useful, together with the curvilinear expression for the

divergence operator

r � A ¼ 1ffiffiffi
g
p

@aa

@a
; (5.3)

where aa � ffiffiffi
g
p

Aa. Using these relations, the contravariant

components of dB in Eq. (5.1) can be written as

dbi ¼ �
X

j;k

eijk
@ðEkDtÞ
@xj

: (5.4)

Here eijk is the Levi-Civita permutation symbol. Note

EjDt � � ffiffiffi
g
p rxm �rxn � ðn� BÞ

¼ �ejmnn
mbn: (5.5)
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Using the epsilon contraction identity
P

i

eijk eimn ¼ djm dkn

�djn dkm yields

dbi ¼ @

@xj
nibj � njbi
� �

: (5.6)

Note the conservative form in Eq. (5.6)—which looks

like a Cartesian expression but is valid even for curvilinear

coordinates—is particularly well-suited for computing spec-

tral components of bi with minimal spectral pollution. It is

also convenient for performing the integration by parts in the

variational integrand in Eq. (4.3) required to isolate the coef-

ficients of the independent variable n.

The variation of the pressure variable P � ffiffiffi
g
p

p can also

be written as the sum of a conservative term and a remainder

as follows:

dP ¼ �c
@ðPnjÞ
@xj

þ ðc� 1Þ ffiffiffigp nj @p

@xj
: (5.7)

Note that the first (conservative) term in Eq. (5.7) will

make no contribution to the variational integral in Eq. (4.3)

provided the boundary terms vanish (which they do, see the

discussion in Sec. VII). However, it is necessary to retain

since it does make a stable contribution to the Hessian (see

Sec. IX A).

Inserting Eqs. (5.6) and (5.7) into the curvilinear varia-

tional principle, Eq. (4.3), and integrating the magnetic field

terms by parts yields

dW ¼ �
ð ffiffiffi

g
p

ni � Fidrdudv: (5.8)

The covariant components of the ideal MHD force,

Eq. (2.6), are given as follows:

Fi ¼ eijk
ffiffiffi
g
p

JjBk � @p

@xi
: (5.9)

Here, the contravariant components of the current J are

l0

ffiffiffi
g
p

Ji ¼ eijk
@Bj

@xk
: (5.10)

Once again using the epsilon contraction identity yields the

following succinct expression for the force components:

Fi ¼ l�1
0 Bj @Bi

@xj
� @Bj

@xi

� �
� @p

@xi
: (5.11)

Equation (5.11) results directly from integrating Eqs. (5.6)

and (5.7) by parts in the curvilinear variational principle, Eq.

(4.3).

The steepest descent method is the simplest iterative

technique for minimizing the energy. It results by taking

ni ¼ PijFj for some positive-definite matrix P. Inserting this

into Eq. (5.8) yields

dW ¼�
ð

PijFiFjdV

� 0: (5.12)

In this form, dW vanishes if, and only if, the MHD force

vanishes. Equation (5.12) is an energy minimization princi-

ple in the sense that only local stable minima may be

attained. The typical choice Pij ¼ gij yields jjF2jj for the

quadratic form in Eq. (5.12), but it is not the only possible

choice. As we shall discuss, this descent method can be

greatly accelerated by choosing the matrix P to be an ap-

proximate preconditioner that coalesces the eigenvalues of

the Hessian matrix (which is the gradient of the linearized

covariant forces with respect to the contravariant displace-

ments) towards unity.

Since there may be both positive (unstable) and negative

eigenvalues in the spectrum of the Hessian (except very close

to the stable equilibrium state, where all eigenvalues must be

negative), care must be taken when selecting the precondi-

tioner particularly for initial states “far” from final equilib-

rium. To the extent that the VMEC background coordinates

describe a “nearby” 3D equilibrium solution, the energy for

driving these unstable modes should already be substantially

reduced (compared with starting from a set of cylindrical

coordinates, for instance). Nevertheless, in general, it is still

necessary to shift the eigenvalue spectrum for the precondi-

tioner in order to maintain the positive-definiteness of P
required in Eq. (5.12) for convergence. As the force residual

approaches zero during a descent to a stable equilibrium state,

the eigenvalue shift can also be reduced towards zero. Thus,

in SIESTA the preconditioner tends toward the full (stable)

Hessian and a non-physical solution is avoided. This method

of relating the eigenvalue shift of the preconditioner to the

decreasing force residual is called pseudo-transient continua-

tion.23 Its implementation in SIESTA will be described in

Sec IX C.

