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Evolution of the plasma rotation and the radial electric field for a toroidal 
plasma in the Pfirsch-SchlUter and plateau regimes subject 
to a biased electrode 
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Madison, Wisconsin 53 706-1691 

(Received 19 August 1992; accepted 8 December 1992) 

In this paper, the fluid equation approach is used to analyze the time evolution of the plasma 
rotation and the ambipolar electric field in a nonsymmetric toroidal plasma subject to 
an external biasing voltage induced by a probe. Under consideration is a plasma with low 
rotation speed in the Ptirsch-Schliiter or the plateau regime that includes the effects 
of a background neutral gas. A time-dependent charge conservation equation is used to 
determine the ambipolar electric field as a function of time. It is found that, after the 
application of the biasing voltage, the electric field and the plasma rotation change 
quickly and reach steady-state after a time inversely proportional to the sum of the momentum 
damping rates due to parallel viscosity and ion-neutral collisions. The steady state is 
characterized by a radial electric field and a plasma rotation that are proportional to the 
electric current flowing through the biasing probe. The direction of the plasma flow 
is determined by the relative magnitude of the momentum damping rates on the flux surface. 
From the steady-state solution, an expression for the radial electric conductivity is 
obtained, which includes the effect of collisions with neutrals as well as viscosity. Axisymmetric 
systems without neutrals are also discussed, which is a special case since there is no 
momentum damping in the toroidal direction. Here, the toroidal velocity increases 
continuously in time with the bias and never reaches steady state. Finally, a model for 
nonsymmetric magnetic fields is presented and the viscous damping rate, the radial 
conductivity and the spin-up rate for a plasma in the Pfirsch-Schliiter regime are calculated. 
As examples, the cases of the rippled tokamak and the classical and helically symmetric 
stellarators are evaluated. 

I. INTRODUCTION 

The determination of the plasma rotation velocity and 
the ambipolar (radial) electric field in toroidal plasmas has 
been a controversial issue since the beginning of fusion 
research to the present. Based on neoclassical transport 
theory, the diffusion in axisymmetric systems is intrinsi- 
cally ambipolar. ls2 To determine the ambipolar electric 
field, it is necessary that calculations be done at higher 
order in the iterative scheme’ or that external momentum 
losses or sources be included.4 The buildup phase of the 
ambipolar field has been described by Hirshman.’ It in- 
volves a dynamic nonambipolar phase, where the momen- 
tum of the plasma is damped in the poloidal direction at a 
fast rate by the viscosity and in the toroidal direction at a 
slow rate by weak processes such as charge exchange. In 
nonsymmetric systems, the diffusion is not intrinsicahy 
ambipolar and the radial electric field can be calculated 
using the steady-state diffusion fluxes.‘?’ However, ‘time- 
dependent equations should be used to analyze the solu- 
tions when the plasma is in a low collisionality regime since 
multivalued roots can appear.’ 

With the observation in tokamaks of the transition 
from the low to the high confinement regime (L-H tran- 

‘)Permanent address: Institute de Ciencias Nucleares, Universidad Na- 
cional Authoma de Mtxico, c.p. 70-543, 04510 Mexico D.F. 

sition) and the experimentally observed changes in the 
plasma rotation and the radial electric field, the problem of 
determining the ambipolar electric field and the plasma 
rotation in a tokamak has received renewed interest.‘O”’ 
To artificially induce the L-H transition in tokamaks, 
strong radial electric fields have been set up through the 
application of an electrode bias.12’13 In this paper, we do 
not aim for a description of the L-H transition, which 
requires the assumption of strong plasma rotation. 1o114J5 
Instead, we develop a model using neoclassical fluid the- 
ory, assuming low rotation speed, to study the dynamics of 
the ambipolar electric field and the plasma rotation in an 
axisymmetric or nonsymmetric system after the applica- 
tion of a bias voltage with an electrode. A positive bias 
produces a radially inward electric current (i.e., outward 
electron flow) in the bias electrode. To maintain neutrality, 
a radially outward electric current should flow in the 
plasma in the region between the magnetic surface where 
the biasing electrode is located and the vacuum chamber or 
the limiter. After a fast transient, when the radial electric 
field and the plasma rotation increase, a steady state is 
reached because of momentum damping produced by vis- 
cosity and collisions with neutrals. In the new steady state, 
the radial electric field is related to the radial current and 
thus an expression for the radial electric conductivity can 
be derived. 
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By using an electrode to bias a toroidal plasma, we 
obtain a steady-state radial electric current. This radial 
current can just as well be produced by ions in loss orbits 
as in the model by Shaing,” nonambipolar electron losses 
as described by Itoh,16 anomalous viscosity as assumed by 
Rozhanskii and Tendler,i7 or by the anomalous diffusion of 
suprathermal electrons in the model for auto-oscillating 
L-H transitions.18 

In the moment approach to neoclassical transport the- 
ory, the fluid equations used to describe the time evolution 
of the ambipolar electric field in nonsymmetric systems 
have been brie5y discussed by Shaing,” following the basic 
ideas for axisymmetric systems by Hirshman,* for the case 
of free relaxation to equilibrium without neutral gas effects, 
and without external radial electric currents. In this paper, 
we analyze the problem of the evolution in time and 
steady-state behavior of the plasma rotation and the ambi- 
polar electric field in a nonsymmetric toroidal plasma in 
presence of an external radial current and a background 
neutral gas. In addition, we solve the equations for the case 
of low plasma rotation speed and a collisionality in the 
Pfirsch-Schliiter or plateau regimes where the drag due to 
the parallel viscosity increases linearly with the velocity. 
We use the 5uid approach to neoclassical transport 
theory,20*21 ‘and neglect heat fluxes (i.e., temperature gra- 
dients), as well as electron viscosity, since the ratio of 
electron viscosity to ion viscosity is proportional to 
(m$m,) 1’2 for the regimes in consideration. We also as- 
sume that the density does not change during the time in 
which the electric field increases. This is not completely 
correct since both the ambipolar field and the density pro- 
file are based on the same process, which is particle diffu- 
sion. However, there is a fast time scale on which only the 
electric field changes and a slow scale at which both the 
density gradient and the electric field change together.g 
Our concern is mainly with the fast time scale. 

Our paper is organized as follows; in Sec. II, we 
present the time-dependent moment approach and our 
scaling. In Sec. III, we deal with the problem of determin- 
ing the radial current and plasma rotation in terms of the 
bias current, parallel viscosity, and collisions with neutrals. 
Section IV is devoted to the steady state, where we present 
expressions for the radial conductivity, ambipolar electric 
field, and plasma rotation. Section V treats the dynamics of 
the electric field and plasma rotation, and Sec. VI considers 
the application of the biasing voltage, where an expression 
for the relaxation time is derived. In Sec. VII, we evaluate 
the viscous damping, the electrical conductivity, and the 
relaxation time for a plasma in the Pfirsch-Schliiter regime 
using a model for an arbitrary magnetic field. This provides 
us with concise and useful formulas, which we then eval- 
uate for the case of a tokamak with ripples, a helically 
symmetric stellarator, and a classical stellarator. 

