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1.  Introduction

Unlike a classical stellarator, which has multiple terms in its 
magnetic spectrum and therefore multiple classes of trapped 
particles which lead to non-ambipolar particle transport, 
the ambipolarity constraint is satisfied automatically (total 
charge flux ( )∑ Γ =q E 0a a a r  for all values of Er) for an ideal 
tokamak [1–3] or a perfectly quasi-symmetric stellarator [4, 
5]. The radial electric field and intrinsic rotation in these con-
figurations must therefore be determined using higher order 
gyrokinetic calculations [6–8].

All real devices have non-zero ripple, though, which for 
arbitrary values of radial electric field will lead to some finite 
amount of non-ambipolar neoclassical particle transport and 
radial current. This radial current drives the potential on each 
surface toward a neoclassical root solution of Er at which the 
total particle transport has no net charge and the ambipolarity 
condition is met. In tokamaks approaching axisymmetry, 
however, the intrinsic rotation appears to be determined by 
factors other than the neoclassical transport caused by ripple 
[9], indicating that there is some finite amount of ripple that 
is acceptable while still allowing arbitrary rotation and radial 
electric field values to first order in the drift kinetic equation. 
If a magnetic configuration is approximately quasi-symmetric 
and the non-ambipolar neoclassical particle transport is 
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reduced to a small enough value, then the turbulence-driven 
Reynolds stress (the exchange of momentum between fluid 
fluctuations and the mean fluid velocity) may provide enough 
torque to rotate the plasma and set Er to a different value that 
still results in zero net radial current when all of the stresses 
are accounted for [5, 10, 11].

Previous experiments have explored the role of Reynolds 
stress in plasmas with an approximate direction of symmetry. 
In the cylindrical plasma device CSDX, mean azimuthal flow 
has been measured which is sustained against viscosity by the 
Reynolds stress [12, 13]. The azimuthal rotation calculated 
by balancing the Reynolds stress measured using Langmuir 
probes with the calculated ion–ion and ion-neutral viscosity 
was found to agree well with the rotation found by a time 
delay estimation technique using adjacent probe pins.

In experiments at the DIII-D tokamak, measurements of the 
Reynolds stress were made using Langmuir probes in the edge 
and compared against the intrinsic rotation in the toroidal direc-
tion as well. These measurements did not explain the intrinsic 
torque that must exist to drive the observed toroidal flows in 
H-mode plasmas, however [14, 15]. In this case, a kinetic 
model of thermal ion orbit loss accounted for approximately 
half of the inferred torque in the co-direction at the edge, and 
the remaining intrinsic toroidal rotation was unaccounted 
for. These experiments were performed in diverted H-mode 
plasmas with hot ions, which has significantly different edge 
physics than the HSX plasmas studied here, but it is none-
theless interesting to note that there is observed rotation that 
cannot be fully explained using measurements of the Reynolds 
stress in addition to existing models of intrinsic torque.

The HSX stellarator is the first stellarator optimized for 
quasi-symmetry, where the direction of symmetry has a hel-
ical n  =  4, m  =  1 mode structure [16]. Here n and m are the 
toroidal and poloidal mode numbers in Boozer coordinates, 
respectively [4]. In addition to the main coils that provide the 
magnetic field for the optimized quasi-helically symmetric 
magnetic configuration (QHS), HSX has a set of auxiliary 
coils that can be energized to intentionally break the designed 
optimization. The Mirror [17] and Flip-1-4 [18] configura-
tions of the auxiliary coils are particular magnetic configu-
rations that are designed to degrade the symmetry in the 
magnetic field strength while keeping other parameters, such 
as the rotational transform and plasma volume, close to their 
value in the QHS configuration. This allows a relatively direct 
comparison of confinement and transport properties with and 
without the quasi-symmetric optimization. The Mirror con-
figuration mostly contributes a single large-amplitude n  =  4, 
m  =  0 mode, while the Flip-1-4 configuration contributes a 
smaller amplitude n  =  4, m  =  0 mode as well as an n  =  8, 
m  =  0 mode. Experiments presented here were performed in 
each of the three configurations, QHS, Mirror and Flip-1-4, as 
a scan of quasi-symmetric optimization, where the effective 
ripple εeff is used as a proxy for this optimization. Neoclassical 
transport in the low collisionality regime scales with νε /eff

3/2 , 
where ν is the particle collisionality [19]. Although the effec-
tive ripple is calculated to be as low as × −2 10 3 in the core 
of the QHS configuration, in the edge region where probe 

measurements are made here, it is approximately × −1 10 2 in 
the QHS configuration, × −2 10 2 in the Flip-1-4 configuration, 
and × −8 10 2 in the Mirror configuration. For the data pre-
sented here in the outer radial regions of each configuration, 
thermal ions and electrons are in the plateau and low collision-
ality regimes, respectively.

It is important to note that the ripple in the edge of HSX, 
even in the optimized configuration, is an order of mag-
nitude larger than NSTX with RMP coils. Turbulence has 
also been shown to increase with minor radius [20] and so 
the turbulence-free, perfectly quasi-symmetric model in neo-
classical transport does not apply [5, 10]. Previous studies 
in HSX have shown that for the QHS configuration, thermal 
transport is dominated by anomalous rather than neoclassical 
effects throughout the plasma [18, 21]. Neoclassical trans-
port is important in the core only when the quasisymmetry 
is degraded [18, 22]. More recently, measurements of plasma 
rotation and radial electric field have not agreed well with 
neoclassical modeling, particularly at the edge [23]. Part of 
the goal of this work was to help explain this discrepancy.

In this document, the competition of neoclassical non-
ambipolar particle loss and momentum transport through the 
Reynolds stress will be explored by computational analysis 
and experiment. Section  2 introduces the Langmuir probes 
used in the experiment, section 3 presents the radial electric 
field and parallel flow measurements and compares these with 
neoclassical calculations for several magnetic configurations, 
the locally measured Reynolds stress in the QHS configura-
tion is shown in section 4, and the contribution of Reynolds 
stress to the flows in the Flip-1-4 and Mirror configurations is 
analyzed in section 5. The paper concludes with a discussion 
of the results in section 6.