VI. NUMERICAL EXPANSION IN CURVILINEAR
COORDINATES

A. Angular representation

The angular dependence of the variables appearing in

Faraday’s law and the pressure equation is expanded in Fou-

rier series. For the case of stellarator symmetry, these have

the following forms and parities:

P � ffiffiffi
g
p

p ¼
X

pmnðrÞ cosðmuþ nvÞ;
br � ffiffiffi

g
p

Br ¼
X

br
mnðrÞ sinðmuþ nvÞ;

ba � ffiffiffi
g
p

Ba ¼
X

ba
mnðrÞ cosðmuþ nvÞ; a 2 ðu; vÞ: (6.1)

It is straightforward to add the additional Fourier com-

ponents to describe non-stellarator symmetric plasmas. The

Jacobian factor
ffiffiffi
g
p

in Eq. (6.1) may have both angular and

radial dependencies. Its appearance in the variable defini-

tions in Eq. (6.1) minimizes the Fourier mode coupling in

the evolution laws when they are written in conservative

form. The sums over the Fourier modes are restricted to posi-

tive m’s (0 � m � M) and a symmetric range of n’s
(�N � n � N). The set of equally-spaced collocation points

used for the angular coordinates u and v are related to the M
and N values by Nyquist criteria and can be extended by

applying the 3/2 rule24 to minimize aliasing effects when
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evaluating nonlinear terms in the force and evolution

equations.

For the stellarator-symmetric parities given in Eq. (6.1),

the displacement “fluxes” have the following forms:

Cr � ffiffiffi
g
p

nr ¼
X

Cr
mnðrÞ cosðmuþ nvÞ;

Ca � ffiffiffi
g
p

na ¼
X

Ca
mnðrÞ sinðmuþ nvÞ; a¼ðu; vÞ: (6.2)

B. Radial representation

The motivation for the radial discretization scheme is

based on the observation that the total energy can be discretized

to second order accuracy in the radial mesh spacing

hr ¼ 1=ðNr � 1Þ by using the midpoint rule to evaluate the

integrand in Eq. (4.1)

W ¼ hr

XNr�1

j¼1

ðð
dudv wjþ1=2 þ Oðh2

r Þ;

wjþ1=2 ¼ ð
ffiffiffi
g
p Þjþ1=2

h1
2
B2

jþ1=2 þ pjþ1=2=ðc� 1Þ
i
: (6.3)

Here, B2
jþ1=2 � ðBkBkÞjþ1=2. Regarding the distribution of ra-

dial grid points (corresponding to indices j and jþ 1/2),

rjþ1=2 ¼ hrðj� 1=2Þ; j ¼ 1;Nr � 1 define radial “half-grid”

points centered between the radial nodes (“full-grid” points)

rj ¼ hrðj� 1Þ; j ¼ 1;Nr. The notation X
jþ1

2

� Xðr
jþ1

2

; u; vÞ
denotes values of the quantity X on the half-radial grid.

This differencing scheme implies that the dependent varia-

bles in Eq. (6.1) appearing in the energy density w should be

evaluated at half-radial points. To minimize the radial coupling

of the MHD forces (described below), it is also necessary to

evaluate the (independent) displacements CaðrjÞ � Ca
j in Eq.

(6.2) at the full radial mesh points rj. Note that r1 ¼ 0 is the

coordinate axis and rN ¼ 1 is the plasma boundary.

C. Radial discretization of conservative form of
evolution equations

The components of the conservative form of the ideal

magnetic perturbation in Eq. (5.6) can be written as

dbr
j�1=2 ¼ �

@ðevÞj�1=2

@u
þ
@ðeuÞj�1=2

@v
;

dbu
j�1=2 ¼ �

@ðesÞj�1=2

@v
þ ðe0vÞj�1=2;

dbv
j�1=2 ¼ �ðe0uÞj�1=2 þ

@ðesÞj�1=2

@u
: (6.4)

Here, ea � DtEa. Note that the u and v derivatives

become algebraic in m and n when Fourier series for the

electric field components are inserted in Eq. (6.4). The real-

space radial operations from the full-radial grid to the half-

radial grid are defined as

Xð Þjþ1=2 �
1

2
Xjþ1 þ Xj

� �
;

X0ð Þjþ1=2 �
Xjþ1 � Xj

hr
: (6.5)

For the ideal magnetic perturbations, the electric field

components on the full radial grid can be expressed in terms

of the displacements as follows:

ðerÞj ¼ �ðCu
j ½Bv�j � Cv

j ½Bu�jÞ;
ðeuÞj ¼ �ðCv

j ½Bs�j � Cr
j ½Bv�jÞ;

ðevÞj ¼ �ðCr
j ½Bu�j � Cu

j ½Bs�jÞ: (6.6)

The magnetic field components in Eq. (6.6) are com-

puted by radially averaging the perturbed quantities in Eq.

(6.4) (at interior points not including the mesh boundaries at

r¼ 0 and r¼ 1, which must be treated as special points as

described in Sec. VII) using the half-to-full mesh projection

operator

½X�j ¼
1

2
Xjþ1=2 þ Xj�1=2

� �
: (6.7)

Similarly, the radial discretization of the pressure equa-

tion becomes

dPjþ1=2¼�c
pjþ1C

r
jþ1�pjC

r
j

hs
þ
@ðpCuÞjþ1=2

@u
þ
@ðpCvÞjþ1=2

@v

� �

þðc�1Þ p0CrþCu@p

@u
þCv@p

@v

� �
jþ1=2

: (6.8)

The pressure gradient term p0 on the full radial mesh is

p0j ¼
pjþ1=2 � pj�1=2

hr
: (6.9)

This can be used to evaluate the radial pressure gradient

at interior points (see Sec. VII for evaluation at r¼ 0).