II. THE MOMENT APPROACH AND THE MODEL 

Consider a plasma composed of two charged species 
and neutral atoms in a toroidal magnetic field which may 
be axisymmetric or nonsymmetric. To describe the plasma 

dynamics, we make use of the 5uid approach to neoclassi- 
cal transport theory.8,20p21 The momentum balance equa- 
tion is 

wz maa ~+w?faW,*V)U, 

=eJVa( *+T) -VP,--V*~~+F,-rn~=~=,U, 

(1) 
and the continuity equation is given by 

The subscript “a” accounts for the plasma species and m,, 
e,, N,, and U, are the mass, ebctric charge, particle den- 
sity, and fluid velocity, respectively, F, is the friction due to 
Coulomb collisions, and -mJf=v,, U, gives the drag due 
to the interaction of the charged particles with the neutrals, 
where Vet is the momentum damping rate. Also, p. is the 
pressure, which we assume is given byp,=N,T, where T, 
is the plasma temperature, and ii, is the viscosity tensor 
that takes account of neoclassical effects. Here, E and B are 
the electric and magnetic fields,-respectively, which in prin- 
ciple have to be determined self-consistently using Max- 
well’s equations and the moment equations. 

To close the hierarchy of the moment equations in the 
two lowest-order moments, i.e., Eqs. (1) and (2), we ne- 
glect in this paper the heat flux, which requires a constant 
temperature VT,=O. Also, we provide expressions for F 
and ~7~ in terms of the particle densities N, and the mac- 
roscopic velocities U,. For the friction force, we useU’ 

Fi=mfliv,(U,-Ui),. (3) 

where vie is the collision frequency of ions with electrons. 
Because of momentum conservation, it holds that 
F,= -F, which means mflivi,=mJVeve, For the viscos- 
ity, we consider the expressions resulting from the parallel 
viscosity, which are given below in Sec. IV. 

In this paper, we make use of the standard expansion 
scheme in the parameter gyroradius over characteristic- 
system-length, E= R/L,22 (there are two parameters since 
the gyroradius is different for ions and electrons). We take 
the ordering: Ua/V*h,Ll -O(R,JL) and VE=cE/B 
.- Vi- U,, where ttth,= is the thermal speed of the particle 
species a, and V, is the electric drift velocity. We consider 
a pressure anisotropy proportional to R/L, where L is a 
characteristic length of the system, thus 
1 V l ;a ] / j Vp, ] - O( R,,/L) .22 When large gradients exist 
in the plasma (a characteristic of the H regime), this 
length L may take values smaller that the torus minor 
radius. In this work, we assume that the pressure anisot- 
ropy remains small enough so that the ideal magnetohy- 
drodynamic (MHD) equilibrium is still valid to lowest 
order. We also consider T,- T,, ViJWgl5 0( Rgi/ L), 
Yin/W,;5 O(Rgi/L), and vJw~~zS O(R,JL), where ~z,= is 
the gyrofrequency of the plasma species Q. For the time 
dependence, we assume that [ ( l/U,) (av,/at)]/w,, 
- O(Rgi/L) and XJJ&-NJi/&, together with 
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(arv,/at)/(V*N,U,> -O(Rga,L). We also consider the 
presence of a loop voltage, whose electric field EL is a 
first-order quantity. 

With this ordering, the momentum balance equation to 
lowest order in (RdL) gives 

e,J?p’ E(o)+” U’O’XB’O’ =vp(o) 
c a 1 

a 

and the continuity equation yields 

(4) 

v . &qJ’O’ =(-J lza - (5) 

Here, the superscript (0) means lowest-order quantity. 
By summing Eqs. (4) and (5) over the charged species 

and assuming quasineutrality, it follows 

fJio)XB(O)+o' (6) 

v. J’o’=O , (7) 
where JL”’ = Z~fl~“)U~o’ and p”) = Szi’). These equa- 
tions together with the lowest-order Maxwell’s equation, 

V.E’“‘=4~p’0’=0, (8) 

VXE”‘=O, (9) 

V*B’“‘=O , (10) 

VXB”’ = (4?r/c) Jcol , (11) 
give the ideal magnetohydrodynamic equations that deter- 
mine the plasma equilibrium. From Eq. (9) it follows that 
E(O) is electrostatic, E(O)= -WC”. We assume there ex- 
ists a solution of these equations with a magnetic field that 
has well-defined nested magnetic surfaces, which we label 
by the volume V that they enclose. 

The first-order momentum balance equations contain 
resistivity, viscosity, and neutral drag. For the ions, it is 
given by 

~“‘+i uI”XB’O’+~ U!“‘xB’l) 
c c l 

where the superscript ( 1) labels the first-order quantities. 
Since we are considering low rotation speeds, the inertia 
term is second order, and therefore we neglect it. For elec- 
trons, the momentum balance equation to first order 
[which contains terms of order (m/m,) “’ (RJL)] is 

eN’ 1) e E’o’+! u(o) XB’O’ 
e e 

XB’O’+: U’“‘XB”’ 

c e 

+mJ#O)v .(u(“)-TJ!o))=O. e er e e (13) 
The first-order electric field, E(‘) in Eqs. ( 12) and ( 131, 
contains the toroidal electric field due to the loop voltage 
fiL. 

The continuity equation takes the form 

aiv:Ol 
at+V. (N~“ki~“+N~“u~o’) =o. 

Equations ( 12)-( 14) should be solved simultaneously 
with the first-order Maxwell’s equations, which are 

VXB(l’ 4n 1 t3Eco’ 
=c J”‘+cT, 

(16) 

V* Ef’)=47rp “‘=O, and V*B”‘=O, where p’” is the 
first-order charge density that is equal to zero outside or 
inside the magnetic surface where the biasing probe is lo- 
cated. The first-order current density is J”] 
=+& (#O’UW+j$r”‘U’O’) 

If’we (Iconzder t& &&z;component of Eq. ( 15) [i.e., 
VV. Eq. ( 15 )] and perform a volume integral in any re- 
gion between two magnetic surfaces, divide it by the vol- 
ume enclosed, and then take the limit when the thickness 
of this region vanishes, we obtain5 

a(E(O) 9 v v) 
at 

= -47r(J”)W’), (1%) 

where (VV*VXB”‘)=O was used and (f) represents the 
surface average off: Equation ( 17a) describes a dynamic 
ambipolar condition. A positive radial current reduces the 
radial electric field, and this current changes the electric 
field in such a way to reduce the radial plasma current 
(assuming the current is proportional to the electric field). 
To maintain the plasma neutrality in steady state, the net 
radial current should vanish: 

(J(‘)+V)=O. (17b) 
To simplify the mathematics, we will consider a 

plasma with a low /3 value, so that the feedback of the 
particle diffusion on the lowest-order magnetic field struc- 
ture can be neglected. Therefore, in Eqs. ( 12)-( 16), we set 
B(l)=0 and dB”‘/dt=O. From here on we will drop the 
superscript (0) in B(O). 

III. RADIAL ClJRRENT AND PLASMA SPIN-UP 

Let us assume the magnetic field B is given and there- 
fore we can determine the ion and electron fluid velocity 
from Eqs. (4) and (S), as a function of the radial electric 
field, - V#“, and particIe density (recall that the temper- 
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ature gradient is assumed to be zero). The time behavior of 
these velocities is then determined by the time dependence 
in the electric field, since as discussed above, we are con- 
sidering a fast relaxation phase, keeping the density con- 
stant in time. 