2.  Reynolds stress probe design

Two sets of Langmuir probes were designed and installed to 
measure the radial electric field, parallel ion flow and local 
Reynolds stress profiles in HSX. Two pictures of the probe 
on the low-field side of the device are given in figure 1. The 
purpose of this specific probe configuration is to find the mean 
parallel flow velocity as well as the local fluctuating velocity 
components in each of the three orthogonal directions. Labels 
on the left picture indicate which pins are biased to measure the 
floating potential and ion saturation current, and labels on the 
right show the pairs of pins that are used to infer the three local 
velocity components. Tungsten is used as the conducting probe 
pin material and boron nitride is used as the insulating material.

Three of the pins of the probe are aligned perpendicular 
to the direction of the magnetic field lines, two of which are 
positioned on the same flux surface and a third that is recessed 
radially from the leading pins. By measuring the floating 
potential at each of these three locations, the instantaneous 
radial and bi-normal electric fields Er and θE  are extracted to 
infer the bi-normal and radial single-fluid plasma velocities θv  
and vr, respectively. The bi-normal direction θ̂ (approximately 
‘poloidal’) is defined here as the direction of positive ×E Br 0 
flow, so that

Nucl. Fusion 56 (2016) 036002



R.S. Wilcox et al

3

v
E B

B

V V

B
,

f l f l0

0
2

2 3

0
˜

˜
ˆ

˜ ˜→ →

θ=
×
| |

⋅ ≈
−

| |
θ� (1)

˜
˜

ˆ
˜ ˜→ →

= −
×
| |

⋅ ≈−
−

| |
v

E B

B
r

V V

B
,r

f l f l0

0
2

2 1

0
� (2)

where the floating potential signals →V Vf l f l1 3 are taken from 
the pins ordered →1 3 from top to bottom in the center ver-
tical row of the probe on the left in figure 1. Here ṽ and Vf l˜  
denote the fluctuating components of local single-fluid ×E B 
velocity and measured floating potential in time, respectively, 
on the timescale of a few turbulence decorrelation times or 
less (τ ≈ 10d  μs in these experiments). It is assumed that the 
fluctuations are purely electrostatic, which should be valid in 
these low β HSX plasmas [20] (β< −10 4 where probe mea-
surements are made). This formulation for the fluctuating 
quantities accounts for any mean Te gradients that may exist 
between the pins, as the Ṽf l quantities are mean-free, but it 
does not account for fluctuating components of Te on the scale 
length of the probe tip separation. Electron temperature fluc-
tuations have been shown to be significant in the quantitative 
interpretation of differential Langmuir probe Vf l signals as θE  
fluctuations [24]. Because there are no measurements avail-
able to quantify Te fluctuations directly, this effect is neglected 
in this work in order to get an estimate of the fluctuating 
plasma potential φ̃ from the floating potential measurements.

The separation distance between the floating potential 
pins was chosen to ensure that a negligible fraction of par-
ticle trajectories that are incident on one pin would have also 
been collected by another pin, while minimizing the size of 
the probe to reduce the perturbation to the plasma. The pins 
are aligned to avoid shadowing by the magnetic field and the 
poloidal separation between the pins is 3 mm center-to-center. 

Each pin has a 0.75 mm diameter, so there are about 3 thermal 
ion gyroradii between the pins (ρ ≈ 0.7i  mm here). The Debye 
length is on the order of  ∼50 μm in the edge, so the probe tip 
sheaths do not overlap.

Two additional pins are then configured as a mach probe 
to measure the ion saturation current on either side of an insu-
lating barrier, and are aligned on a field line to infer the parallel 
ion flow velocity. The mach probe collection areas are cali-
brated by taking repeated measurements first in the standard 
orientation and again with the probe orientation rotated 
by 180 degrees so that the pin locations are approximately 
flipped. The measurement given by the probe is the parallel 
mach number ( )∥ ∥=M V Kc/ s , where ( )= +c T T m/s e i i  is the 
ion sound speed and K is a constant determined by the model. 
This is translated to a parallel velocity by assuming hydrogen 
ions and using the same Te and Ti profiles that are given as 
inputs to the neoclassical calculations, as described later in 
section 3. An unmagnetized model by Hutchinson has been 
used to determine the value of K  =  1.34 for this work [25].

Signals from the probes are sampled at 2.5 MHz using 
high-impedance digitizers connected to the sense resistor for 
each signal by a 50 Ohm coaxial cable with no analog ampli-
fication or filtering. A digital filter is applied above 300 kHz 
to reduce the noise from, for example, radio signals above  
1 MHz. This does not produce any substantive changes to the 
results, except where noted for some analysis of fluctuating 
Isat measurements.

2.1.  Probe positioning and magnetic geometry

Two Reynolds stress probes are located in regions near the 
maximum of the variation of magnetic geometry on a flux 
surface. One probe is in a region of low field and ‘bad curva-
ture’ (κ ψ⋅ ∇ >→ 0, where curvature ( ˆ ) ˆκ = ⋅ ∇→ b b) with small 
flux expansion ( ⟨ ⟩ψ ψ∇ > ∇ ), and the other is in a region of 
high field and ‘good curvature’ (κ ψ⋅ ∇ <→ 0) with large flux 
expansion ( ⟨ ⟩ψ ψ∇ < ∇ ). Due to the helical structure of the 
magnetic field strength in HSX, both the low-field side (LFS) 
and high-field side (HFS) probes are located on the outboard 
side of the device.

The cross section of the magnetic surfaces at each of the 
probe locations is given in figure 2 as calculated by vacuum 
field line following in the QHS configuration. The relative 
magnetic field strength is indicated by the color at each point, 
with red being the highest field strength (∼1.1 T) and blue 
the lowest field strength (∼0.9 T). Probe insertion points are 
plotted as arrows and accessible sampling points are plotted 
with black circles. The shaping of the magnetic surfaces does 
not change dramatically when the configuration is changed 
from QHS to Mirror or Flip-1-4. Based on calculations using 
the VMEC equilibrium solver [26], finite-beta effects are not 
expected to change the shaping of the surfaces significantly at 
the locations of the probes (β< −10 4 here).

As seen in figure 2(a), the magnetic surfaces at the probe 
insertion point on the HFS port are not normal to the plane 
of the probe slide. The shape of the HFS probe is adjusted to 
account for this change in the angle of incidence compared to 
the picture of the LFS probe given in figure 1.