D. Discrete representation of the MHD forces

Inserting the discrete forms for the magnetic and pres-

sure perturbations into Eq. (6.3) yields the following form

for the full mesh covariant components of the MHD forces:

dW ¼ �
XNs�1

j¼1

djhr

ðð
dudvðCaFaÞj;

ðFrÞj ¼ �p0j þ BvKu � BuKvð Þj;

ðFuÞj ¼ �
@pj

@u
þ BrKv � BvKrð Þj;

ðFvÞj ¼ �
@pj

@v
þ BuKr � BrKuð Þj: (6.10)

Here, dj ¼ 1=2, for j¼ 1 and j = Nr and dj ¼ 1, for

j¼ (2,…,Nr� 1). The radial contravariant components of the

currents Ka � ffiffiffi
g
p

Ja are given on the full radial mesh as

Kr
j ¼

@ðBvÞj
@u

�
@ðBuÞj
@v

;

Ku
j ¼

@ðBrÞj
@v

�
ðBvÞjþ1=2 � ðBvÞj�1=2

hr
;

Kv
j ¼
ðBuÞjþ1=2 � ðBuÞj�1=2

hr
�
@ðBrÞj
@u

: (6.11)

The angular dependence of the forces is a consequence

of inserting the spectral expansions in Eqs. (6.1) and (6.2)
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into dW in Eq. (6.10). A pseudo-spectral technique for the

magnetic components and pressure is used to evaluate them

in real space from the Fourier inverse of the evolved physics

intrinsics defined in Eq. (6.1). Also, the covariant compo-

nents of the current intrinsics in Eq. (6.11) are naturally fil-

tered (as a consequence of the variational principle) over the

same finite Fourier basis set of m and n used to compute the

other intrinsic variables.

SIESTA finds the solution Faðm; n; jÞ ¼ 0 for the three

independent discrete components of the forces in Eq. (6.10),

subject to suitable boundary conditions described in Sec.

VII. Here, the range of Fourier indices m and n of the forces

is the same used in the definition of the field and current

intrinsic variables.

VII. BOUNDARY CONDITIONS

A. Edge conditions

At the plasma boundary (which is mapped to the flux

surface r¼ 1), we assume a perfectly conducting wall so

Bs ¼ dBs ¼ 0. From Faraday’s Law, Eq. (2.2), the tangential

components of the electric field vanish, which in curvilinear

coordinates is Eu ¼ Ev ¼ 0. Together with the ideal MHD

Ohm’s law, this implies ns ¼ 0 which makes the total energy

flux S in Eq. (2.4) vanish. Equivalently, the radial integration

by parts of Eq. (5.6) also vanishes in the variational principle

for this choice of boundary condition. The remaining compo-

nents of the displacement may be determined by evaluating

the evolution equations at the radial grid point displaced by
1
2
hr from the boundary. Presently, the angular displacements

are set to zero at the boundary. With this boundary condition,

the radial pressure gradient is absent from Eq. (6.7) at the

edge.

B. Condition at the interior coordinate singularity r 5 0

The boundary conditions at the coordinate singularity

r ¼ 0 (where the Jacobian vanishes) are obtained from the

physical conditions25

@p

@u
¼ 0;

@~q

@u
¼ 0: (7.1)

Equation (7.1) pertains to any scalar p and any vector~q.

The VMEC coordinates describe the coordinate axis para-

metrically (as a function of the toroidal angle v) as

R ¼ R0ðvÞ; Z ¼ Z0ðvÞ. In the neighborhood of the axis, the

coordinate surfaces are asymptotically elliptical in shape, so

that local displacements may be expanded as follows:

x � R� R0 ¼ r
X

n

R1n cosðuþ nvÞ þ Oðr2Þ;

y � Z � Z0 ¼ r
X

n

Z1n sinðuþ nvÞ þ Oðr2Þ: (7.2)

First, consider the expansion of the scalar pressure p:

pðR; ZÞ ¼ pðR0; Z0Þ þ
@p

@R

� �
0

xþ @p

@Z

� �
0

yþ Oðr2Þ: (7.3)

For the special case, when the magnetic axis exists and

happens to coincide with the coordinate axis, then the first-

order derivatives (coefficients of x and y) both vanish. How-

ever, in general, that does not occur. From Eq. (7.3), only the

m¼ 0 component of p and the m¼ 1 component of dp=dr are

nonzero at r¼ 0 (j¼ 1)

pj¼1 ¼
X

n

pm¼0;n
3=2

cosðnvÞ þ Oðh2
r Þ;

p0j¼1 ¼
X

n

2pm¼1;n
3=2

hr
cosðuþ nvÞ þ Oðh2

r Þ;

pm>1;n
j¼1 ¼ 0: (7.4)