By considering the component of Eq. (4) in the par- 
allel direction (to B), assuming that quasineutrality holds 
and that magnetic surfaces are equipotentials, i.e., 
B l VQ>“’ =0, we find that B l VP:’ =O. Thus we can write 
Q(‘)=@(‘)( V,t) andp,=p,( V). We can write the perpen- 
dicular (to B) component of Vi” as 

(18) 

where the prime indicates the derivative with respect to the 
volume V. Note that, to this order, the plasma flow is 
entirely in the magnetic surface, UL”) * V V=O, and no dif- 
fusion is present. 

The parallel component of UL”’ can be determined 
from Eq. (5), i.e., 

v  l Ui”b= - v  l upa (19) 

together with Eq. ( 18) and p$“’ =Ni”T,. 
To solve Eq. (19) for U\‘ln, it is useful to employ 

Hamada coordinates 23 {V,8,[) in which the Jacobian is 
equal to one, and 8 and c are poloidal and toroidal angles 
varying from zero to one. In these coordinates, both the 
magnetic field 

B=B’( V)ee+Bc( V>e, 

and the plasma velocity of the two species 
(20) 

UL”)= c( V,t)ee+ U$( V,t>e[ (21) 

are described by a straight line; i.e., their contravariant 
components are surface constants. A big advantage of this 
coordinate system over others is that the time dependence 
of the velocity appears only coupled with the coordinate V 
and not with 19 and c. 

The solution of Bq. (19) in Hamada coordinates is24 

j& B+&B, (22) 

where B ,=B -eg is the poloidal covariant component of 
the magnetic field, which is a function of V, 8, and 5. The 
ilrst part of U~“~a makes Vi’) divergence free, and therefore 
contains the so-called Pfirsch-Schltiter or return flo~s.‘~ 
The second part is divergence free since il, is a (unknown) 
function of only V and time. 

By combining Eqs. ( 18) and (22), we can write the 
contravariant components of UL”’ as 

c+c 
1 

w(O) +---&ipP;‘“’ 
a 

-$+&Be, (234 

As usual in the moment approach to neoclassical 
transport theory,8120*21 the constant A2, is to be determined 
through the first-order parallel momentuxn balance equa- 

tions, as we show below. This constant /2, couples the po- 
loidal and toroidal components of the velocity together. 

Let us consider the scalar products of Eqs. (12) and 
( 13) with B and take the surface average. It results in 

minTi”’ & (B . Uy’) 

= - (B. V 0 6=i) -n&‘)qn(B. Uj”)) 

+(B*F.)+eN!“(EL*B) f I (24) 

and 

(B*F)-eeN”‘(EL*B)=O e e , (25) 

where EC’) = -VI?” + E,, and the expression in E!q. (3) 
together with the identity (B l Vf) =0 (valid for any scalar 
function j’) were used. Equation (25) is Ohm’s law since 
F,= (mjvide)J; hence, the parallel current is Ohmic and 
no bootstrap current is present (within this ordering the 
electron viscosity is neglected) .24 By adding Eqs. (24) and 
(25) we obtain 

= - (B. v. $0') I 

Here, the friction force and the electric field EL drop out. 
Therefore the equations for the ions are completely decou- 
pled from the equations for the electrons. 

We consider now the poloidal component of the 
magnetic field defined as B,=Be( V)ee and take the sca- 
lar product of F!qs. (12) and (13) with BP It should 
be pointed out here that BP is defined in Hamada coordi- 
nates and that it satisfies V 0 B,= 0. The surface average of 
Bp* [Eq. (12)] yields 

-mgVi(“‘vin(Bp~ Uj”‘) + (BP’ Fi”); (27) 

and the equivalent equation for the electrons gives 

O=B’Bcz (l$“*VV)+(B,~F,), (28) 

where r(‘)~N(O)U(‘)+N(‘)U(‘) is the particle flow. In (I a D a ll 
Bqs. (27) and (28), (BP-EL)=0 was used, since no net 
voltage difference appears with a turn in the poloidal di- 
rection. 

We can now add these last two equations to find 
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m$d”) 
8(Bp‘ U{“) 

r at 

BeBC 
-T(J(').Vv) 

-(Bp~V~ii~)-mmiNi(o’~in(BP~U~o’) I I - (29) 
Here, J(l) l V V is the radial electric current flowing in the 
plasma. In steady state, this current should vanish. This is 
not true, however, when an external mechanism driving a 
radial current is present, as, for example, in the case of a 
biasing probe, or for the radial currents involved in some of 
the L-H transition models’01’“‘8 or for stochastic fluctua- 
tions that produce nonintrinsically ambipolar radial diffu- 
sion or for any other nonintrinsically ambipolar mecha- 
nism (such as other higher-order effects mentioned in Ref. 
25). In these situations, the total net radial current should 
vanish to guarantee plasma neutrality, that is 

(J~;,Ft’~VV>=~Jcl~~Vv>+(J~~t’~Vv>=O. (30) 
This condition forces the neoclassical (internal) plasma 
currents (J (*) l V v) to adjust to a new value. 

In a perfectly axisymmetric tokamak without neutrals, 
the neoclassical diffusion is intrinsically ambipolar, as men- 
tioned above. This can also be seen straightforwardly from 
an equation equivalent to Bq. (29) with the toroidal com- 
ponent instead of the poloidal one. In steady state and 
without neutrals, it reads 

(31) 

In axisymmetric plasmas, (Br l V l iii) = 0, and therefore 
(J”’ l VV) =0.26 Thus, as mentioned in Ref. 25, a neoclas- 
sical tokamak in steady state cannot support any external 
radial current unless a nonintrinsically ambipolar diffusion 
mechanism is also available [like momentum exchange 
with neutrals in Bq. (29)]. 

When an external radial current is present, the time- 
dependent equation ( 17a) should be modified to have the 
total current instead of J(‘), i.e., 

cY(E(‘)*VV) 
at =-4~((J”)~VV)+(Jb::.VV>), (32) 

and consequently, in steady state (Jtot *VP’) =O. 
Let us now go back to Bq. (29) and discuss the plasma 

spin-up process due to the presence of external radial cur- 
rents. Let us, for the moment, assume that viscosity is not 
present and that we are in a steady-state phase without a 
radial current, which implies (BP-U) =O. At a certain 
time, we switch on an external radial current. According to 
Bq, (30)) the external current will require an internal cur- 
rent and therefore Bq. (29) describes a forced poloidal 
spin-up with damping due to collisions with neutrals. The 
new steady state is characterized by a nonvanishing poloi- 
da1 rotation whose magnitude depends on (JeXt *V V). In 
reality, the problem is more complicated since instead of 
the steady-state condition (3 1 ), we should use Bq. (32). 
Thus the electric field appears explicitly in Bq. (29) and 

therefore this equation may be seen as an equation for 
Q’(O) after substitution of Uj in terms of a’(‘) using ex- 
pressions in (23). This introduces another problem be- 
cause these expressions involve the constant R, which in 
turn is to be determined using Bq. (26). Thus Bqs. (26), 
(291, and (32) must be solved simultaneously. The same 
equation structure appears when we also take the viscosity 
into account, since in general, viscosity couples the poloi- 
dal and the parallel (or the toroidal) velocities via the 
magnetic field inhomogeneities. 

