
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON PLASMA SCIENCE 1

High-Performance Interpolation of
Stellarator Magnetic Fields

Paul Probert

Abstract—We present a new algorithm for interpolation of
static current-free magnetic fields based on the use of specialized
fourth-degree vector polynomial functions (Maxwell elements)
which solve the static current-free Maxwell equations. This
method provides sufficient accuracy for the demands of stellara-
tor applications and retains a great speed advantage over direct
Biot–Savart calculation of the fields.

Index Terms—Interpolation, magnetic confinement, numerical
analysis, plasma confinement, toroidal magnetic fields.

I. INTRODUCTION

IN STELLARATOR research, it is often necessary to eval-
uate the magnetic field produced by a complicated set of

external coils. To look for magnetic islands, evaluate particle
drifts and losses, or generate magnetic coordinate systems [1],
one may need exceptional accuracy in the calculation. For
example, magnetic islands with a minor radius of just a few
electron gyroradii can affect electron transport. To calculate
field line positions to this accuracy for many orbits around
the machine can require relative errors to be quite small. For
example, given N orbits around a machine with a major radius
of R, a magnetic field of B, and an error in the field of �B, the
field line position error is roughly �p = 2πRN�B/B. This is
assuming a perfect field line integrator and only estimates the
error due to the error in the calculated B. If B is 1 T, the major
radius is 1 m, and the electron energy is 1 keV, then to get the
position error that is comparable to the electron gyroradius for
1000 orbits requires a relative field error �B/B ∼ 10−8.

The most straightforward way to do this is by means of
Biot–Savart integration [2] over the coil current distribution.
The computational cost of this can be high, however, particu-
larly when the coils are complicated and the discrete represen-
tation of the coils is fine grained. This leads one to consider
precalculating the magnetic field on some suitable 3-D grid.
One can then find an approximate field at an arbitrary field point
inside the grid by interpolation. We report here a new method
of interpolating the stored field and its gradient with good speed
and accuracy.

Manuscript received August 24, 2010; revised November 12, 2010; accepted
December 17, 2010. This work was supported by U.S. Department of Energy
under Grant DE-FG02-93ER54222.

The author is with the HSX Plasma Laboratory, Electrical and Computer
Engineering Department, University of Wisconsin–Madison, Madison, WI
53706-1691 USA.

Digital Object Identifier 10.1109/TPS.2011.2105890

II. MAXWELL ELEMENT METHOD

For our purposes here, we always calculate the field gradient
along with the field. Because of the Maxwell equations for a
static magnetic field in a vacuum, ∇ · B = 0, and ∇× B = 0.
The gradient of B can be represented by a symmetric traceless
matrix with five independent numbers. Thus, the field and its
gradient at any given point can be represented by a vector
Yl, l = 1, . . . , 8, comprising three components of B and five
independent components of ∇B

Y(p) =
[
Bx(p), By(p), Bz(p), (∇B(p))xx , (∇B(p))xy ,

(∇B(p))xz , (∇B(p))yy , (∇B(p))yz

]
where the general field point is p = xx̂ + yŷ + zẑ. Here, we
use the standard meaning of ∇Bij = ∂Bi/∂pj . Suppose that
we have these Y values precomputed and stored at regular grid
positions. We seek a general polynomial to express the field
value at some point p = (x, y, z). We expand about some point
p0 = (x0, y0, z0)

B = x̂
i+j+k≤D∑

i,j,k=0

aijk(x − x0)i(y − y0)j(z − z0)k

+ ŷ
i+j+k≤D∑

i,j,k=0

bijk(x − x0)i(y − y0)j(z − z0)k

+ ẑ
i+j+k≤D∑

i,j,k=0

cijk(x − x0)i(y − y0)j(z − z0)k (1)

where D is the maximum degree of the polynomials. We must
solve for the coefficients a, b, and c in terms of the stored field
at surrounding grid points. In order to ensure that the grid is
not too fine (the storage required goes like the cube of the
inverse grid spacing) while still maintaining accuracy, we seek
the highest possible degree polynomials.