Now consider the asymptotic behavior for vector com-

ponents. Since ~q ¼
P
a

qa@~x=@a and ~x ¼ ReR þ ZeZ, we

deduce from Eqs. (7.1) and (7.2)

@qu

@u
¼ 0;

@ðqrxr þ q#x#Þ
@u

¼ 0;

@ðqryr þ q#y#Þ
@u

¼ 0: (7.5)

The (contravariant) toroidal component behaves like a

scalar, as do the two linear combinations of the r; u compo-

nents. From Eq. (7.2), note that as r ! 0, xr 	 x=r; and

x## 	 �x (and similarly for y). Then, the following relations

are derived (since x and x# are independent):

@qr

@u
� ðrquÞ ¼ 0;

qr þ @ðrquÞ
@u

¼ 0: (7.6)

Therefore, it follows that near r¼ 0, only the m¼ 1 poloi-

dal harmonics of the “quasi-polar” components of any vector

~q are non-zero and qr
m¼1 ¼ �irqu

m¼1 for qa¼r;u
m¼1 � expðiuÞ.

Using these relations, it can be shown that near the coor-

dinate axis, the m¼ 1 component of the (r, u) covariant

forces are dominant and satisfy (in the limit r ! 0)

@Fm¼1
u

@u
¼ rFm¼1

r : (7.7)

Note Eq. (7.7) is similar to Eq. (7.6), but with the com-

ponent indices r, u reversed. In contrast, the m¼ 0 compo-

nent of the (v) force dominates near the axis since it behaves

like a scalar (similar to p).

The displacements (velocity perturbations) should be con-

strained during the variational descent process to produce

only physical perturbations satisfying Eq. (7.6) near the axis.

This is necessary so that the contravariant components of the

magnetic field perturbations given by Faraday’s law [Eq.

(2.2)] will be physical and therefore satisfy Eq. (7.6) with

q � B. Since @nr=@u! rnu for the m¼ 1 (dominant) compo-

nents of the displacement, then the ideal Ohm’s law implies

@Em¼1
u =@u! �rEm¼1

r and Ev ¼ E0ðvÞ þ rE1ðvÞ expðiuÞ
þOðr2Þ. These relations can be used to show that Eq. (7.6) is

indeed satisfied by the contravariant components of the mag-

netic field perturbations when they are evolved by Eq. (6.4).
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C. Natural boundary conditions at the coordinate
singularity

The boundary condition nr ! �irnu at r¼ 0 for the

m¼ 1 components of the displacement implies that the radial

and poloidal variations are not independent there. For the

displacement fluxes Ca ¼ ffiffiffi
g
p

na appearing in the evolution

equations, the natural boundary conditions as r ! 0 are

Cr;v
j¼1 ¼ 0;

Cu
j¼1 ¼ Cu

m¼1;nðr ¼ 0Þ: (7.8)

Since Cu
m¼1 is the only non-zero component of the flux

at the origin, Eq. (7.8) is consistent with Eq. (7.6). A numeri-

cal check on these boundary conditions is provided by evalu-

ating the ratio R for the m¼ 1 components of the magnetic

field at the first half-radial grid point r1=2

R ¼
@br=@u� r1=2bu
		 		
@br=@uþ r1=2bu
		 		 : (7.9)

According to Eq. (7.6), R should approach zero as h2
r . During

the energy minimization process, as the magnetic field per-

turbations are computed from Faraday’s law, this scaling has

indeed been verified numerically for numerous equilibria,

thus confirming the validity of the natural boundary condi-

tions given by Eq. (7.8).

VIII. INITIALIZATION: BREAKING IDEAL (NESTED)
SURFACES

The initially nested surfaces in SIESTA, that arise from the

VMEC background equilibrium, will be “frozen-in” by

purely ideal perturbations.20 Thus, no topological changes

can occur to release magnetic energy unless “seed” island

perturbations are introduced or if finite resistivity is allowed

to break magnetic surfaces. Both procedures are imple-

mented in SIESTA.

The ideal radial perturbation of the magnetic field is

given by Eq. (5.6):

dbr ¼ @

@u
nrbu � nubrð Þ þ @

@v
nrbv � nvbrð Þ

! ffiffiffi
g
p

B � rnr where Br ! 0: (8.1)

Thus, in the initial unperturbed equilibrium state, for

which Br ¼ 0, no radial perturbations will occur at rational

surfaces where B � rnr ¼ 0, and, therefore, no islands can

form. This is the consequence of the ideal frozen-in law. In

SIESTA, small-amplitude islands are “seeded” around low

order rational surfaces by adding a parallel component for

the vector potential which is localized around these surfaces

dB ¼ r� ðAjjB=jBjÞ;
Ajj ¼ aðrÞ exp½iðmuþ nvÞ� (8.2)

The amplitude a(r) is scanned in magnitude (for each reso-

nance pair m, n) until a minimum value for the change in mag-

netic energy is obtained. The change in energy will be negative

for small perturbations if the tearing mode is unstable.26

Additional tearing (topological changes) is allowed to

occur in SIESTA between ideal iteration steps, by allowing

the magnetic field to resistively diffuse and is described in

Sec. IX D.