IV. RADIAL CONDUCTIVITY AND STEADY-STATE 
AMBIPOLAR ELECTRiC FIELD AND PLASMA 
ROTATION 

Let us now consider the steady state and find the rela- 
tionship between the radial electric field and the radial 
current. In steady state, Eqs. (26) and (29) are 

o=(BoV~iii)-tmiNi”‘Yin(B*Ui), (33) 
and 

BeB’ “‘*VV)=(B,~V~~j~+m~~O’~i,(Bp.Ui). -y- (J 

(34) 
The first equation determines the surface constant Ai from 
Eqs. (23); this means that the ion velocity is completely 
determined in terms of the electric field, the ion pressure, 
and the momentum losses. By substituting Bqs. (23) into 
Bq. (34), we obtain the radial current in terms of the 
electric field and the pressure, and from here, we obtain an 
expression for the radial electric conductivity. 

For the viscosity, we only take the parallel viscosity, 
which is the dominant term in magnetized plasmas, and we 
neglect the perpendicular viscosity and the gyroviscosity. 
The parallel viscosity describes the exchange of momentum 
between the plasma and the magnetic field occurring 
within magnetic surfaces (magnetic pumping) and does 
not contain the exchange of momentum between plasma 
regions in neighboring magnetic surfaces. Parallel viscosity 
involves poloidal and toroidal derivatives of the velocity 
(not radial derivatives) that can be evaluated in terms of 
poloidal and toroidal derivatives of the magnetic field. In 
the case of low rotation speeds, it is found that the parallel 
viscosity expressions are linear in the velocity.20*21S28 In axi- 
symmetric systems, the contribution of the parallel viscos- 
ity to the momentum balance in the direction of symmetry 
(toroidal direction) vanishes. If one ignores ion-neutral 
collisions, then there exists an instability in the toroidal 
rotation as described in the Appendix. Within the frame- 
work of neoclassical theory, it means that higher-order mo- 
mentum dissipative terms, such as gyroviscosity and per- 
pendicular viscosity, should be taken into account in the 
toroidal momentum balance. 

The expressions we use for the parallel viscosity are 
(B*V*ii~>=~eU@+,+U’, Wal 

(Bp.V.ijj)=~IP)UB+Ct~‘U~, (3%) 

and 
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( B p V  l Z j )  =piT’ u e + p ; T )  &  (35c )  

N o te  th a t th e  m a g n e tic fie l d  st ructure is fo l d e d  into th e  1 ~  
c o e fficie n ts. As  wil l  b e  s h o w n  explicit ly in  S e c . V II, exp res -  
s ions ( 3 5 )  fo r  th e  P f i rsch-Schl i i ter  r e g i m e  satisf ies 
B$y;‘,=  B e ,uQT)  to g e th e r  wi th p L e = p g P )  + p e T )  a n d  
p c = # )  + p y )  ( these  re la t ions a lso  h o l d  in  th e  p la teau  
r e g i m e ) . T h e  a d v a n ta g e  o f us ing  H a m a d a  coo rd i na tes  is 
a p p a r e n t h e r e , s ince th e  velocity c o m p o n e n ts a r e  sur face 
constants  a n d  a r e  c o m p l e te ly  d e c o u p l e d  f rom th e  g e o m e -  
try. 

In  desc r ib ing  E q s . ( 3 ~ 9 , th e  sta tic a s s u m p tio n  was  
m a d e ,5  wh ich  m e a n s  th a t ions  shou ld  r e m a i n  in  quas i ther -  
m a 1  equ i l ib r ium.  S trictly. speak ing , th is  restricts o u r  m o d e l 
to  re laxa t ion  tim e s  l a rge r  th a n  vii’. 

By  us ing  E q s . ( 2 3 )  a n d  ( 3 5 a )  in  E q . ( 3 3 ) , it fo l lows 

w h e r e  B  *,o =  B e p e +  Bc,us, a n d  th e  superscr ip t  (0 )  h a s  
b e e n  d r o p p e d  f rom th e  lowes t -o rder  q u a n tities. 

E q u a tio n s  ( 2 3 )  fo r  th e  i on  velocity th e n  b e c o m e  

(  B - p + + f lpdB2)  1  ’ 
( 3 7 a )  

a n d  

(i i-= -c(w + & p ;) ,;:;;;;;l;;$ j, : (3% ) 
By  subst i tut ing E q s . ( 3 5 b )  a n d  ( 2 1 )  in  E q . (34 ) )  it fo l lows 
th a t 

( B P * B T )  
(B;)  (38)  

w h e r e  th e  d e fin i t ions o f B p , B , a n d  t=  B e /B e  ( the  r o ta -  
tio n a l  t ransform)  w e r e  u s e d , a n d  th e  m o m e n tu m  d a m p ing  
r a tes  d u e  to  po lo ida l  viscosity a r e  d e fh - r e d  as  

(P),  
/L ip’ B e  

Y e  
(P)-  &- *  

m ,nT,(B$)  ’ vC = m fl i (B$) * ( 3 9 4  

It is a p p r o p r i a te  to  p r e s e n t h e r e  s o m e  m o m e n tu m  d a m p ing  
r a tes  th a t w e  a r e  g o i n g  to  u s e  later.  T h e y  a r e  th e  d a m p ing  
r a tes  d u e  to  th e  para l le l  viscosity 

Qz:, i2vi(  3  vcem# i (B2)  f 

a n d  th e  d a m p ing  r a tes  d u e  to  to ro ida l  viscosity 

piT’ B c  
“eT)  = m i N i <  $  

(T)- d T ) B S  
vc = m fli( @ p.) ’ 

( 3 % )  

(38c )  

Fo r  th e  P t lrsch-Schlt i ter a n d  p la teau  reg imes , it ho lds  th a t 
(B;)  v ;~=~~(B ; )v~~)  a n d  v$‘) a n d  v ~ ’ a r e  a lways  pos i -  
tive , b u t vbT)  m a y  b e c o m e  n e g a tive  in  s o m e  cases.  

By  subst i tut ing E q s . ( 3 7 )  in to E q . ( 3 8 ) , us ing  
p ’ ‘V p  * e u  a n d  C p ’ =  - E  * e , to g e th e r  wi th e ,= V V / 1  V  V )  ‘. 
W e  o b ta in  

(J(“+ ‘v ) = a , E V V - - - & ,V ~ ~ V V  
I 

( 4 0 )  

w h e r e  a , is th e  p l a s m a  rad ia l  c o n d u c tivity g i ven  by  

C ”m  iN i  (B ; )  

O ’= ( h ’,+v~+v in )  IV V 1 2 ( B B B ~ ) 2  I 
(vy) fv. In )  

( 4 1 )  

T h e  d imens ions  o f a , a r e  (set)  -  ’ s ince w e  a r e  us ing  G a u s s -  
i an  units. E q u a tio n  ( 4 0 )  g ives th e  sur face a v e r a g e  o f th e  
rad ia l  cur ren t  d u e  to  a  rad ia l  electr ic fie l d  a n d  a  rad ia l  i on  
p ressu re  g r a d i e n t. 

In  th e  lim itin g  case  w h e n  col l is ions o f ions  wi th n e u -  
trals a r e  neg l ig ib le ,  w e  o b ta in  

c2mJ?; (  B $ )  
O ”( tv ,+v~) (BeB’) 2 ~ V V ~ 2 ”ve  

@ +  v ~ ‘ve)  . ( 4 2 )  

By  reca l l ing  th e  d e fin i t ion o f th e  v’s, w e  c a n  s h o w  th a t 
a ,> O . In  ax isymmetr ic  systems, w e  h a v e  (Br *V* i i , )==O 
a n d  ~ C = y ~ ) = ~ ~ ) = & T ) = O , wh ich  impl ies  a ,= O . Th is  
shows  th a t, fo r  ax isymmetr ic  systems th a t a r e  in  ste a d y  
sta te , th e  neoc lass ica l  d i f fus ion is intr insical ly a m b ipo la r  
a n d  th u s  th e  rad ia l  cur ren t  van ishes  i n d e p e n d e n tly o f th e  
va lue  o f < p ’ a n d  o f . 