The upper limit on the degree D that we can use is set by
the need to solve for the coefficients a, b, and c using a limited
amount of data. In our case of fourth-degree polynomials, we
get a total of 105 unknown coefficients. If we wish to use B
data at the eight nearest points, including the gradients of B,
this supplies only 64 known values to the fitting procedure.
The main idea of this paper is to reduce the number of
terms in these polynomials by applying Maxwell’s equations
to the polynomials and solving for the coefficients, reducing
the number of independent coefficients from 105, in the case

0093-3813/$26.00 © 2011 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON PLASMA SCIENCE

of fourth-degree polynomials, to 35. The technique is simple
but algebraically tedious. Applying ∇ · B = 0 and ∇× B = 0
to (1), the result is a system of four polynomial equations.
Requiring these to hold at all x, y, and z gives sufficient
information to solve for sets of the a, b, and c coefficients. In the
case of fourth-degree polynomials, we obtain 35 separate sets of
these coefficients which solve these equations. We refer to these
35 vector polynomial functions as “Maxwell elements,” which
are similar to the concept of elements in numerical partial
differential equations and finite-element analysis [3]. These
polynomials are also closely related to the “harmonic poly-
nomials” for solving Laplace and wave equations [10], [11].
We group them hereinafter according to the highest powers of
the coordinates in the element (each comma-separated line of
coefficient assignments represents one element).

Constant elements

a000 =1

b000 =1

c000 =1.

Linear elements

b001 = 1, c010 = 1

a001 = 1, c100 = 1

a010 = 1, b100 = 1

a100 = 1, c001 = −1

a100 = 1, b010 = −1.

Quadratic elements

a011 =1, b101 = 1, c110 = 1

a020 =1, a200 = −1, b110 = 2

a002 =1, a200 = −1, c101 = 2

b002 =1, b020 = −1, c011 = 2

a110 =2, b200 = 1, b020 = −1

b011 =2, c020 = 1, c002 = −1

a101 =2, c200 = 1, c002 = −1.

Cubic elements

a111 =6, b021 =−3, b201 =3, c030 =−1, c210 =3

a111 =6, b003 =−1, b201 =3, c210 =3, c012 =−3

a210 =3, a012 =−3, b300 =1, b102 =−3, c111 =−6

a030 =1, a012 =−3, b120 =3, b102 =−3, c111 =−6

a300 =2, a120 =−3, a102 =−3, b210 =−3,

b012 =3, c201 =−3, c021 =3

a102 =3, a120 =−3, b030 =2, b012 =−3,

b210 =−3, c201 =3, c021 =−3

a120 =3, a102 =−3, b210 =3, b012 =−3,

c003 =2, c201 =−3, c021 =−3

a003 =1, a021 =−3, b111 =−6, c102 =3, c120 =−3

a201 = − 3, a021 =3, b111 =6, c300 =−1, c120 =3.