IX. ITERATIVE SCHEMES USED IN SIESTA

As discussed in Sec. V, for the steepest-descent itera-

tions, the ideal MHD displacement vector is chosen to be of

the form

n ¼ PFMHD: (9.1)

(SIESTA implements a generalized form of this equation,

similar to nonlinear conjugate gradients, given in Eq. (9.9)).

For clarity, we use vector notation, in what follows, with the

stipulation that the curvilinear components of the displace-

ment and force vectors are actually used in SIESTA. Also,

P—the preconditioning matrix—should be positive-definite to

ensure monotonic reduction of the ideal MHD energy towards

equilibrium (FMHD ! 0) as given by Eq. (5.12).

The iteration scheme used in SIESTA is shown in the

flow diagram in Fig. 1. The various parts of this diagram are

described in the following subsections. In Sec. IX A, we

describe the physics-based selection for the preconditioner

used in SIESTA. In Sec. IX B, the efficient computation of

the preconditioner is discussed. In Sec. IX C, it is shown how

the preconditioner is used to iterate the ideal displacements to

obtain the final equilibrium state. Application of resistivity to

diffuse the resonant parallel current is described in Sec. IX D.

A. SIESTA preconditioner

The motivation for the preconditioner used in SIESTA

is provided by considering Newton’s method for finding the

equilibrium state at iteration step nþ 1, given a near-by state

at step n

ðFMHDÞnþ1 ¼ ðFMHDÞn þ dJnþ1 � Bn þ Jn � dBnþ1

�rdpnþ1 ¼ 0;

ðFMHDÞn � Jn � Bn �rpn: (9.2)

The perturbed field components and pressure in Eq. (9.2)

are defined as linear functionals of the displacement vector

C ¼ ffiffiffi
g
p

n, as given by the discretized evolution equations in

Sec. VI C. Thus, Eq. (9.2) can be written as

HnðCnÞ ¼ �ðFMHDÞn: (9.3)

Here, the Hessian matrix operator Hn is related to the linear-

ized MHD force operator27 expressed in the VMEC curvilin-

ear basis

Hn �
@Fn

@Cn
: (9.4)

Unlike the usual linearized MHD operator, however, it

is not expanded about the equilibrium state (since Fn 6¼ 0)

and, therefore, it is not self-adjoint during the convergence

to equilibrium but only approaches self-adjointness as

Fn!N ! 0 for some finite value N of the iteration number.
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However, in practice, Hn is very close to being self-adjoint

H � HTk k 
 H þ HTk k as discussed below (see Eq. (9.6)).

Equation (9.3) suggests that at iteration step n, the

inverse of Hn should be the preconditioner. Indeed, taking

P ¼ H�1 (provided H is invertible) would solve the linear-

ized ideal MHD equations exactly in one iteration step.

However, since Hn may not be negative definite far from

equilibrium (there may be interchange and kink instabilities

leading to locally growing modes with positive eigenvalues),

such a choice would have two undesirable consequences: (1)

the resulting variational descent Eq. (5.12) could be violated,

leading to an unphysical equilibrium state and (2) the pres-

ence of very small eigenvalues in the spectrum of Hn could

lead to large displacements in the directions of the (near)

null space eigenvectors. This might lead to large perturba-

tions of the nonlinear ideal MHD force.

It is therefore desirable to find an approximate precondi-

tioner based on Hn in order to assure the monotonic decrease

of the magnetic energy. Referring to Eq. (5.1), note that the

terms dJnþ1 � l�1
0 r� ðn� BnÞ and the compressional part

of dpnþ1 � �cpr � n both make purely negative contributions

to the eigenvalues of the Hessian. Furthermore, these two

terms are dominant in the effective wavenumber k � r, being

O(k2) compared to the O(k) kink and interchange terms driving

(possibly) unstable modes with positive eigenvalues. A pre-

conditioner based on this approximation will allow the rapid

convergence of high spatial-frequency modes without requir-

ing the very small time steps based on an explicit Courant-

Friedricks-Lewey (CFL) numerical stability condition.

Therefore, far from equilibrium (when the force residual

ðFMHDÞn


 

2 is large), the following, negative self-adjoint

approximation to the Hessian is often useful:

Happrox
n ðnnÞ� dJnþ1�Bn�rdðpnþ1Þcomp

¼ l�1
0 r�½r�ðnn�BnÞ�þ crðpr�nnÞ: (9.5)

Multiplying H
approx

n in Eq. (9.5) by g and integrating over

the plasma volume (with the appropriate boundary condi-

tions) shows that this approximation is indeed self-adjoint

hg;Happrox
n ðnÞi ¼ �l�1

0 hdBðgÞ � dBðnÞi � chr � gr � ni
¼ hn;Happrox

n ðgÞi: (9.6)

Here, brackets indicate the plasma volume integral and

dBðnÞ ¼ r� ðn� BnÞ is the perturbed magnetic field at iter-

ation step n. Further, setting g ¼ n in Eq. (9.6) shows that the

approximation is negative. Physically, the first term in

Eq. (9.6) arises from stable Alfven waves (both compressional

and field-line bending shear waves) and the second term is

associated with the compressional energy of sound waves.