In  th e  lim itin g  case  w h e n  viscosity e ffects a r e  neg l ig ib le  
c o m p a r e d  to  d a m p ing  c a u s e d  by  col l is ions wi th n e u trals, 
w e  o b ta in  

c2milviv,  (  (  B 2 >  ( B ;) -  (  B e B e )  (BP*  B r )  )  
O r =  (B2 )  IV V 1 2 (  B e B c ) 2  * (43)  

In  th e  lim itin g  case  o f a  la rge-aspect - ra t io  to k a m a k , w e  c a n  
eva lua te  th is  exp ress ion  us ing  th e  c o r r e s p o n d i n g  H a m a d a  
coo rd i na te 2 9  to  o b ta in  

a,=  3  ( 1 + 2 4 2 > ,  
(  1  B  

( 4 4 )  

w h e r e  og i=eB/mic  is th e  gyro f requency ,  a n d  q =  l/i is th e  
safety factor.  Th is  resul t  a g r e e s  wi th p rev ious  
ca lcu la t ions.13’3 0  T h e  first fac tor  g ives th e  classical  p e r p e n -  
d icu la r  c o n d u c tivity, a n d  th e  te r m  (  1  +  2 2 )  is th e  P firsch- 
Schl i i ter  e n h a n c e m e n t factor  d u e  to  toroidici ty.  

A  steady-s ta te  p l a s m a  wi thout  externa l  cur rents  re -  
qu i res  (J”’ l  V V )  = 0 , a n d  th e r e fo r e  f rom E q . ( 4 0 )  it fo l -  
lows 

a ’=  -  ( l /eNi)pf, ( 4 5 )  
wh ich  fo r  constant  te m p e r a tu r e  g ives th e  B o ltzm a n n  re la -  
tio n  N i=  N o  exp (  -eQ/kTi) .  This  cond i t ion  in  tu r n  im-  
p l ies f rom E q . ( 3 7 )  th a t U j = O , i.e ., n o  a v e r a g e  i on  m o tio n . 
As  d iscussed b e fo r e , E q . ( 4 5 )  is inva l id  fo r  a n  ax isymmet-  
r ic system wi thout  n e u trals, s ince a ,= @  th u s  a  rad ia l  e lec-  
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tric tield in a puret’y neoclassical tokamak plasma without 
neutrals does not produce any radial current (diffusion is 
intrinsically ambipolar). 

In steady state with an external radial current, Bqs. 
(30) and (40) imply that the electric field is given by 

(46) 

In the limiting case of negligible viscosity and a large 
aspect-ratio tokamak with neutrals, we obtain 

I ext 
( l+2$)(4v-?Ro)” (47) 

where V V= 4&R,? and ( JeXt l V V)/ 1 V V I = I,,,/47?rRo 
were used; here, I,, is the total external radial current, and 
r and R. are the plasma radius and the tokamak major 
radius, respectively. The sign of the current carried should 
be properly taken into account when evaluating lext; in a 
biasing experiment with positive voltage, there is a radial 
outward flow of electrons in the biased electrode, and 
therefore Iext is negative. This gives a positive radial elec- 
tric field, which accounts for an increment in the radial ion 
flow in the plasma that should compensate the electron 
flow in the biased electrode. 

By substituting Eq. (46) in Bqs. (37) and the result in 
Bq. (2 1) , we obtain that the ion velocity (plasma rotation ) 
is proportional to the external current, 

(48) 

where Ki is a dimensionless vector whose magnitude and 
direction are determined by the ion momentum damping 
rates. It is given by 

Ki= 
eNi c @T-B) 

~rlvvl BeBS(fve+vC+vin) "c+ (~2) 

(49) 

In the limiting case of a large-aspect-ratio tokamak29 with 
negligible viscosity, we obtain [to lowest order in (r/R,)] 

KG* G-29 cos +-GA (50) 

where b and 3 are the poloidal and toroidal basis vectors in 
the standard orthogonal toroidal coordinate system (labo- 
ratory system ) . 

V. DYNAMICS OF THE AMBIPOLAR FIELD AND THE 
PLASMA ROTATION 

Let us now consider the dynamics of the ambipolar 
electric field and the plasma rotation assuming we are in a 
steady state, and at a given time we start externally driving 
a radial current. As shown in Bq. (29), this radial current 
produces a change in poloidal velocity, which works 
against the damping caused by the neutrals and the viscos- 
ity. The viscosity in turn involves the toroidal (or the par- 
allel) component of the velocity, and therefore couples Bq. 

(29) to Eq. (26). These equations should be written in 
terms of the electric potential using Eq. (37) and solved 
together with the dynamic ambipolar condition, Eq* (32), 
where (E (‘I l V V) = - Q’ 1 V V 1 2. Recall that we are assum- 
ing that the plasma density keeps constant during this pro- 
cess. Without this assumption, we would need to solve 
simultaneously the three equations mentioned above, plus 
the electron radial transport equation and the continuity 
equations for ions and electrons, which is beyond the scope 
of this paper. 

By using BP’ Ui= Be(ggJJ@-I-gq~), with gee=ee-ee 
and ge5=ee* et, and employing Bq. (35b) together with 
expressions (23) and Eq. (32) we obtain the following 
equation for @’ and iii (which is the constant part of the 
parallel ion velocity) : 

aw 
al(V) 

ail, 
-=g-+q( V) z+bl( V)*‘+&( V)Ri=C,( VJ), 

(51) 
where @=@( V,t), /2i=Li( V,t), and 

( B@.&2pv12 
* + 4r$mfli( pp) 

BeBS (B l BP) 
’ a2 =- c 0, 

(524 

b,=vp+v. Nit 

Be& 
b2=y- 

@*BP) 
Vi" + qVlp' + (B2p) Vie P (52b) 

( B*Bq2 Pi’ 
Cl=-- (Jext.vO-(V#“+Vin) z,. VW 

By writing B l Ui= B&@-t B$$ and using Bq. (35a) and 
expressions (23) in Eq. (26) we obtain an equation similar 
to Eq. (51). This is 

aw 
a3( VI 

dili 
,,+a4(V) ,,+b3(V)@'+b4( V)J+i=C2(V), 

(53) 
where 

(B* BP) Be& 
a3= (B2j , a4=7, W-4 

63=tVe+‘~~~f Viny b4=7(he+V5+ViN), 

(54b) 

C2= - ( he+ ‘yiyf Vfn) $, I I (54c) 

In this equation set, the constants a’s are geometrical fac- 
tors, the constants b’s are damping rates, and the constants 
C’s play the role of sources. It describes a forced motion 
with damping, To solve these equations, we write them in 
matrix form: 

(55) 
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For very general types of toroidal configurations, it holds 
that d-r exists, and we can write 

1 
X2(t) =’ (y2-y,)d12 I. (y1-4Wltf) 

where 9 = -G?- ’ 34’ and S = .JZ’- ‘C. The components of 
the vector S are 

S1= (a&-a&)/A, 

&= (a&2-+C1)/A, 
and the matrix entries of 9 are 

&== (ah--a&d/A, 

d12= (a&4-a4b2)/A, 

&I= (a& -alb,)/A, 
i 

d22= (a&,--alb4)/A, ’ 

where _. - 
AFdet(&) 

=(BBBs/c)[l-(B*Bp)2/(B2)(B~) 

+(B”B’jVV[ )2/47T&?2iNj(B~)]. 