Quartic elements

a400 = 1, a202 = −3, a220 = −3, a022 = 3,

b310 = −2, b112 = 6, c301 = −2, c121 = 6

a040 = 1, a202 = 3, a220 = −3, a022 = −3,

b310 = −2, b130 = 4, b112 = −6, c301 = 2,

c121 = −6

a004 = 1, a202 = −3, a220 = 3, a022 = −3,

b310 = 2, b112 = −6, c301 = −2, c121 = −6,

c103 = 4

a112 = − 6, a310 = 4, a130 = −2, b400 = 1,

b202 = −3, b022 = 3, b220 = −3, c211 = −6,

c031 = 2

a112 = 6, a130 = −2, b040 = 1, b202 = 3,

b022 = −3, b220 = −3, c211 = 6, c031 = −2

a112 = − 6, a130 = 2, b004 = 1, b202 = −3,

b022 = −3, b220 = 3, c013 = 4, c211 = −6,

c031 = −2

a103 = − 2, a121 = −6, a301 = 4, b013 = 2,

b211 = −6, c400 = 1, c220 = −3, c202 = −3,

c022 = 3

a103 = 2, a121 = −6, b013 = −2, b031 = 4,

b211 = −6, c040 = 1, c220 = −3, c202 = 3,

c022 = −3

a103 = − 2, a121 = 6, b013 = −2, b211 = 6,

c004 = 1, c220 = 3, c202 = −3, c022 = −3

a211 = 3, a013 = −1, b103 = −1, b301 = 1,

c112 = −3, c310 = 1

a031 = 1, a013 = −1, b121 = 3, b103 = −1,

c112 = −3, c130 = 1.

Note that, by “element,” we refer to a vector function which
is a polynomial in x, y, z as in (1). By substituting aijk, bijk,
and cijk from any of these 35 lines into (1), one obtains an ele-
ment. We can compute the gradients of each of these elements
analytically and create the quantities Yl designating element m
as Y m

l (p), m = 1, . . . , 35, l = 1, . . . , 8. When interpolating at
some field point, we use the stored data at the eight vertices
pn of the cube surrounding the field point p. For the expansion
point p0 in (1), we use the average position of the eight vertices.
The grid need not be regular, and the points pn need not lie
exactly on the vertices of a cube. Indeed, in our implementation,
the grid points lie on a regular grid in cylindrical coordinate
space, even though the field data are stored as components
in the Cartesian x, y, z space. The precomputed grid data are
generated by running a Biot–Savart routine which uses a model
of the stellarator coils as a sequence of straight current filaments
[2]. Let us represent the data Yl(p) at our field point p as a sum
over the M = 35 elements Y m

l as Yl(p) =
∑M

m=1 fmY m
l (p).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PROBERT: HIGH-PERFORMANCE INTERPOLATION OF STELLARATOR MAGNETIC FIELDS 3

We find the coefficients fm by solving a standard linear least
squares problem [4]. Specifically, we let our error χ be given
by

χ2 =
L∑

l=1

N∑
n=1

[
Yl(pn) −

M∑
m=1

fmY m
l (pn)

]2

.

To find the least squares solution, we differentiate this with
respect to the M coefficients fm and set the result to zero,
obtaining a matrix problem Af = g, where

Auv =
L∑

l=1

N∑
n=1

Y u
l (pn)Y v

l (pn)

gu =
L∑

l=1

N∑
n=1

Yl(pn)Y u
l (pn).

In our routine, this 35 by 35 matrix problem is solved for each
interpolation, yielding the fm coefficients valid for the grid
cell containing the field point p, from which the extrapolated
field and its gradient can be quickly calculated. The size of
this matrix problem is small enough such that modern desktop
processors, using optimized linear algebra routines such as
Atlas [5], can solve the problem entirely in cache memory.
Indeed, we have found by profiling our code that the time spent
in solving this matrix problem is negligibly small. Most of the
time seems to be spent in calculating the values of the elements
to fill the Auv matrix. As a speedup, we save the coefficients
in a buffer in case the next call to the interpolation routine
requests the field at a point in the same cell. We note that, as a
further speedup, one could presolve for the fm coefficients for
all the cells in the grid and store all these sets of coefficients.
The resulting table would be 35/8 times as large, but the routine
would then be very fast. The code for our routine was written in
the open-source language Octave [6]. Many of the subroutines,
such as those for evaluating the elements Y m

l and for generating
the matrix Auv and the vector gu, were written as extensions in
the C++ language for speed. We can also run these programs
using the commercial software Matlab [7], which is a closed-
source language that is mostly compatible with Octave. The
extension routines for Matlab are written in C.