Figure 1.  Pictures of the low-field side (LFS) Reynolds stress 
probe. Left: from the perspective of the plasma with 

→
B from right 

to left, with pins labeled according to which signal it is biased to 
measure. Right: profile view, with 

→
B going approximately into the 

page. The velocity components for which each of the pin signals are 
used to infer are labeled.
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Although there are not expected to be large islands in the 
confinement region in HSX for these experiments, based on 
vacuum field line following, there is a small island chain 
where ι = 12/11 near ≈r a/ 0.93 which has a non-negligible 
width at the HFS probe location. Because of the oblique inser-
tion angle, the island width is approximately 0.75 cm along 
the axis of the probe. The calculated island width at the LFS 
probe location is negligible (smaller than the probe pin size).

2.2.  Magnetic geometry at probe locations

In order to investigate the variation of the Reynolds stress 
on a flux surface, the two probe locations were chosen to be 
located in regions near the extrema of magnetic field strength 
and normal curvature on a flux surface. Turbulence caused by 
microinstabilites is thought to be the source of the fluctuations 
which lead to the Reynolds stress in magnetized plasmas. For 
experimental parameters in HSX, trapped electron modes are 
calculated to be the most unstable modes and the dominant 
instability contributing to transport in the edge of the plasma 
[20, 21, 27].

The magnetic field strength normalized to the flux surface 
averaged value, ⟨ ⟩| |B B/ , determines the local trapped particle 

population which drives the trapped electron mode turbulence. 
This is plotted for the QHS configuration in figure 3(a) as a 
function of toroidal angle φ and poloidal angle θ in VMEC 
coordinates [26], where blue is low magnetic field strength 
relative to the flux surface average, and red is high magnetic 
field strength. The locations of the probes are indicated by 
white X’s, with the LFS probe near φ≈ 1.3 and the HFS probe 
located near φ≈ 4. Both probes are located on the outboard 
side of the device, where the outboard midplane is θ = 0.

The normal curvature for a magnetic surface at ≈r a/ 0.82 
in the QHS configuration is then plotted in figure 3(b), where 
blue is the largest ‘bad’ curvature and red is the largest ‘good’ 
curvature. The surface in both plots in figure 3 was traced using 
line following and the poloidal coordinates were determined 
by mapping the surface points onto the VMEC equilibrium. 
The Reynolds stress probe locations are indicated with black 
X’s. As shown in figure 3, the LFS probe is in a region near 
the minimum of curvature on a flux surface (largest ‘bad’ cur-
vature), while the HFS probe is in a region with only slightly 
higher than zero curvature (only slightly ‘good’ curvature).

The normal curvature at the probes does not change  
significantly between the QHS and Mirror configurations, 
however, the difference in magnetic field strength between 
the two probe locations is smaller in the Mirror configuration 
than it is in the QHS configuration. The field strength at all 
outboard ports (near θ = 0) is similar in the Mirror configura-
tion regardless of the toroidal angle due to the combination of 
the n  =  4, m  =  1 main field harmonic and the n  =  4, m  =  0 
term which is added to break the symmetry. The modulation 
in field strength between the two probe locations in the Flip-
1-4 configuration is larger than it is in Mirror but smaller than 
in QHS.

3.  Er and ∥V  profiles and comparison to neoclassical 
calculations

For the experiments presented here, 44 kW of ECRH was 
injected into HSX plasmas with a magnetic field strength 
of 1 T on axis, and with interferometer-measured line- 
averaged densities of approximately ×4 1018 m−3. Hydrogen 
gas puffing was used as the particle fueling, and boronization 
was used to condition the stainless steel walls. Probe data  
presented here was taken during the final 20 ms of each 50 ms 
discharge, when both macroscopic plasma parameters and 
probe measurements had reached a steady state.

3.1.  Neoclassical modeling using PENTA

In order to compare the measured flows and radial electric 
field to what would be expected if neoclassical transport 
and damping were the dominant terms in the momentum 
balance, the PENTA code [28, 29] is used here to calculate 
the neoclassical ambipolar solution for Er and ∥V  based on 
experimental plasma parameters. Several terms are not cal-
culated here which may be important to the particle transport, 
including ECRH-driven particle flux and ion orbit loss across 
the separatrix. Ion orbit loss is expected to be small, because 

Figure 2.  Magnetic surface cross sections at probe insertion 
locations on (a) the high-field side and (b) the low-field side probe 
locations in HSX, with colors indicating field strength at each 
surface point.

Nucl. Fusion 56 (2016) 036002



R.S. Wilcox et al

5

of a combination of high ion collisionality, long connection 
lengths to the wall just outside the last closed flux surface, and 
small ion banana orbit widths [30].

PENTA uses the neoclassical ambipolarity constraint 
( )∑ Γ =q E 0a a a r , where qa is the charge of species a and 

( )Γ Ea r  is the calculated neoclassical particle flux for species 
a as a function of radial electric field. First a fixed-boundary 
vacuum equilibrium is calculated using the VMEC equilib-
rium solver [26]. The use of a vacuum equilibrium is justified 
due to the absence of any externally applied current drive and 
the low values of β in HSX plasmas (β< 0.1% everywhere 
outside the very core, r/a  >  0.2). Next, this VMEC equilib-
rium is used to calculate a database of mono-energetic trans-
port coefficients as a function of collisionality and Er using 
the DKES code to solve the drift kinetic equation [31, 32]. 
Finally, PENTA uses these calculated transport coefficients 
along with the experimentally measured temperature and 
density profiles to determine the particle flux as a function 
of Er for each species, while restoring the conservation of 
momentum, which is lost in the DKES calculations. These 
calculated particle fluxes are then used to determine the solu-
tion for Er which satisfies the ambipolarity constraint, where 
the net charge flux equals zero. Measured electron and ion 
temperatures near the last closed flux surface were approxi-
mately 60 and 25 eV, respectively, in all configurations for the 
data presented here. Electron densities were approximately 
×1 1018 m−3. Electron temperature and density profiles are 

measured using Thomson scattering, and ion temperatures 
are estimated by scaling carbon ion temperatures measured 
by charge exchange recombination spectroscopy in similar 
plasmas that had been doped with carbon.