(57a) 

The solution of the homogeneous part of Eq. (56) gives 

&f(t) =w +p2g2 9 (58) 

where PI and P2 are constants, and 

h=ey’f( (yj-;~l),~12)~ ’ 
with j= 1 or 2. Here, y1 and y2 are growth (or relaxation) 
rates that are determined from the characteristic equation 
(4,--y) t&-y) =h2 4,; it gives.. 

Yl 1 
Y2 I 

=z (41 +dd 

zk (60) 
_- 

Although, in general, the possibility of having toroidal con- 
figurations that give complex roots cannot be ruled out, we 
find that, for the standard configurations, the roots are real 
with (d,, +d,,) < 0, leading to negative y1 and y2 with 
1 y1 1 < 1 y2 I. Also, y1 and yz give the relaxation rates of the 
ambipolar electric field and the plasma flows; yi describes 
the slower relaxation time and y2 is the faster one, which 
correspond to two different directions on the magnetic sur- 
face. 

The general solution of Eq. (56) can be obtained from 
Eq. (58) by allowing PI and ‘P2 to depend on the time, and 
determining them by using Rq. (56). It results for 
X= (X1,X2) that 

X,(t) 2 & [M,(t) a,(t) 1 +X1,&), (61’a) 

+ (y2--4Wdt) 1 +x2,0(& t61b) 

where 

M,(t) ==eYlt [ -d&i’2+ (y2-dll)Sl]e- n’d7; 

(624 

M,(t) =e*/2’ 
J 

t [d12&- ty1-dll)Slle+‘2Tdc (62b) 
to 

and X, o and X, o describe the transients associated with 
the in&al conditions, i.e., 

zyl,Ott) =4,0e n(t-to) fp2,0erz’f-b), 

1 
X2,0(t) =d,~ [tyl--ddPl,oe Yl(t-to) 

(634 

+(y2-dll)P2,0e~~‘f-t~)]. (63b) 

The evolution in time of the electric field, Cp’ =X,(t), and 
the parallel ion velocity, /%i=Xz( t), is described by Eqs. 
(6 1) . It involves the initial conditions, a’ (to) and ;lj( to), 
the effective damping rates y1 and y2, and the driving 
forces Cl and C, [i.e., S, and S2 in Eqs. (62)]. The external 
radial current appears in C1, and it can contain a time 
dependence. For times At= t---to much larger than 1 yi 1 -l, 
the effect of the initial conditions disappears. The time 
dependence of the external current determines the behavior 
of the radial electric field and the plasma rotation. When 
this current remains finite, the electric field and the rota- 
tion reach a steady state (except for axisymmetric systems 
without neutrals, where yr =O), as will be shown in the 
next section. In the case where y1 and y2 are complex, the 
solutionc are given by the real part of Eqs. (61); for 
Re( y) < 0 the steady state is reached after damped oscil- 
lations. 

VI. BIAS-PROBE EXPERIMENTS 

Let -us now consider a toroidal plasma with an elec- 
trode at a given magnetic surface V= Vo, as shown in Fig. 
1. At a specific time t= tl the electrode is biased to a given 
voltage with respect to the vacuum chamber. We want to 
describe the behavior in time of the ambipolar electric field 
and the plasma rotation after the time t= tl by assuming 
that, prior to the biasing, the plasma is in steady-state (this 
means tl -to, Iy1I -I). 

For simplicity, we model the external current Lxt as a 
step function located at t=tl (see Fig. 2) and assume that 
y1 and y2 are real. From (52c), we obtain 

C,=q,+H(t-ttl)SCI, (64) 
where C1 o=C,(I,,=O), and SC,= ( BeB’)2(J,,*VV)/ 
c2mfli(B$} is constant in time, and H(t-t,) is the step 
function. 

The time behavior of @’ and lj can be obtained from 
Eqs. (61) with Xl,o=X2,0=0 and 
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FIG. 1. A radial electric field is induced by a probe located inside the 
plasma. 

M~=Y11[d12S2,0-(Y2-dll)S,,01 

+~C~(y~A)-‘[dl2a3+(y2-d~~)a41 

x ( l-eYi(r-ri))H(t-tl), (654 

M2=Y~1[-d12S2,0f(Y,-dl,)Sl,ol 

--GC,(y,A)-‘~dl2a,+(yl--dl,)a41 

X(l-e’2(‘-“))H(t-tl), (65b) 

where Sl,o=,S,(I,,,=O), S2,0=:S,(1,X,=O), and eri(t-ro) 
= 0 were used. For t < f,, we obtain the steady-state solu- 
tion 

W= (l/y,y,A) (W,,o-Wd, (664 

Ai= (l/~,y2N ( --b,G,o+blW (66b) 

and the change in time with respect to the values at t 6 tl is 
given by 

-SC, 
A @ ‘(t)=(y2-~l)~,y2A 

Wdm+ (y2---ddad 

and 

AAj( t) = (y2-;f;ly2A C~2Y2[(Y1--dll)a,-ddzla41 

x(1-ent)-yl[(y2-dlI)a3-d2,a41 

X (1 -ee’zt)). t67b) 
A schematic plot of W  in time is shown in Fig. 2. After a 
rapid increase at f= t,, it reaches a constant value in a time 

1 c 
tt Ir, I” t ime 

FIG. 2. The dynamics of the radial electric field after the electrode is 
biased at t=tl. For I < f,, the system is in steady state with zero biasing 
current, and for t$I y, f -I the system reaches a steady state with finite 
biasing current. 

on the order of 1 y1 1 -I. From Eq. (67b), we see that /zj has 
a similar time dependence. The net change in @ ’ and iii is 
given by 

A+‘( t- co I= WymAPCl, (684 

A&(& co I= - (b,/ywWC, , (68b) 
which together with Eqs. (66) gives the final value of W  
and /zi. These values lead to the steady-state solution eval- 
uated in Sec. IV and given by Eq. (46). (Notice that 
y1y2A = blb4- b3b2). The evolution of the ion poloidal and 
toroidal velocities can be obtained by substituting Eqs. 
(67) in Eqs. (23). 

The general expression for the relaxation rates yl and 
y2 in terms of the damping rates due to viscosity and col- 
lisions with neutrals is obtained from Eq. (60). If we define 

Y1~.y~~)+(1+lo)(tve+Y~)--S1(~~~)fI/ytP))-~~2~~, 
(69) 

we can write the full expression for y1 and y2 as 

Yl 
y2 i I 

=- v,+ 
y1 - IOvin yl - 10vin 

2ti =l= 2h K 1 

2 

l/2 

-I- 
vj* l&ve+v,) +vps-vy)vS. 