To test the accuracy of the interpolation, we constructed a
test coil consisting of a square loop that is 0.5 m on a side,
and our field point is located about 2 cm from the corner of the
loop, where interpolation is difficult due to strong variations in
the field there. Grids were constructed around this point using
many different grid spacings, and the error in the interpolated
field was evaluated. The results of this test are shown in Fig. 1.
Also shown, for comparison, are interpolations using Octave’s
built-in interp3 routine, using both a linear interpolation and
a cubic spline interpolation. We see that the Maxwell element
interpolation gives a significant advantage in accuracy and
in the dependence of the error on the grid spacing. Another
advantage of this method is that the results are explicitly curl
and divergence free (within a roundoff error), which can be an
advantage in some calculations.

Fig. 1. Interpolation errors versus grid spacing, as the magnitude of the vector
difference between the interpolated field and the exact result, divided by the
magnitude of the exact field. The test problem is described in the text. Also
shown is a line proportional to h5. This verifies that the Maxwell element
method used here, which employs fourth-order polynomials, has an error that
scales properly with the grid spacing h.

Fig. 2. Results of field line tracing for many orbits around the HSX stellarator.
The error is the magnitude of the difference of the field line position at a
fixed toroidal angle relative to that calculated from Biot–Savart integration. The
line tracing integrations were performed using Octave’s lsode package [9] with
relative and absolute tolerances of 10−10.

We have developed this code primarily to conduct research
on the HSX stellarator [8]. This machine has a major radius of
roughly 1.2 m and a minor radius of 0.15 m. We usually operate
the machine in a configuration with stellarator symmetry, which
allows us to generate a grid which only covers one-half field
period. With a 1-cm grid spacing, the stored grid is roughly
14 MB in size. A typical desktop machine can fill such a
table in a few hours. The interpolation error scales as the
fifth power of the grid spacing so that, by reducing the grid
spacing from 1 to 0.63 cm, we gain about a factor of ten in
accuracy. Such a reduction in the grid spacing, however, leads
to grid tables that are about four times as large. To find the
optimum grid spacing, we generated tables at three different
grid spacings and then ran a field line tracing program for
1000 orbits around the machine. To compare, we ran the
same tracing using the Biot–Savart representation of the coils

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON PLASMA SCIENCE

directly. The resulting position errors are shown in Fig. 2. We
see that both 6.3- and 4-mm tables give similar results. We
interpret this to mean that other errors, such as roundoff or
integration errors, dominate over interpolation errors with these
finer tables. We also note that the errors in position for the
6.3- and 4-mm tables, even after 1000 orbits, are less than
the electron gyroradius in our machine (B = 1 T, Te ∼
1000 eV → rge = 10−4 m). There is little or no slowdown
when using tables with the finer grids. Also, since the gradients
of the Maxwell elements are known from analytical differen-
tiation, there is almost no speed penalty when requesting the
gradient of the field during an interpolation.

We note that the time required for these integrations is
roughly a factor of 17 faster using our interpolation routine
compared to the Biot–Savart field evaluation. This is with the
coil representation consisting of 48 coils, each with 840 straight
current filaments representing the turns in the coil. Using a
more complicated and accurate coil representation would slow
down the Biot–Savart method and lengthen the time to fill the
tables initially, but it would have no effect on the interpolation
speed.

There exist related methods for interpolating vector functions
on a grid. By representing the magnetic field as the gradient of
a scalar [12] or as the curl of a vector potential (in [13], tricubic
splines are used to interpolate the vector potential, and the
field is then found by analytically differentiating those spline
formulas), one can do an essentially similar task as what we
do here. It is possible that, by storing only the minimal compo-
nents of the vector potential on the grid (by employing gauge
freedom), one could cut down on the memory requirements.
However, due to differentiation, the B field will be represented
by a polynomial of one degree less than the vector potential,
forcing the polynomial fitting of the vector potential on the grid
to a higher degree in order to obtain the same precision. We
were also motivated to stick with a grid representation of B due
to the existence of Biot–Savart codes for generating B and its
gradient for our machine.