3.2.  Measurement of Er

Using the leading pins of the Reynolds stress probe to mea-
sure floating potential, the locally measured plasma potential 
can be found by calculating the effect of Te on the floating 

potential measurement (Vf l
T

e
eµ= Φ− , where Φ is the plasma 

potential) using a procedure to estimate Te from the fluctuating 
probe signals outlined in [30]. The Te profile determined using 
this method matches well with the more-sparse Thomson scat-
tering measurements in the edge. The electron temperature 
coefficient μ is determined by [33]

( )
( )

⎛

⎝
⎜

⎞

⎠
⎟µ

γ
γ π

=
−
+ +

A

A

T

T T

m

m
ln

1

1 2
,e

i

e

i

e

e i

i

e
� (3)

where A A/e i is the ratio of the effective probe collection areas 
for electrons and ions, and γe and γi are the secondary electron 
emission coefficients caused by electrons and ions, respec-
tively. Taking all of these values into account, the resulting 
plasma potential profile is then fitted so that the spatial deriva-
tive can be taken to calculate Er.

The plasma potential profile in the confinement region of 
the QHS configuration measured by the LFS probe is given 
in figure 4(a). The Vf l measurement is taken from the moving 
mean of the Vf l signals using 1 ms time windows. The variance 

of this moving mean, f l
2σ , is used to propagate the errorbars 

and calculate the uncertainty in the final plasma potential.
The potential profile is fit to a polynomial, which is also 

plotted in figure 4(a) as a dashed red line, and the derivative 
of the fit is taken to calculate the local radial electric field. 
Assuming that the plasma potential Φ is constant on a flux 

Figure 3.  (a) Magnetic field strength and (b) normal curvature on a surface near ≈r a/ 0.82 in the QHS configuration in VMEC 
coordinates. Probe locations are marked with X’s and labeled LFS and HFS, and a representative field line is given as a dashed black line.
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surface, the local radial electric field along the axis of the 

probe slide l is = −
ψ
ψΦE
lprobe

d

d

d

d
. Here ψ

l

d

d
 is the local change 

in magnetic flux along the axis of the probe slide, based on a 
translation of the probe location into VMEC flux coordinates. 
The measured value must be scaled by a geometric factor to 
find the flux function value Er to be compared with calculated 
results from PENTA, which is given as = − ΦE rd /dr  where 

ψ π=r B/2 0  is a flux function, so that

ψ
ψ

= −
Φ

E
l

l

r

d

d

d

d

d

d
,r� (4)

where 
ψ
Φd

d
 is the radial potential gradient and the term l

r

d

d
 is the 

ratio of the linear distance each probe travels to the change in 
radial coordinate r used by PENTA. This geometric factor is 
calculated to be approximately 1.7 for the LFS probe and 0.6 
for the HFS probe in the QHS configuration.

The radial electric field measured in this manner using the 
LFS probe is plotted in figure 4(b). The values of Er calculated 
by PENTA using the neoclassical ambipolarity constraint are 
also plotted as a blue dashed line for comparison. The meas-
ured radial electric field is significantly more positive than the 

predicted neoclassical value calculated by PENTA, especially 
in the region where r/a  >  0.9.

It should be noted that the non-ambipolar particle flux that 
is calculated for this deviation of Er from the neoclassical 
solution in the QHS configuration is  <1% of the total exper
imental particle flux in the region of interest.

3.3. Total measured ∥V  profiles and comparison to  
neoclassical calculations in QHS

The total local ion flow in the direction of the magnetic field 
can be expressed as [34]

⟨ ⟩
⟨ ⟩

⎛
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i

2
i

i� (5)

where ⟨ ⟩�  indicates a flux surface average, 
ψ
pd

d
i  is the ion pres

sure gradient, B is the local magnitude of the magnetic field, 
and h is a calculated geometric factor equivalent to the nor-
malized Pfirsch–Schlüter current ( ∇ = ||h pB J PS, ) [34–36]. 
Positive ∥V  corresponds to flow in the direction of the magnetic 
field, and negative is opposed. The first term in the parenthesis 

in equation (5) is the flux surface constant term 
⟨ ⟩
⟨ ⟩
||V B

B

i

2 , which 

is calculated from PENTA, and the second term is the contrib
ution of Pfirsch–Schlüter flows.

The parallel ion velocity profile given the measured 
mach numbers and assumed temperature profiles is shown 
in figure 5. Each value plotted is the average of the moving 
mean of the processed signals over the final 20 ms of each dis-
charge using a 1 ms boxcar average, and the errorbars indicate 
the standard deviation of the moving mean. The parallel ion 
flow that is calculated to result from the neoclassical ambi-
polar solution for Er using equation (5) is also plotted in blue. 

The 
⟨ ⟩
⟨ ⟩
||V B

B

i

2  term is calculated directly by PENTA and the local 

contribution from the Pfirsch–Schüter flows at each probe 
for the PENTA-calculated ambipolar solution of Er is added 
to the PENTA solution, which is plotted as a solid blue line.  
The total flow given by equation  (5) calculated using the 
measured value of Er is also plotted as a red dashed line.

The parallel flows measured on both the LFS and HFS 
probes that are depicted in figure 5 deviate significantly from 
the values calculated to result from the neoclassical ambipo-
larity condition by PENTA. The measured parallel flows are 
indicative of a significantly more-positive value of Er than 
what is calculated using neoclassical ambipolarity (this would 
enter into equation (5) by increasing the flux-surface average 
component of the parallel flow). This result is consistent with 
previous experimental results in HSX which showed that the 
flows [37] and flow damping [38] in the direction of symmetry 
direction are not correctly predicted by purely neoclassical 
calculations. As seen in figure 5, the calculated and measured 
flows on the LFS are closer if the measured values of Er are 
used to calculate the parallel flows. Similarly, better agree-
ment is also seen for the Mirror and Flip-1-4 configurations, 
shown below in figures 7 and 9. The agreement between the 
calculated and measured flows is not improved on the HFS for 
the QHS configuration.

Figure 4.  (a) Potential profile with a polynomial fit and (b) the 
resulting Er measured by the LFS Reynolds stress probe in the QHS 
configuration and scaled to the flux function using equation (4), 
along with a comparison to neoclassical calculations from PENTA.
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3.4.  Er and ∥V  measurements in configurations with symmetry 
degraded

The experiments presented above for the QHS configuration 
were repeated in similar plasma conditions in the Mirror and 
Flip-1-4 configurations. In the Mirror configuration, not only 
is the neoclassical flow damping term the largest, but the drive 
toward the neoclassical ambipolar solution by non-ambipolar 
particle fluxes is also the largest. This is because for a given 
deviation in the radial electric field value from the neoclas-
sical ambipolar solution, significantly more non-ambipolar 
particle flux (ie, current) will be driven. The expectation for 
the Mirror configuration is therefore that the measured flows 
would be closer to the neoclassical calculations than they are 
in the QHS configuration.