6 I 1 
, (70) 

where b~(c/BBBs)A=l+Io--S,6,, &rz(B*BP)/(&), 
62s (B-Bp)/(B;), and I,= (BeBvc)21VV12/ 
4rm$+‘i( Bi) . Here, $1~ 1, S2>< 1 and SiS2 < 1. Also, IO is a 
dimensionless parameter that appears because of the time 
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derivative of the electric field in the charge conservation 
equation, Bq. ( 32)) and explicitly emerges in the coefficient 
aI in Eq. (52a). The value of Ic is, in general, very small, 
i.e., of the order of 10m4 or even smaller. Thus we can 
neglect it and approximate y1 and yz by 

Yl Vl 

Y2 = 1 2* -vin-2h I( 1 2 

2+vyypv~]1’2, (,1) 

where A is a quantity slightly less than 1. The time it takes 
the plasma to completely reach steady state is determined 
by ] y1 1-l (or its real part in the case y1 is complex, which 
gives a damped oscillatory behavior before reaching steady 
state). This relaxation rate y,‘can be written as 

Yl= -Vin-v&.c 9 
where 

(72) 

v~sc=v1/2h- [(q/26)2+ (v~)vs-v~~)v~)/6]1’2. 

In the limiting case that viscosity is negligible with respect 
to collisions with neutrals, yl = -Yin. In the case of axi- 
symmetric systems, it holds that vc=vy) =0, and there- 
fore yl= -vi,,. The case of axisymmetric high-temperature 
plasmas without neutrals yields yl.=O, which when substi- 
tuted in Eq. (62) gives a linear increase of the plasma 
rotation-and the radial electric field as a function of time; 
i.e., no steady-state solution is possible. This result is phys- 
ically correct since no damping is present in the axisym- 
metric direction and the poloidal and toroidal velocities are 
coupled. This coupling might appear doubtful at first 
glance at the poloidal momentum balance equation, Eq. 
(29), since only poloidal components of Ui seem to be 
present, however, the term (J’” l V V) provides a coupling 
with the time derivative of the electric field [see Eq. (32)], 
which, in turn, couples with the toroidal velocity in Eq. 
(26) via Eqs. (23), as shown in the Appendix. 

VII. PFIRSCH-SCHLijTER VISCOSITY DAMPING 
RATES IN THE LARGE-ASPECT-RATIO LIMIT 

The radial conductivity, and the time behavior of the 
plasma rotation and the ambipolar electric field calculated 
in the above sections are expressed in terms of the viscosity 
damping rates in Eq. (39). In this section, we evaluate 
these damping rates for the case when the plasma is in the 
Pfirsch-Schiiter collisional regime and the magnitude of 
the magnetic field has the form 

B=Bo 
( 

l-ercosQ- c e,,,cos(m6+n$) , (73) 
n,m + 1 

where er* 1, E,,,~ 4 1, and 6 and C$ are laboratory poloidal 
and toroidal angles varying between 0 and 27r. 

In the Pfirsch-Schliiter regime, the viscosity in Eqs. 
(35) and (39) is given by21 

w*+y ((q-q(T)), (74) 

where p0=4.095, A may be B, BP, or Br (or any other 
vector satisfying V*A=O and A.VV=O), and Y,i is the 
ion-ion collision frequency. To evaluate expression (74)) 

we make use of the Hamada coordinates derived in the 
large-aspect-ratio limit.29 Within this model, the magnetic 
surfaces are given by concentric circles with radius r. The 
surface average of a quantity F(6,#) is given by 

(F)=-& 12=d~~~~d9F(a,~)(l+~cosB), 
0 

(75) 

where R =Ro+ r cos 6 and R. is the major radius. To eval- 
uate A l V B or U * V B, we make use of the fact that A and 
U are vectors on the magnetic surface, i.e., A* P=U* P=O, 
and allow B to vary within the surface. Thus 

U.+&(v) g+(y) i$ (76) 

where, instead of the vector U, we may also use the vector 
A. In order to wr$e Eq. (7$) in the form of Eq. (35), we 
should write U. 6 and U * C#J in terms of the Hamada con- 
travariant components fl and s@. By using the results of 
Ref. 29, we can write 

A 

~=u*ve=(1+e,cos6)u. Gr 
( 1 

and 

u~=u-v~=:2q~(j (~)cos~++&), (77b) 

with eo=r/Ro. Thus, to lowest order in e. and er, it holds 

U*VB=2r (78) 

and we can therefore approximate 

where 

/cl=+ sin 6+ C E,,m sin(m+f+n$), 
m,n 

k,= 2 +,,n sin(m6+m.p), 
m*n 

and A’, AC, fl, and Us are surface constants. After evalu- 
ating the surface average, we obtain that 

47+aPi (A.V.~j)r----- yii 1 h+h-ck& ue 

+ bcAe+q-& U% (80) 

where ap and ar give a measure of the magnetic field 
inhomogeneity in the poloidal and toroidal directions, re- 
spectively, and are given by 

ap= (kf) =i ( ZT+ C mQ& , 
m,n 1 

(81b) 
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together with and therefore 

aCE (klk2) =i 2 nmz,,n. 
m,n 

(81~) 

Expression (80) has the form appearing in Eq. (35) with 
A=B, BP or B, From this, we can obtain the p coeffi- 
cients and, consequently, the viscous damping rates in J3q. 
(39). To evaluate them we again use the Hamada coordi- 
nates from Ref. 29. In these coordinates, we have to lowest 
order 

(@=&3:(1+2$j?)/ti, (Bp*B)=GBtig, (82a) 

(B-$)=(B2)=(B*Br)=B;, (Bp*BT)=-246, 
(82b) 

Be= Bd2rqRo, (Be) = 2rrreoBo/q, (82~) 

Bc= Bd2?rR,, Bg=2rrRoBo, (82d) 

IVVj =4d+Ro, (82e) 

‘P=,*$, vy =a, (83) 

CT) ve =vO%, 
(T)- 

vc --y@T, (84) 

and 

vg=vda&q+ad, v~=vo(adq+aT), 

where v. is a basic viscous frequency given by 

(85) 

4,095 pi 
vo= V$TliiV& * (86) 

We can now give approximate expressions for the ra- 
dial conductivity cr in Eq. (41) and for the damping rate 
y1 in Eq. (72)+ By using Eq. (82) and keeping only lowest- 
order terms, we can write 

c2mifVi(l+2q2) ( 
i 

vy)+vjn) (v~VSfv+(v~)- [2q/(l+@) l%)(%+f4~J 
CT,= 

B2, (tV@+V&+vin) 1 
(87) 

and 

(88) 

with 

v~=v~)+~2q/(1+2q2)]~g+vf. (89) 
The first factor in 0; is the same as in expression (44). 

A. The tokamak with magnetic ripple 

We can evaluate a, and the relaxation rates vVisc for the 
case of a tokamak with magnetic ripple, where 

B= Bo[ l-c+. cos 8-e~ COS(ncp) 1. (90) 
In this case, a,=$& aT=$z2& and ac=O, thus, by tak- 
ing ETzeO, it follows 

ye (P+vo/( 1+2&, (914 

(T)= Ve $-Lo , (91b) 

vr; (T)=+vo n2& (91c) 
Without collisions with neutrals, the radial conductivity is 
given by 

od;p (A)? 

and the relaxation rates are given by 
y1 = - fn2&v0 , 

t2io Phys. Fluids B, Vol. 5, No. 4, April 

(92) 

1993 

(934 

y2=-h3m+2q22). (9%) 

The first rate gives the momentum relaxation in the toroi- 
da1 direction and the second one is the relaxation rate in 
the poloidal direction. 

