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This Letter presents theory-based predictions of anomalous electron thermal transport in the Helically

Symmetric eXperiment stellarator, using an axisymmetric trapped-electron mode drift wave model. The

model relies on modifications to a tokamak geometry that approximate the quasihelical symmetry in the

Helically Symmetric eXperiment (particle trapping and local curvature) and is supported by linear 3D

gyrokinetic calculations. Transport simulations predict temperature profiles that agree with experimental

profiles outside a normalized minor radius of � > 0:3 and energy confinement times that agree within 10%

of measurements. The simulations can reproduce the large measured electron temperatures inside � < 0:3

if an approximation for turbulent transport suppression due to shear in the radial electric field is included.
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Stellarators are now routinely optimized to reduce neo-
classical transport in the low collisionality regime [1]. The
Helically Symmetric eXperiment (HSX) [2] was designed
to have a magnetic field strength that is constant in a helical
direction on a flux surface. It has been demonstrated ex-
perimentally that quasihelical symmetry (QHS) leads to
reduced particle, momentum, and electron heat transport,
consistent with predictions from neoclassical theory [3].
Because the neoclassical transport has been reduced to
very small values, anomalous transport then dominates
across the entire plasma. There is also experimental evi-
dence in the Large Helical Device that the anomalous
transport decreases for a magnetic configuration with im-
proved neoclassical confinement [4]. The experimental
observation that a quasisymmetric stellarator is dominated
by anomalous transport, and the possible connection be-
tween reduced neoclassical and anomalous transport, mo-
tivates the theoretical and experimental understanding of
turbulent transport in 3D geometries.

For 2D experiments, nonlinear, gyrokinetic turbulence
simulations can provide first-principles, quantitative pre-
dictions of the transport in tokamaks [5]. However, such
calculations are too expensive for routine use in transport
simulations. Reduced models based on quasilinear trans-
port expressions [6–9] have provided some success in
predicting confinement [10]. These models are based on
rapid linear stability calculations, coupled with mixing
length estimates for the saturated fluctuation levels, imply-
ing that much (but not necessarily all) of the transport
scaling is captured in the scaling of the linear instability.

Because of the lack of symmetry, increased complexity
in geometry, and therefore increased computational ex-
pense, fewer linear and nonlinear simulations exist for
stellarators. Recent linear gyrokinetic simulations in mul-
tiple stellarator configurations [11] demonstrate how dif-
ferences in the magnetic field structure modify the linear

growth rates from that of an axisymmetric geometry, for
example, by changes in the overlapping regions of particle
trapping and bad curvature. Additional differences are
manifest in nonlinear simulations, where particle drift
orbits in 3D geometry can alter the resulting turbulence
saturation through their influence on zonal flows [12,13].
While the linear and nonlinear predictions in 3D geometry
can differ quantitatively from a tokamak, the basic trans-
port is theoretically expected to scale similarly with non-
dimensional parameters and to be similarly influenced by
the thresholds and strengths of the linear microinstabilities.
This is consistent with the similarity between tokamaks
and stellarators of both the scaling of energy confinement
[14] and the measured turbulence characteristics [15].
Since the magnetic field spectrum in HSX is dominated

by a single helical component, for the most part there is a
single class of trapped particles in the QHS configuration,
just as in a tokamak. In this Letter, we present the first
results of a model for the anomalous electron heat transport
in HSX, making use of a tokamak quasilinear transport
model for the trapped-electron mode (TEM) instability. It
is demonstrated that replacing the trapped particle fraction
and local curvature in a tokamak with values correspond-
ing to the quasihelically symmetric field in HSX is crucial
for properly modeling the temperature profile and confine-
ment time.
The measured and modeled plasmas discussed in this

Letter are produced and heated with �100 kW of injected
power, using fundamentalO-mode electron cyclotron reso-
nance heating (ECRH) at 28 GHz with B ¼ 1:0 T on the
magnetic axis. With central heating, the electron tempera-
ture profiles are very peaked near the magnetic axis. An
example of the profiles measured by Thomson scattering
are shown in Fig. 1 for 100 kW of injected power, with

Teð0Þ � 2:5 keV. [The flux surface label � ¼ r=a ¼
ðc =c LCFSÞ1=2 is used, where c (c LCFS) is the toroidal
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flux enclosed by a surface (last closed flux surface).]
Measured impurity ion (Cþ5, Oþ4) temperatures are 40–
80 eV.