3.4.1.  Er and ∥V  measurements in the Mirror configuration.  The 
radial electric field calculated from the locally measured 
potential profile using the LFS probe and scaled to the flux 
function value using equation (4) in the Mirror configuration 
is plotted in figure 6. The radial electric field deviates from the 
neoclassical value calculated by PENTA by as much or more 
in the Mirror configuration than it does in the QHS configura-
tion (from figure 4). The parallel flow measurements in the 

Mirror configuration are then plotted in figure 7 using the LFS 
probe. There is a large n  =  8, m  =  7 island chain just outside 
the last closed flux surface in the Mirror configuration that 
may be causing additional flow damping near the boundary. 
The Pfirsch–Schlüter factor h from equation (5) in all configu-
rations used here is similar to that in the QHS configuration 
at both probe locations, so that any changes in the parallel 
flows are expected to arise from a change in Er. The calculated 
parallel flows using the measured values of Er match more 
closely with the measured ∥V  than those calculated using the 
ambipolar values of Er from PENTA.

The large flows in the Mirror configuration plotted in 
figure 7 are a second independent measurement (along with 
Er from figure 6) demonstrating that the flows deviate even 
more from the neoclassical ambipolar solution calculated 
by PENTA in the Mirror configuration than they did in the 
QHS configuration, especially away from the boundary island 
chain. One possible explanation for this is that not all electron 

Figure 5.  Parallel ion flow in the QHS configuration measured by 
the (a) LFS and (b) HFS mach probes. Also plotted is the total flow 
given by equation (5) using the calculated ambipolar solution for Er 
(solid blue) and the measured Er profile (dashed red).
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Figure 6.  Er measured by the LFS Reynolds stress probe in 
the Mirror configuration, and a comparison with neoclassical 
calculations from PENTA.

Figure 7.  Parallel ion flow in the Mirror configuration measured 
by the LFS mach probe, compared with the total flow given by 
equation (5) using the calculated ambipolar solution for Er (solid 
blue) and the measured Er profile (dashed red).

r/a
0.92 0.94 0.96 0.98 1 1.02

v ||
 (

km
/s

)

0

10

20

30

40

50

calculated from measured Er

V
||
 (Mirror, LFS)

calculated from PENTA ambipolar E r

Nucl. Fusion 56 (2016) 036002



R.S. Wilcox et al

8

losses are captured by the neoclassical transport codes, and 
the magnetic ripple that would lead to additional direct orbit 
loss or ECRH-driven electron losses is large in the Mirror 
configuration than in QHS. Additional ripple-trapped electron 
losses that are unaccounted for by DKES and PENTA would 
drive the ambipolar solution to a more-positive value of Er 
relative to what is calculated. This hypothesis can be tested 
first by measuring the intrinsic flows in the Flip-1-4 configura-
tion, which has neoclassical drive and damping terms that are 
between those of the QHS and Mirror configurations.

3.4.2.  Er and ∥V  measurements in the Flip-1-4 configura-
tion.  The Flip-1-4 configuration has an effective ripple in 
the edge that is between that of the QHS and Mirror con-
figurations. Based on the measurements of the flows in the  
Mirror configuration given in section  3.4.1, the collisionless 
loss orbits in the Mirror configuration may be driving Er to 
a much larger value than what is calculated using DKES and 

PENTA. By reducing the ripple compared to the Mirror con-
figuration, measurements can be compared again with neoclas-
sical modeling to explore the scaling of the flows with ripple.

The measured potential profile, its fit, and the resulting 
radial electric field using the LFS probe in the Flip-1-4 config-
uration are plotted in figure 8. Er has again been scaled scaled 
to the flux-function value using equation (4). The parallel flow 
measurements in the Flip-1-4 configuration using the LFS 
probe is then also plotted in figure 9. There is a small n  =  20, 
m  =  18 island at r/a  =  0.97 at the HFS probe location that 
could be influencing the flows, but the island width is smaller 
than the radial step size of the probe scan.

The parallel flows measured are again much larger than 
what would be expected neoclassically based on the calcul
ations of Er by PENTA. Both the Er and ∥V  measurements 
might again be explained by additional electron particle flux 
that is not properly accounted for using the neoclassical trans-
port codes.

4.  Local Reynolds stress measurements

Assuming a local slab geometry, the divergence of the local 
Reynolds stress tensor can be written as

( ˜ ˜ ) ˆ ˆ ˆ ( ˜ ˜ )
⎛
⎝
⎜

⎞
⎠
⎟ρ

ρ
θ
θ

∇ ⋅ =
∂
∂
+
∂
∂
+
∂
∂
⋅b

b
VV VV

�
(6)

where ρ̂ ψ ψ= ∇ |∇ |/  is the unit vector in the direction normal 
to the flux surface, b̂ is the unit vector in the direction of the 
magnetic field and θ̂ is the ‘bi-normal’ direction, defined here 
as the unit vector perpendicular to the magnetic field, but 
within the flux surface ( ˆ ˆ ˆ)ρ θ× =b . These coordinates are the 
three orthogonal directions which are relevant for the turbu-
lence, and they are approximately the three directions in which 
the Reynolds stress probes measure velocity fluctuations. The 
use of a slab geometry neglects additional terms due to tor-
sion and curvature, but the terms given here are expected to 
be dominant given that the probe size is small relative to the 
local plasma shaping.

From equation (6), the terms that drive flows in the radial 
direction are ignored, because the flow drive within the surface 
is being examined rather than radial transport, and these terms 
are expected to be formally smaller. Next, the terms with par-

allel derivatives ( )∂
∂
�

b
 are neglected as small compared to the 

other terms, because drift wave turbulence is expected to have 

∥ ⊥�k k . Finally, because the main phenomenon being inves-
tigated and that is expected to dominate is radial momentum 
transport, and also because there is no measurement of the 

gradients in the bi-normal direction ( )θ
∂
∂
� , these terms are 

neglected as well. This leaves only two terms in the expres-
sion to consider for the probe measurements,

( )( ) ( ) ( )˜ ˜ ˆ ˜ ˜ ˆ ˜ ˜∥
ρ

θ
ρ

∇ ⋅ =
∂
∂

+
∂
∂

ρ ρ θb v v v vVV ,
probes

� (7)

where an overbar indicates a time-average. These two terms 
correspond to the radial transport of parallel and perpendicular 

Figure 8.  Er measured by the LFS Reynolds stress probe in the 
Flip-1-4 configuration compared with neoclassical calculation by 
PENTA.