Note that there are zero eigenvalues for displacements propor-

tional to the magnetic field direction (since r�Bn ¼ 0). Other

zero eigenvalues are associated with rational surfaces where

kjj ¼ 0 (before the appearance of magnetic islands, which

broaden these resonances). These must be handled before the

(approximate) Hessian can be inverted. There are a number of

ways to deal with this null-space of the Hessian operator. In

SIESTA, we take the simple approach of adding a small diago-

nal element to the Hessian (either the approximate or the

exact) to shift the eigenvalue spectrum towards all negative

definite values (Newton’s method with Hessian modifica-

tion28). This leads to a preconditioner of the form

Pn ¼ ð� ~Hn þ knIÞ�1: (9.7)

Here, kn is the eigenvalue shift at iteration step n and
~Hn ¼ xHapprox

n þ ð1� xÞHexact
n is the effective Hessian

ð0 � x � 1Þ. It is a blended combination of the approximate,

positive-definite Hessian in Eq. (9.5) and the exact Hessian

for the full linear MHD system. The blending parameter x is

chosen to be 1 initially and approaches 0 as an equilibrium

state is approached.

FIG. 1. Flow chart depicting the itera-

tion scheme used in SIESTA.
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Currently, k0 is a user-specified parameter input to

SIESTA which, due to internal scaling, is less than one (val-

ues in the range 1 � k0 � 0:001 are typical and produce

good convergence). SIESTA uses a pseudo-transient contin-

uation method23 to decrease this parameter as the iterations

progress towards equilibrium

kn � k0DLn;

Ln ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fn

MHD



 

2= F0
MHD



 

2q
: (9.8)

Physically, kn � q=Dtn is equivalent to adding an iner-

tial term to the force balance equation, with a large time step

approaching Dtn !1 for a finite iteration count n¼N. The

reason this can occur is due to the appearance of magnetic

islands that lower the magnetic energy and give rise to stable

equilibrium states (broadened of the kjj ¼ 0 resonances).

Mathematically, Eqs. (9.7) and (9.8) are similar to a Leven-

berg-Marquardt scheme (at least when the Hessian is nega-

tive), where kn plays the role of the Levenberg parameter

which decreases as equilibrium is approached and allows a

full, quadratically convergent Newton step to occur in the

final stages of the iteration.

B. Numerical computation of the SIESTA
preconditioner

In SIESTA, the Hessian matrix expressed in the VMEC

curvilinear basis has the form Hða; a0Þ, where a ¼ ðjs;m; n; tÞ.
Here js 2 ð1;NrÞ is the radial coordinate index; ðm; nÞ repre-

sent the Fourier indices for ðu; vÞ, respectively; and t 2 ðs; u; vÞ
is the vector component index of the displacement. It is conven-

ient to assemble the Fourier and type indices into a single block
index B ¼ ðm; n; tÞ for m 2 ð0;MÞ; n 2 ð�N;NÞ. Here, M
and N are the maximum poloidal and toroidal mode numbers

used in the calculation. Since the linearized MHD equations

involve at most second-order spatial derivatives (see the Ap-

pendix for explicit forms for the diagonal elements of H), the

SIESTA Hessian has the block-tridiagonal matrix structure

shown in Fig. 2. The block index B has a linear dimension

3� ð1þMÞ � ð2N þ 1Þ, and there are Nr (number of radial

mesh points) block rows. Based on this structure, a mesh-color-

ing scheme can be used to rapidly compute the elements of H
(in parallel) by making three independent sweeps of the radial

mesh Sj ¼ jþ 3k; k 2 0; ½Nr=3� � 1 for j¼ 1, 2, 3. Numeri-

cally, the Hessian is computed from a finite difference version

of Eq. (9.4) and can be done for all B indices at once in each

sweep. In addition, each perturbation B0 index can be done in

parallel, so this is a very efficient numerical way to compute

the Hessian.

The inversion of the augmented Hessian to compute the

preconditioner defined in Eq. (9.7) has also been parallelized

in the BCYCLIC (Ref. 19) code. Scalability in both the block

dimension B and the block row number Nr has been achieved

to give overall very good scalability.