B. The helically symmetric stellarator 

Let us now evaluate the case of a helically symmetric 
stellarator, where 

B=Bo[l-E*cos(m6fncp)], (94) 

and include the effect of neutral atoms. In this case, 
ap=$m2&, aT=i?z2& and aC=$m& hence 

n 
v,=&om22H f+; 

( ). 
, 

(P)=.E UT n 
“t mve * and v;=--& Ye. 

(9%) 

(95b) 

Thus, if no neutral collisions are present, we obtain results 
similar to the tokamak case, where a,=0 and one of the 
relaxation rates is zero, which is a consequence of the sym- 
metry of the magnetic field, In the case where neutrals are 
present, m+=O and n 5 m, we can approximate the radial 
conductivity by 
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2miNi(l+2$)vi, 
CT,= 2 

BO 

x 

( 

1+(V~Vi~)[m2/2(1+242)](62~/~) 

l+f(.VdVin) (n+tm>‘iH 

and the relaxation rates by 

yam H "2 
Yl= -Vin-~(1& 9 

M=--Irin. 

C. The classical stellarator 

(96) 

(97a) 

(97b) 

We finally evaluate the case of a classical stellarator, 
where 

B=Bo[1-~ET~~~Q-~~cos(m6+n~)] (98) 
without the effect of collisions with neutrals. Here, 
ap=$(2T+m2&, aT=&t2&, and ac=$m&, which gives 

(99b) 

The radial conductivity is given by 

c”mi Niy~ n”e’$& 
“‘=2&3~[&$+nz2eZ~ t+ (n/m)2] (loo) 

and for m,n(+’ and m#O the relaxation rates are 

YO 
Yl=-2t1+242)4 (4-+m2$A 

(101b) 

It is interesting to compare the results of a classical 
stellarator and the helically symmetric stellarator. Without 
neutrals, Eq. (96) gives a,=0 and (97b) gives yZ=O, 
which are results obtained from Eqs. (100) and (lOlb), 
respectively, by making +=O. The same results are ob- 
tained by making es=0 since we recover axisymmetry. 

VIII. SUMMARY AND CONCLUSIONS 

In this paper, we have analyzed the dynamics of the 
ambipolar electric field and the plasma rotation in a non- 
symmetric toroidal plasma in the plateau and Pfirsch- 
Schliiter regimes when a bias voltage is applied through an 
electrode inside the plasma. With the turn-on of the bias 
voltage, a radial current is made to flow. The momentum 
in the surface is unbalanced making the plasma rotate and 
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the ambipolar electric field change, until a steady state is 
reached because of the presence- of momentum damping 
caused by parallel viscosity and collisions with neutrals, 
There are two momentum relaxation rates associated with 
any magnetic surface, which define the direction of stron- 
gest and weakest momentum damping. A perfect axisym- 
metric high-temperature tokamak is, to lowest order, in- 
trinsically ambipolar and one of these rates goes to zero, 
i.e., a steady state does not exist. In this case, the inclusion 
of mechanisms of toroidal momentum damping (such as 
perpendicular or gyroviscosity) are essential to reach a 
steady state. We have derived an expression for the radial 
conductivity that involves a standard part due to ion- 
neutral collisions and a new part due to parallel viscosity. 
We also evaluate the steady-state ambipolar electric field 
and the plasma rotation, which are directly proportional to 
the magnitude of the current flowing through the biasing 
probe. We finally derive very useful and simple expressions 
for the viscous damping rates for a large-aspect-ratio non- 
symmetric system and the relaxation time, the radial con- 
ductivity, and the plasma rotation have been evaluated. 

This work was supported by U.S. Department of En- 
ergy Grants No. DE-FG02-86ER53216 and No. DE- 
FGO2-85ER53198 and by the Direction General de Asun- 
tos de1 Personal AcadCmico, National University of 
Mexico. 

APPENDIX: AXlSYMMETRlC SYSTEMS 

In this appendix, we discuss the equations that de- 
scribe the dynamics of the poloidal and toroidal velocity in 
an axisymmetric system. In these systems, eC is parallel to 
V& i.e., eC=R2V& and therefore g5e=e5*eg=0, with 
gii = ei l ei the metric tensor. 

In this case, 
B-U= Be&+ BSUc= Begssi?+ Bcg& (Al) 

and 
Bp* U= BegoeUe. (A21 

Additionally, in an axisymmetric system ( BT l V l 5) =0, 
and therefore 

(B=V*~)=(Bp.V’~)=~~~)Ue. (A3) 
With these simplifications, the poloidal momentum bal- 
ance equation given by Eq. (29) yields 

ati BeBC 
m;NfBe(ges) at= -7 (J”‘*Vv) - C/L:” 

+ mi Niyi,B’(g,ge> 1 fl- (A41 
In a similar way, we can write the parallel momentum 
balance equation, Eq. (26). If we subtract this last equa- 
tion from Eq. (A4), we obtain an equation for the toroidal 
velocity 
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-mi N,Vi~B’(g~~) UC. (A5) 
Equations (A4) and (AS) are coupled through the charge 
conservation equation, Eq. (32)) 

(A61 

via the time derivative of the electric field. By using Eq. 
(23) and assuming the pressure is constant in time, we can 
obtain 

c!g (fp$). (A7) 

If we substitute Eq. (A6) and Eq. (A7) in Eqs. (A4) and 
(A5), we obtain 

ati . auc 
(l+lo) 

4nz& 
x-f’O dr=gpq~ (Je,t*VV> 

and 
au’ IO ati -&do 

(l+klo) ar-fkat=B”,VV,~k(Je,*VV) 

- Yin u$ (A9) 
where k~ (Bi)/(B$), with B& BeBegee, B$= B’B5&c, 
and IO is the quantity defined near E$. (70). These last two 
equations show that fl and ti are coupled, and that an 
external radial current (bias current) affects both. How- 
ever, assuming 1 XI@/& I- 1 XJc/& 1 and since IO< 1, we 
can write 

a& - 47Tcrs 
-= at BB,VV,2k(J,,tgVV)-1”,,U~. (AlO) 

The first term on the right-hand side of Eq. (AlO) might 
be very small. However, when no ion-neutral collisions are 
present, i.e., Yin=O, it determines the behavior of the tor- 
oidal velocity, which would grow indefinitely if a constant 
external radial current was present. The poloidal velocity, 
however, has a net damping due to viscosity in the poloidal 
direction (magnetic pumping) vhP), which remains finite 
when the ion-neutral collisions vanish, leading to a con- 
stant value of the poloidal velocity for times much larger 
than &!‘)-I. 

From the above analysis, it can be concluded that, in 
an axisymmetric system, the leading term of the viscosity 
tensor, i.e., the parallel viscosity, gives no contribution to 
the toroidal momentum damping. Therefore, in a perfect 
tokamak without neutrals, the toroidal velocity would in- 

crease continuously. Real tokamaks do reach steady state 
because the transport may also involve other nonintrinsi- 
caliy ambipolar mechanisms such as collisions with neu- 
trals or viscous damping due to the perpendicular viscosity 
or the gyroviscosity. Comparison of the experimental tor- 
oidal momentum damping rates in tokamaks with theoret- 
ical models that include gyroviscosity have indicated good 
agreement. 3’-33 In our treatment, we have not included the 
perpendicular or gyroviscosity since they are negligible in 
comparison with the parallel viscosity for the case of non- 
symmetric systems. 
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