Figure 9.  Parallel ion flow in the Flip-1-4 configuration measured 
by the LFS mach probe, compared with the total flow given by 
equation (5) using the calculated ambipolar solution for Er (solid 
blue) and the measured Er profile (dashed red).
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flow, which are each measured and included in the analysis of 
Reynolds stress flow drive in HSX in this work.

Measuring the local fluctuating velocity components 
using the setup and methodology described in section  2, 
the probability density function of the instantaneous radial 
and bi-normal velocity fluctuations as measured by the LFS 
probe at two different locations in a radial scan is plotted in 
figure  10 as a visualization of the θ−r  component of the 
Reynolds stress. The fluctuating ṽr and θ̃v  values are calcu-
lated for these plots for each sample time by subtracting 
away a moving 30 μs mean (about 3 turbulence decorrelation 
times). The domain is then discretized and each grid square 
is colored to represent how frequently the combination of 
ṽr and θ̃v  fluctuations within those velocity ranges coincided 
with each other, with red being the most frequent and blue 
being the least frequent.

Near the last closed flux surface, where the data from 
figure 10(b) was taken, the fluctuations are mostly isotropic. 
Positive radial fluctuations correlate roughly equivalently with 
both positive and negative bi-normal velocity fluctuations, and 
likewise for negative radial fluctuations. Further inside the 
plasma, where the data from figure 10(a) was taken, positive 
ṽr fluctuations correlate more frequently with negative θ̃v  fluc-
tuations and vice-versa. The integrated result of this skewed 
PDF is a negative value of the time-averaged Reynolds stress 
term ˜ θ̃v vr .

The fluctuations depicted in figure 10 could also be con-
sidered a visualization of the local tilt of the turbulent eddies. 
If these locally measured fluctuations were indicative of a 
flux surface average value of the Reynolds stress in the bi-
normal direction, then the change in Reynolds stress across 
the minor radius demonstrated by the fluctuation PDFs in 
figure 10 would imply a flow drive in the bi-normal direction 
according to equation  (7), since the Reynolds stress torque 

in this direction is proportional to the radial gradient of ˜ θ̃v vr . 
Previous experiments using multiple instances of Langmuir 
probes have found that there is no evidence of long-range cor-
relations or bicoherence of poloidal electric field fluctuations 
in similar unbiased plasmas in the edge of HSX in either the 
QHS or the Flip-1-4 configurations [39], suggesting that these 
are not short radial wavelength zonal flows.

For the work here, the fluctuating component of the term 
( )∇ ⋅ VVmn  in the momentum balance equation  is approxi-

mated using only the part given in equation (6), ( ˜ ˜ )∇ ⋅mn VV . 
This assumes that the density fluctuations may be neglected, 
which is valid as these terms are measured using the probes 
to be at least an order of magnitude smaller than the velocity 
fluctuation terms in most cases ( ˜ ˜ ˜ ˜�V V VVn n ). The density 
and velocity fluctuations are not correlated with each other in 
the same way that the radial and poloidal velocity components 
are in figure 10(a).

4.1.  Reynolds stress profiles in the QHS configuration

In order to calculate the local Reynolds stress based on the 
measured fluctuating quantities, the final 20 ms of data from 
each 50 ms discharge was discretized into 50 μs time win-
dows for mean subtraction. The average Reynolds stress in 
these time windows is then the quantity shown. To estimate 
the contribution to the momentum that would result from this 
measured Reynolds stress, a gradient must then be calculated 
from the measured shot-by-shot profile, because the Reynolds 
stress drive term is proportional to the radial gradient of ˜ ˜vv ,  
as shown in equation  (7). The measured points are fit to a 
curve, and the derivative of the curve is taken to estimate the 
time-averaged Reynolds stress force. In the cases presented 
here, a second order polynomial fit was found to agree suf-
ficiently well with the data.

Figure 10.  Probability density functions of radial and bi-normal velocity fluctuations from the LFS probe (a) inside the plasma at ≈r a/ 0.9 
and (b) near the last closed flux surface.
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The measured Reynolds stress profiles using the LFS probe 
in the QHS configuration are plotted in figure 11 along with the 
fitted curves. The bi-normal component of the Reynolds stress, 
˜ θ̃v vr , is plotted in figure 11(a), and the parallel component, ˜ ˜∥v vr , 
is plotted in figure 11(b). The radial gradient of ˜ θ̃v vr  provides a 
drive for rotation in the θ̂ direction, and the radial gradient of 
˜ ˜∥v vr  provides a drive for rotation in the parallel direction. Both 
of these terms are important for determining the rotation and Er, 
if indeed the Reynolds stress is the dominant factor in its deter-
mination. The errorbars indicate the standard deviation of the 
discrete time windows used in the ensemble for each discharge.

Although there is a gradient to the fitted curve of the par-
allel Reynolds stress in figure 11(b), the gradient is small rela-
tive to the statistical uncertainty and radial variability of the 
measurement. This is in contrast to the bi-normal Reynolds 
stress in figure 11(a), which shows a clear, consistent radial 
gradient across the region spanned by the probe.

The Reynolds stress profiles measured by the HFS probe 
are then plotted in figure 12(a) for the bi-normal component 
and figure 12(b) for the parallel component.

The differences between the measurements made using 
the LFS and HFS probes are significant enough that a general 
statement cannot be made regarding the flux surface average 
of the Reynolds stress based on the measurements at these 
two discrete locations. The existence of stellarator symmetry 
in all of the configurations presented here would be expected 
to cause the Reynolds stress from each half field period to 
negate that of every neighboring half field period, resulting 
in a near-zero flux surface averaged Reynolds stress. Given 
the magnitude of these measured fluctuations, however, small 
deviations in stellarator symmetry could result in macroscopi-
cally meaningful levels of Reynolds stress torque.

4.2.  Momentum evolution and steady state solution

To estimate the rotation that would result from the mea-
sured Reynolds stress, the inferred torque from the measured 
Reynolds stress profile is extrapolated to a flux surface average 
and balanced against a calculated viscosity. Assuming that 
neoclassical viscosity and ion-neutral friction are the dominant 

Figure 11.  Radial profiles of (a) ˜ θ̃v vr  and (b) ˜ ∥̃v vr  measured by the 
LFS probe in the QHS configuration, along with polynomial fits.