C. Ideal iterations: Using the preconditioner

Two types of preconditioned iterations are used in

SIESTA. Far from equilibrium, when the approximate Hes-

sian in Eq. (9.5) is used, it is convenient to use the precondi-

tioned iteration equations

@2n
@t2
þ 1

s
@n
@t
¼ PFMHD: (9.9)

To the extent that the preconditioner coalesces the spec-

trum of the (linearized) MHD force, this iteration scheme is

expected to converge very rapidly. Updates for the precondi-

tioner are needed during the iteration sequence particularly at

early times when the plasma state is far from equilibrium. Mul-

tiplying Eq. (9.9) by Ĥ @n
@t � P�1 n

�
, and integrating over the

plasma volume, yields the conservation of “energy” equation

@ðWK þWÞ
@t

¼ � 2WK

s
;

WK �
D1

2
n
�

Ĥ n
� E
: (9.10)

Here, W is the plasma (potential) energy defined in Eq. (2.1)

and WK is a positive definite “kinetic” energy. This shows that

the sum of the kinetic and potential energies (both positive

quantities) continues to decay until the equilibrium state is

achieved. Equation (9.9) represents a substantial improvement

over the usual steepest descent method in Eq. (9.1) (s! 0

limit) with an optimal nonzero choice29 for s.

When the force residuals are small enough (that is, when

the plasma is close enough to equilibrium), the GMRES algo-

rithm30 can be used to solve the Newton iteration given in Eq.

(9.2) with the preconditioner described in this section. SIESTA

uses the CERFACS31 “reverse communication” implementa-

tion of GMRES with the right-side preconditioner option.

D. Resistive iterations: Diffusing the resonant current

The ideal iterations described in Sec. IX C are aug-

mented by the application of resistive diffusion to break the

FIG. 2. The structure of the Hessian matrix in the curvilinear basis used in

SIESTA. Each dense block consists of couplings to the 2D Fourier compo-

nents of the 3 components of the displacement vector.
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ideal “frozen-in” constraint and hasten island formation and

accessibility to lower energy states. The initial nested-sur-

face VMEC state requires parallel current sheets at resonant

surfaces (to prevent the formation of islands). Therefore,

only a small resistivity is required to reduce these large reso-

nant parallel currents. The resistivity chosen in SIESTA is a

fraction of the CFL value required for numerical stability but

is much larger than the physical resistivity in high-tempera-

ture plasmas. This part of the SIESTA iteration scheme is

depicted in Fig. 1.

SIESTA uses a discrete form of Faraday’s law, com-

bined with Ohm’s law, E ¼ gJ ¼ gr� B, to diffuse the

magnetic field and parallel currents

dba ¼ ffiffiffi
g
p r � gDtJ �ra

¼ @Kc

@b
� @Kb

@c
;

Kc � ðgDtÞJc: (9.11)

Here, ða; b; cÞ form a positively-ordered triplet of flux

indices and the covariant components of the current

Jb ¼ gbc Jc are expressed in terms of ba through Ampere’s

law (see Eq. (6.11)). The time step Dt is set by the CFL stabil-

ity condition. Several explicit iterations of Eq. (9.11) are per-

formed following each ideal step. The resistivity is eventually

turned off when a small value of the (ideal) MHD force resid-

ual is reached to allow the ideal iteration to converge.

X. APPLICATION OF SIESTA TO THREE-DIMENSIONAL
EQUILIBRIA

We will now consider two examples of 3D equilibria

with islands computed using the SIESTA code. Neither of

these cases is sufficiently large in terms of radial points nor

Fourier modes to definitively demonstrate the parallel scaling

of SIESTA (a future publication will present more detailed

analysis of the scaling properties of SIESTA), but they dem-

onstrate the new physical features and computational speed

of the code. Both cases were computed on an 8-processor (2

quad-core) Linux machine and required between 3 and 5

minutes to achieve convergence for which the squared RMS

normalized force residuals decreased below 10�20.

A. Doublet-IIID (DIII-D) Tokamak

The equilibrium examined here is a DIII-D counter-ECCD

(electron cyclotron current drive) discharge32 (shot #133221,

t¼ 0.3775 s). The axisymmetric (no islands) equilibrium flux

surfaces equally spaced in r �
ffiffiffiffi
U
p

(U is the toroidal flux) com-

puted with the VMEC (Ref. 1) code are shown in Fig. 3. (The

actual equilibrium is slightly vertically asymmetric, but it was

symmetrized here so SIESTA could treat it.) The q (safety fac-

tor) and pressure profiles were computed with the EFIT (Ref.

2) equilibrium and data analysis code and are shown in Fig. 4.

This equilibrium corresponds to hbi� 1.84% and is ideally

Mercier unstable in the region interior to the q¼ 1 surface.

SIESTA was run for this case with Ns ¼ 101 radial

surfaces, M¼ 12 poloidal modes, and toroidal modes 3 � N

� 3. This corresponds to �27 500 simultaneous nonlinear

coupled differential equations. The converged SIESTA equi-

librium, which allows for the formation of an island at the

unstable q¼ 1 surface (thus lowering the total energy), is

shown for two toroidal cross sections (v¼ 0� and v¼ 180�)
in Figs. 5 and 6. Figure 5 shows the pressure contours in real

(R-Z) space, while Fig. 6 depicts the same equilibria in flux

space (s¼ r, u). Very small initial resonant magnetic pertur-

bations (jBr
m¼1�2;n¼1j < 10�4Bv

0;0) were applied at the q¼ 1

and q¼ 2 surfaces. The tearing unstable q¼ 1 island domi-

nates in the saturated equilibrium state, although a small

remnant of the q¼ 2 island persists (Fig. 6)

FIG. 3. DIII-D initial (symmetric) flux contours for shot #133221 described

in text.