Figure 2(a) shows the experimentally determined elec-
tron thermal diffusivity (�e) for the profiles in Fig. 1. Near
the magnetic axis (� � 0:2), �e is as small as �0:6 m2=s
and increases to 5–10 m2=s outside the midradius. These
values can be compared to predictions of neoclassical
transport, defined for particle and heat fluxes (for each
species) by
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where n is density, T is temperature, q is particle charge,
and Er is the radial electric field. The diffusion coefficients
Dij are determined by convolving the monoenergetic dif-

fusion coefficients calculated by DKES [16] with a
Maxwellian energy distribution. The electric field found
via ambipolarity (�e ¼ �i, assuming a pure hydrogen
plasma) is shown in Fig. 2(b). Towards the plasma center,
a large positive electric field is found, corresponding to the
electron root. At the plasma edge, only the ion root with a
small electric field is obtained. Near � ¼ 0:2–0:3, more
than one root exists. This transition region is modeled
using a diffusion equation for the radial electric field [17]:
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where V is the volume enclosed by a flux surface, "? ¼
"0ð1þ VA

2=c2Þ, and VA and c are the Alfvén and light
velocities, respectively. The coefficient DE approximates a
diffusion coefficient for the radial electric field originating
from perpendicular shear viscosity. Here we use a constant
value (0:3 m2=s) such that Er reproduces values from
calculations that conserve momentum and include parallel
flows [18] (to be reported elsewhere). The corresponding
neoclassical values of �e are shown in Fig. 2(a). Over the
entire minor radius, the experimental �e is much larger
than neoclassical, indicating a significant anomalous
component.

For these plasmas, the helically trapped electrons are in
the long mean-free-path regime across the minor radius.
Given the low electron collisionality, the large ratio of
Te=Ti, and particle trapping due to the dominant helical
ripple "H, the TEM is expected to be unstable. Following
Ref. [19], the initial value, flux-tube gyrokinetic code GS2

[20] has been used to calculate linear growth rates of
microinstabilities (k?�s � 1) in HSX. Magnetic equilibria
are generated using VMEC [21], and the necessary geometry
coefficients along a field line in the ballooning representa-
tion are calculated using TERPSICHORE [22] and VVBAL

[23].
The calculations in this paper are performed on a field

line domain centered at ’ ¼ � ¼ 0, where minimum B
and maximum local curvature (�) and rB=B occur. The
resulting eigenfunctions are strongly localized in this re-
gion. Figure 3(a) shows linear growth rates calculated for
the � ¼ 0:86 surface (using one kinetic ion species and
kinetic electrons, Te=Ti ¼ 2, a=LTi ¼ 0, �e ¼ �i ¼ 0,
maximized at k��s � 0:8, with a ballooning parameter
�0 ¼ 0). Normalized gradients are defined by a=Lx ¼
�1=xdx=d�. The growth rates in Fig. 3(a) show that the
instability is driven by gradients in both density and elec-
tron temperature, characteristic of the trapped-electron
mode (real frequencies are in the electron diamagnetic
drift direction). Scans over Te=Ti, a=LTi, �e, and particle

trapping �"H
1=2 (by varying minor radius) demonstrate
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FIG. 1. Measured (a) electron density and (b) electron tem-
perature profiles.
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FIG. 2. (a) Electron thermal diffusivity from experiment, neo-
classical theory, and the Weiland model. The thick dashed line
includes the E� B quench rule with �E ¼ 0:26. (b) Radial
electric field determined from neoclassical theory using ambi-
polarity (electron root e, ion root �, unstable root d) or Eq. (2)
(line).
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that the TEM instability in HSX scales similarly to that in
tokamaks [24].

To model anomalous transport in HSX, the Weiland
quasilinear transport model [6,7] for ion temperature gra-
dient (ITG) and TEM instabilities is used. This model has
been chosen as it provides linear growth rate predictions
that can be compared with the GS2 calculations, as well as
transport predictions for comparison to experiment. Only
the main (hydrogen) ion species is included, and electron
collisionality is set to zero. The Weiland model requires as
input normalized gradients, the trapped particle fraction
(ft), and a single scale length (LB) for the toroidal (rB=�)
drifts. In a tokamak, the toroidal ripple "T ¼ r=R deter-

mines the trapped particle fraction ft ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2"T=ð1þ "TÞ

p
,

and LB ¼ R. In HSX, the majority of trapped particles is
determined by the dominant helical ripple in the quasisym-
metric field "H � 0:14r=a ¼ 1:4r=R. Because of small
symmetry breaking terms, the actual trapped particle frac-
tion is a little larger and does not go to zero on axis.
Therefore, in the Weiland model ft was adjusted to better
match the growth rates at three radii where GS2 calculations
were performed (� ¼ 0:24, 0.51, and 0.86).

Because of the helical excursion of the magnetic axis,
the curvature on the outboard side (’ ¼ � ¼ 0) is nearly
3 times larger than in a tokamak. Therefore, for modeling
HSX, the toroidal scale length in the Weiland model is set
to LB ¼ R=3. Figure 3(b) shows that the growth rates
calculated using the Weiland model with HSX approxima-
tions reproduces the scaling and the magnitude of the GS2

growth rate calculations [Fig. 3(a)]. Without these approx-
imations, the scaling with a=Ln and a=LTe is weaker,
leading to growth rates nearly 2 times smaller than the
GS2 calculations. This illustrates directly the influence of

the quasihelical geometry in HSX on the TEM instability.
Figure 2(a) shows that the value of �e calculated using

the Weiland model is within �2:5 times the experimental
value outside � > 0:4, indicating that the trapped-electron
mode is a plausible explanation for the anomalous trans-