Figure 12.  Radial profiles of (a) ˜ θ̃v vr  and (b) ˜ ∥̃v vr  measured by the 
HFS probe in the QHS configuration, along with polynomial fits.
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damping mechanisms that are balancing the Reynolds stress 
as the dominant drive term, the flow evolution equations can 
be written in the form of a pair of coupled differential equa-
tions as [17]

t n m
B v v

B V
B B V

1
,

i i
in 0 ( )〈 〉 〈 〉 〈 〉 ˜ ∥̃ν

ρ
∂ ⋅
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where BP is the poloidal component of the main field, ρ = ψ
ψ
∇
|∇ |

 

is the radial coordinate, νin is the damping rate due to ion-
neutral collisions and ⟨ ⟩�  indicates a flux surface average. 
The Reynolds stress terms are also taken as a time-average. 
Here νin will be calculated as [40]

ν ≈ −N T10 ,nin
14

i
0.318� (10)

where Nn is the neutral particle density in m−3. The bi-normal 
fluctuating velocity component θv  has been approximated to be 
in the poloidal direction for these calculations. The neoclas-
sical parallel and poloidal viscosity can be calculated analyti-
cally for ions in the plateau collisionality regime as [41, 42]

〈 〉 ( ) [( ) ( ) ]π
ια α ια α⋅ ∇ ⋅ Π = + + +α ζn m B v U UB

2
,P C C Ti i 0 ti

�

(11)

⟨ ⟩ ( ) ( )π
ι α α⋅ ∇ ⋅ Π = +α ζn m B v U UB

2
,P P P Ci i ti� (12)

where ι is the rotational transform, vti is the ion thermal 
velocity, αU  and ζU  are the flows in the Hamada poloidal 

and toroidal directions, respectively, α ι= ∑ | − |n b n m/T n m
2

,
2 , 

α ι= ∑ | − |m b n m/P n m
2

,
2 , α ι= −∑ | − |nmb n m/C n m,

2 , and each 
of the sums are taken over all spectral components bn, m in 
the configuration. In the QHS configuration, the n  =  4, m  =  1 
mode dominates the neoclassical damping, but the total evol
ution time of the flows in the edge region is dominated by the 
neutral viscosity. This result, that the analytically calculated 
damping in the quasi-symmetric direction is dominated by the 
neutral viscosity, was previously reported for 0.5 T plasmas in 
HSX [38]. The neutral density profiles are calculated using the 
DEGAS Monte Carlo neutral gas modeling code using mea-
surements from an array of H-alpha detectors and Thomson 
scattering.

Given the fit to the θ−r  Reynolds stress measurements 
from figure  11(a), the bi-normal Reynolds stress drive is 
inserted into equation (9) and the coupled flows are evolved 
by integrating the equations until they reach steady state. The 
resulting time-dependent flows are presented in figure  13, 
starting from a zero-velocity initial condition. The parallel 
component of the Reynolds stress has been neglected for 
this example calculation. All values used in the calculations 
plotted here were taken from a radial location of r/a  =  0.9.

As demonstrated in figure 13, the magnitude of the parallel 
flows that are calculated to result from the measured Reynolds 
stress are many times larger than the experimentally measured 

values in the QHS configuration from section  3.3, and the 
direction is opposite of the measured flow. It should be noted 
again, however, that the Reynolds stress should be taken as a 
flux surface averaged value, where here it has been measured 
locally and the local measurement is assumed to be indicative 
of a flux surface average for the purposes of evaluating the 
magnitude of the drive. For the rest of this work, only the final 
steady-state velocities will be used, since all of the data ana-
lyzed here is from experiments in steady state plasmas.

This method is similar to the one utilized in the linear device 
CSDX to calculate a rotation profile that matched the meas-
ured rotation in the azimuthal direction [12, 13]. Calculating 
the viscosity in HSX is much more complicated than in a 
collisional linear device, however, and previous experiments 
have demonstrated that the experimental viscosity in HSX is 
several times larger than what is calculated by the analytic 
method used here [17].

Assuming for the moment that the local Reynolds stress 
measured using each probe independently is indicative of a 
flux surface average, the resulting saturated parallel veloci-
ties calculated by the momentum evolution using equation (9) 
is given in figure 14. Both the parallel and bi-normal comp
onents of the Reynolds stress are included in this calculation.

Figure 14 shows that the Reynolds stress profiles measured 
at the LFS and HFS probe locations both lead to large flow 
drive terms, and that they actually drive the total flow in oppo-
site directions. Although only the parallel component of the 
flow is shown, the total calculated flow in each case follows 
the helical direction of symmetry.

In order for the momentum evolution from equation (9) to 
saturate at flow values that are similar to those observed exper
imentally near the last closed flux surface ( ∥≈V 20 km s−1  
based on measurements from section  3.3), the flux surface 
averaged gradient of the bi-normal Reynolds stress would 
need to be ≈0.1 (km s−1)2 m−1. This is about a factor of 20 
smaller than the average gradient across the edge region using 
the LFS probe. Due to the fact that the neutral viscosity domi-
nates the modeled damping in the direction of symmetry in 

Figure 13.  Momentum evolution from equation (9) in the 
QHS configuration near r/a  =  0.9 resulting from the bi-normal 
component of the Reynolds stress measured by the LFS probe.
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the QHS configuration and that the neutral density gradient is 
large in the edge, the necessary Reynolds stress that is calcu-
lated to drive the flows would decrease rapidly further inside 
the plasma, as well.

Given the difference between the derived flow drive from 
the two probe locations, as well as the difference in magnitude 
between the measured equilibrium flows and the extrapolated 
Reynolds stress drives, it is clear based on these measure-
ments that the flux surface averaged Reynolds stress cannot 
be extracted from two locations on a flux surface alone. More 
information about the variation of Reynolds stress on a flux 
surface is required to fully account for the Reynolds stress in 
the equilibrium momentum balance. The variation of turbu-
lence on a flux surface and its dependence on magnetic geom-
etry has previously been explored in the TJ-K stellarator [43], 
but a similar study in HSX would require the installation of a 
comparable probe array.