FIG. 4. Normalized pressure p=p(0) and safety factor (q) vs minor radius r.
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B. Classical low-beta stellarator (no net current)

The model for a (nearly) classical stellarator33 consid-

ered here has Np¼ 3 toroidal field periods. The fixed bound-

ary for this stellarator is given by

R ¼ 2:90þ cos u� 0:51 cosðuþ NpvÞ
� 0:01½cosð4uþ NpvÞ þ cosð6uþ NpvÞ�;

Z ¼ sin uþ 0:51 sinðuþ NpvÞ
þ 0:01½sinð4uþ NpvÞ � sinð6uþ NpvÞ�: (10.1)

The dominant helical terms (�0.51) produce a purely el-

liptical stellarator boundary, while the remaining terms

(�0.01) represent small helical deformations. The unper-

turbed pressure surfaces from a VMEC equilibria are shown

in Fig. 7 for the two symmetric cross-sections v¼ 0,2p/Np.

These form the nested background coordinates for the

SIESTA equilibrium calculation as previously described.

The equilibrium considered is low pressure, hbi� 10�4

(very close to a vacuum). The helical twist of the boundary

produces an iota profile of the form shown in Fig. 8. The

location of the two low-order resonant surfaces, where i/
N¼ 1/m (for m¼ 6 and m¼ 5) and where islands are

FIG. 5. Pressure surfaces (excluding some unperturbed surfaces) showing

the island formation at the original q¼ 1 surface. The symmetry planes at to-

roidal angles v¼ 0� (left) and v¼ 180� (right) are displayed. The scale is the

same as in Fig. 3.

FIG. 6. Equilibrium pressure contours depicted in flux (s-u) space. Here,

s¼ r is the square root of the normalized toroidal flux and u is the poloidal

angle, normed to 2p. The single period magnetic island at s¼ 0.15 (q¼ 1

resonance) is evident. The bulging of the contours around s¼ 0 indicates a

small toroidally-varying shift of the original single magnetic axis. The top

figure is at v¼ 0 and the bottom is at v¼ 180�. Note the phase shift of p
between the two cross sections.

FIG. 7. Initial VMEC pressure surfaces for low-beta model stellarator con-

figuration at two toroidal symmetry planes.
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expected to break the nested surface topology, are indicated

by arrows.

SIESTA calculations were performed for this equilib-

rium using 101 radial surfaces, M� 12-24 poloidal modes

and jNj/Np� 3–5 toroidal modes. Figure 9 shows a Poincaré

puncture plot where the intersection of different magnetic

field lines with the toroidal plane v¼ 0 are plotted as points.

The magnetic field lines were traced in flux space using the

“2D orbit” equations

dr

dv
¼ Br

Bv
;

du

dv
¼ Bu

Bv
: (10.2)

It was assumed that the contravariant toroidal field com-

ponent Bv never reverses sign in the plasma so that the toroi-

dal angle was used as a “time-like” coordinate. In the absence

of islands (Fig. 7), the magnetic surfaces would appear as

straight horizontal lines in this flux space plot. On this radial

scale, the puncture plots are the same for the range of modes

considered. Note the island formation at the two rational

surfaces r� 0.54 and r� 0.82 with the anticipated poloidal

frequencies m¼ 6 and m¼ 5, respectively. Figure 10 depicts

the surfaces in real cylindrical coordinates in the toroidal

plane v¼ 0 and agrees well with results obtained from other

equilibrium codes.33

XI. CONCLUSIONS

We have described the theory and development of a new

ideal MHD 3D equilibrium solver, capable of dealing with

magnetic islands and stochastic regions in a fast, accurate and

scalable manner. SIESTA is particularly suited for applications

that require not only accuracy but also speed of evaluation as

well. These include both experimental 3D equilibrium recon-

struction and stellarator design, for which SIESTA opens up

new possibilities. Due to its high degree of parallelism, SIESTA

could also help to calculate MHD equilibria at very high spatial

resolutions, such as those that are required for the investigation

of Neoclassical Tearing Mode (NTM) control at realistic ITER-

relevant conditions.
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APPENDIX: ANALYTIC EXPRESSIONS FOR DIAGONAL
CONTRIBUTIONS TO THE LINEARIZED MHD FORCES

The leading order (in the mesh spacing and M, N) diago-
nal components of the linearized forces F1a � LaC

a (La is a

second order spatial operator) are given in the limit where

the radial component Br is small as:

F1r ¼ Bu
0
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F1v ¼ Bu
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These are useful for estimating scaling of an approxi-

mate tri-diagonal preconditioner, which can be used to effect

initial reductions of the MHD forces before islands form and

the full block preconditioner is applied.
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