An important restriction on this method is that it is only
applicable to regions where the local current density is zero.
Thus, it is useful to calculate the magnetic field due to coil
sets, but the contribution from plasma currents must be done
separately by other means. Usually, in the course of a compu-
tation, the plasma current distribution is a variable quantity, not
known with great precision, and its magnetic field is a small
fraction of that due to the coils, so such a restriction is not
severe. To remove the current-free restriction on our method
would essentially destroy it by removing our ability to restrict
our fitting parameters to a manageable set of only 35 numbers.

III. CONCLUSION

We have developed an interpolation scheme for 3-D vector
magnetic fields from external coils. This method exploits the
mathematical properties of the field (that it solves the static
current-free Maxwell equations for the magnetic field) to ef-
ficiently fit fourth-degree polynomials to the known data. The
scheme results in a code which is sufficiently accurate for
most stellarator physics calculations while providing significant
speed improvement over Biot–Savart calculations.

REFERENCES

[1] X. Bonnin, A. Mutzke, C. Nuhrenberg, J. Nuhrenberg, and R. Schneider,
“Calculation of magnetic coordinates for stellarator fields including is-
lands and the scrape-off layer,” Nucl. Fusion, vol. 45, no. 1, pp. 22–29,
Jan. 2005.

[2] J. D. Hanson and S. P. Hirshman, “Compact expressions for the
Biot–Savart fields of a filamentary segment,” Phys. Plasmas, vol. 9,
no. 10, pp. 4410–4412, Oct. 2002.

[3] G. Strang and G. Fix, An Analysis of the Finite Element Method.
Wellesley, MA: Wellesly-Cambridge, 1973.

[4] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C, 2nd ed. New York: Cambridge Univ. Press,
1992.

[5] R. C. Whaley and J. J. Dongarra, Conference on High Performance Net-
working and Computing. Los Alamitos, CA: IEEE Comput. Soc. Press,
1998, pp. 1–27.

[6] J. W. Eaton, D. Bateman, and S. Hauberg, GNU Octave Manual Version 3.
Bristol, U.K.: Network Theory Ltd., 2009.

[7] The MathWorks, Inc., MATLAB, The Language of Technical Computing,
6th ed. Natick, MA: MathWorks, Inc., 2002.

[8] F. S. B. Anderson, A. F. Almagri, D. T. Anderson, P. G. Mathews,
J. N. Talmadge, and J. L. Shohet, “Helically symmetric experiment,
(HSX) goals design and status,” Fusion Technol., vol. 27, p. 273, 1995.

[9] K. Radhakrishnan and A. C. Hindmarsh, “Description and use of LSODE,
the Livermore solver for ordinary differential equations,” Lawrence
Livermore Nat. Lab., Livermore, CA, Tech. Rep. UCRL-ID-113855,
Dec. 1993.

[10] E. P. Miles, Jr. and E. Williams, “Basic sets of polynomials for the iterated
laplace and wave equations,” Duke Math. J., vol. 26, no. 1, p. 3540, 1959.

[11] E. P. Miles, Jr. and E. Williams, “A note on basic sets of homogeneous
harmonic polynomials,” Proc. Amer. Math. Soc., vol. 6, no. 2, p. 191,
1955.

[12] H. Wind, “Processing magnetic field data,” J. Comput. Phys., vol. 2, no. 3,
pp. 274–278, Feb. 1968.

[13] J. M. Finn and L. Chacon, “Volume preserving integrators for solenoidal
fields on a grid,” Phys. Plasmas, vol. 12, no. 5, p. 054 503, May 2005.

Paul Probert received the Ph.D. degree from the
University of Wisconsin, Madison, in 1985.

He is currently an Associate Scientist with the
HSX Plasma Laboratory and the Pegasus Toroidal
Experiment, University of Wisconsin. He maintains
gyrotrons, develops instrumentation, writes data ac-
quisition software, and works on RF heating. He
worked on the Phaedrus-B tandem mirror experiment
and designed and built the poloidal field systems
for the Phaedrus-T tokamak. He was also heavily
involved with the RF systems on that experiment.