port in HSX. Around �� 0:2, where the measured electron
temperature gradient is large (see Fig. 1), the predicted �e

is 10–20 times larger than experimental. While the shape
of �e predicted by the Weiland model does not recover the
experimental profile shape within uncertainty, it is signifi-
cantly better than a simple gyroBohm expression that
would predict �GB

e ¼ ð�s=LTeÞTe=B� 300 m2=s near the
axis and�3 m2=s near the edge. This improved agreement
depends specifically on the destabilizing influence of the
trapped particle fraction and density gradient to the
trapped-electron mode.
The above model prediction is very sensitive to the

driving gradients, which are prone to large experimental
uncertainty. An alternative test of the neoclassical and
anomalous transport models can be made by predicting
the Te profile, given the input heating source rate profile
(i.e., providing flux with small uncertainties). This is ac-
complished by numerically integrating the 1D flux-sur-
face-averaged transport equation
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where the transport (Qe) is modeled as a sum of both
neoclassical and Weiland contributions. The ECRH power
deposition profile is calculated using a ray-tracing code,
and the total absorbed power is determined from the time
response of the diamagnetic flux loop during ECRH
turnoff.
Figure 4(a) shows the resulting temperature profile pre-

dicted for the 100 kW plasma. For locations � � 0:3, the
predicted Te profile agrees within the 2� uncertainty esti-
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FIG. 3. (a) Growth rates calculated at different normalized
density gradient (a=Ln) and electron temperature gradients
(a=LTe) using GS2 for HSX. (b) Growth rates calculated using
the Weiland model with HSX approximations ("T ! "H , R !
R=3), as discussed in the text.
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FIG. 4. (a) Predicted Te profiles without (�E ¼ 0:0) and with
(�E ¼ 0:26) E� B shear suppression. (b) Linear growth rate
and E� B shear rate determined from experimental profiles.
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mates for all experimental measurements (1� shown in
plots). The resulting electron energy confinement time (�E)
agrees within 10% of the experimental value. Furthermore,
for a range of injected powers down to 25 kW, there is
comparable agreement between the experimental confine-
ment times and the model. The predicted Te profiles and
energy confinement times using the Weiland model with-
out the quasihelical geometry substitutions are 2–3 times
larger than experimental, illustrating the significance of
HSX geometry on TEM transport.

Inside � < 0:3, the large values of Er minimize the
neoclassical contribution, and it is the Weiland TEM trans-
port that limits the simulated Te to values smaller than the
measurements. Calculations at � ¼ 0:24 indicate that the
growth rates from the Weiland model remain in reasonable
agreement with GS2, suggesting that an additional mecha-
nism may be important. The peaking of central tem-
perature due to large radial electric fields is observed in
many stellarator configurations [25] with strong on-axis
heating (large P=n) and has been simulated previously
using a generic gyroBohm transport model with E� B
shear suppression [26]. Given the sharp transition in the
Er profile near �� 0:2 [Fig. 2(b)], a model for the sup-
pression of turbulent transport via E� B shear is included
through a ‘‘quench rule’’ [27] where the anomalous diffu-
sivities are scaled by max½1� �E	E=	max; 0�. 	E ¼
ðr=qÞ@ðqvE�B=rÞ=@r, and 	max is the maximum linear
growth rate in the absence of shear. Figure 4(b) is a plot
of the shearing rate 	E and 	max as a function of radius. It
can readily be seen that the region where the shearing rate
is much greater than the growth rate corresponds very well
to an increase in the electron temperature gradient, further
justifying the shear suppression model.

In TEM-dominant axisymmetric nonlinear gyrokinetic
simulations [27], 	E=	max > 2:1–2:5 is required for com-
plete suppression of transport (�E � 0:4–0:5). In the trans-
port simulations here, a value of �E ¼ 0:26 is required to
recover the peak electron temperature [shown in Fig. 4(a)],
but this value depends on Er [viaDE, Eq. (2)] as well as the
linear growth rates from the TEM model. Increasing �E

further leads to a rapid increase of simulated Teð0Þ.
Nonlinear turbulence simulations demonstrating suppres-
sion of turbulent transport in stellarator geometry and a
quantitative prediction of �E will be required to provide a
purely theory-based model of the core transport.

In summary, the Weiland ITG/TEM quasilinear trans-
port model has been used to model plasmas in HSX. Using
approximations for the dominant class of helically trapped
particles and the increased value of local curvature, this
model reproduces the scaling and magnitude of linear
growth rates for the TEM instability in HSX as calculated
by the 3D gyrokinetic code GS2. Using a predictive ap-
proach, simulated electron temperature profiles (� � 0:3)
and energy confinement times agree with measured values.
Simulations that include the quenching of turbulent trans-

port indicate that E� B shear is important for predicting
the peak temperature in HSX plasmas. These results dem-
onstrate the impact of the local stellarator geometry on
modeling anomalous transport, through changes in both
microstability and E� B shear.
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