5.  Contribution of Reynolds stress to flows  
in different configurations

In section 3.4, it was shown that Er and ∥V  in the Mirror and 
Flip-1-4 configurations deviated more from the neoclassically 
calculated solutions for the flows than they did in the QHS 
configuration. This result is in contradiction to expectations 
that plasmas in these configurations would be driven more 
strongly toward the neoclassical solutions. One reason for this 
observation could be that the Reynolds stress is larger in these 
configurations than it is in the QHS configuration, but this sec-
tion presents measurements showing that this is not the case.

As shown by the differences between the measurements of 
the Reynolds stress made using the LFS and HFS probes in 
figures 11 and 12, it is not appropriate to extrapolate two local 
measurements of the Reynolds stress to a flux surface average. 
To estimate how the Reynolds stress scales with measured 
fluctuating quantities, the Diamond and Kim scaling of the 
Reynolds stress drive is used here, which gives [44]

˜⎛
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⎜

⎞
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where ( )= +c T T m/s e i i  is the sound speed, ρ = Ωc /s s i is 
the sound speed over the ion gyroradius, and θk  is the wave-
number in the bi-normal direction.

Although it contains no cross-phase information, the 
scaling from equation  (13) finds that the Reynolds stress 
drive is expected to scale approximately with the fluctuating 
potential squared. If adiabatic electrons are assumed so that 

˜ ˜≈φe
T

n

ne
, then the normalized density fluctuations can be esti-

mated from the ion saturation current measurements. Using 

=I n eA0.6 T

m
sat i i

e

i
 [45] and assuming quasi-neutrality and 

that electron temperature fluctuations are negligible, the 
measurement can be related directly to the fluctuating density 

so that ˜ ˜
≈n

n

I

I
sat

sat
. Using this approximation, the normalized den-

sity fluctuations as measured by the LFS probe in the QHS, 

Figure 14.  Parallel flow inferred from the saturated evolution of 
equation (9) in the QHS configuration using both the parallel and 
bi-normal components of the Reynolds stress drive measured by the 
(a) LFS and (b) HFS probes.

Figure 15.  Normalized density fluctuation profiles, Ĩsat/Isat, in the 
QHS, Flip-1-4 and Mirror configurations.
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Flip-1-4 and Mirror configurations are plotted in figure  15. 
The Isat measurements from each side of the insulating barrier 
of the mach probe are added together for the total Isat signal 
in this analysis. Filtering of high frequency noise in the Isat 
signals reduced the magnitude of the fluctuation amplitudes 
presented here slightly, but did not alter the qualitative results.

In the Mirror configuration, the normalized magnitude 
of the density fluctuations is about half as large as they are 
in the QHS configuration in the radial region measured by 
the probes. Fluctuations in the Flip-1-4 configuration are 
also reduced slightly relative to the QHS configuration. The 
launched power was the same in all configurations here, 
but the absorbed power was less in the Mirror and Flip-1-4 
cases than in the QHS configuration, so that the total heat 
flux through the last closed flux surface is reduced in these 
cases. This may explain the result of reduced fluctuations in 
the Mirror and Flip-1-4 configuration, which had reduced heat 
flux through the edge.

Combining these measurements with the simple estimate 
of the scaling from figure 15, the Reynolds stress drive would 
be expected to be about 4 times larger in the QHS case than 
in the Mirror configuration. Based on the scaling from equa-
tion (13) and the normalized fluctuations plotted in figure 15, 
the Reynolds stress may still be a large and important term in 
the momentum balance in these configurations, but it is gener-
ally smaller than it is in the QHS configuration. The Reynolds 
stress therefore does not appear to account for the increase in 
flows observed in the Mirror and Flip-1-4 configurations rela-
tive to QHS.

Including the cross-phase information of the locally meas-
ured Reynolds stress in the Mirror and Flip-1-4 configurations 
does not qualitatively change this result [30]. When the pre-
dicted saturated flows are calculated and compared to those 
for the QHS configuration from figure 14, the magnitudes of 
the resulting flows are not significantly larger than the QHS 
case, and the problem remains that the measurements at two 
points on a flux surface differ qualitatively from each other 
and cannot be reliably extrapolated to a flux surface average.

An alternative explanation for the mismatch between cal-
culated and measured flows is that ECRH-driven flux needs 
to be accounted for in the neoclassical modeling, which is left 
for future work. Some additional electron flux would qualita-
tively bring the PENTA modeling into better agreement with 
the flow measurements. Previous studies in HSX have found 
that rotation in the symmetry direction increases when the 
ECRH power is increased, in both the QHS and Flip-1-4 con-
figurations [23]. Injecting additional ECRH power lead to a 
large fast electron population which interfered with the probe 
measurements, so only low-power, high density discharges 
were available for this study.

6.  Discussion

Using Langmuir probes, the measured radial electric field 
and parallel ion flow in the edge of the QHS configuration 
of HSX deviate from the purely neoclassical values that are 
calculated using PENTA. The locally measured Reynolds 

stress gradient on the high and low field sides is large and is 
of opposite sign for the two locations. Therefore, a full flux 
surface average of the Reynolds stress cannot be extrapolated 
from the locally observed fluctuations. However, it is still pos-
sible that Reynolds stress influences the plasma rotation in 
the QHS configuration, but additional modeling is necessary. 
Measurements in configurations with the quasi-symmetry 
degraded are found to have larger flows which deviate from 
the neoclassically calculated flows even more than they did 
in the QHS configuration. At the same time, the fluctuation 
amplitudes for these configurations decrease. This suggests 
that Reynolds stress is not responsible for the additional rota-
tion, although it may still play a role in each case.

The radial electric field in the edge, as measured directly 
and inferred from parallel flow measurements, is found to be 
more positive than what is predicted by neoclassical transport 
codes. A similar result has been observed previously in the 
edge of the LHD [46]. In the LHD case, the measurements 
of radial electric field matched more closely with modeling 
further inside of the device, but the deviation at the edge was 
large. This could be an indication that additional physics such 
as ECRH-driven particle losses or direct loss orbits of col
lisionless trapped electrons may need to be included in the 
modeling to correctly predict Er using the neoclassical ambi-
polarity constraint. Consistent with this hypothesis, the meas-
urements show that the parallel flow becomes more positive 
with the effective ripple.

The results presented here suggest the value of performing 
nonlinear gyrokinetic calculations to understand whether 
Reynolds stress makes a significant contribution to momentum 
balance at the edge of a quasisymmetric stellarator. Such a 
calculation would make it possible to actually determine the 
flux surface average of the drive. In particular, it would then 
be possible to compare the results of the simulations to meas-
urements made at two locations in the torus.
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