HSX Final Alignment, Assembly, and Initial Operation

Simon Anderson
D. T. Anderson
A. F. Almagri
L. Feldner
S. Gerhardt
J. Radder
V. Sakaguchi
J. Shafii
J. N. Talmadge

HSX Plasma Lab,
University of Wisconsin - Madison
for ISW99
HSX Support Collaborations

- **UW Madison**
 - Callen Hegna - theory
 - RFP group - Thomson Scattering, soft X ray diagnostic

- **UC Davis**
 - Domier and Luhmann - ECE Imaging

- **Princeton**
 - Park - Thomson Scattering
 - Takahashi - electron beam mapping

- **UCLA**
 - Brower and Peebles - 9 chord interferometer

- **Russian**
 - Likin - ECRH ray tracing/ECRH launcher
 - Karulin - ASTRA modeling code
 - Fedyanin - magnetics diagnostics

- **German**
 - Nuhrenberg and Merkel - HSX configuration and coil optimization

- **Japanese**
 - Takayama and Kitajima - HSX construction and single particle confinement experiment

- **Theory**
 - Cooper (Lausanne) - MHD Stability
 - Coronado (Mexico) - flows

- **ORNL**
 - Bigelow - ECRH gyrotron and transmission line
Talk Outline

• Introduction to HSX design
• Final fabrication, assembly and alignment of HSX components
• HSX first plasma
• Electron beam mapping of HSX magnetic surfaces
• The next phase of HSX
HSX Design Considerations

• HSX was designed with two major goals
 – provide an experimental test bed for a qhs device which could operate at relevant parameters
 • with accurately fabricated and positioned magnet coils
 – provide a flexible experiment
 • the magnetics can be altered to a more conventional stellarator-like configuration with transport implications
 • there is flexibility in the base qhs configuration in deepening the magnetic well and altering the MHD stability properties without significant qhs degradation
HSX has a Single Dominant Helical Component in the Magnetic Field Spectrum

Toroidal Curvature Virtually Nonexistent for A=8 Device

- Equivalent to Aspect Ratio 400 Device
- \(B = B_0 \left[1 - \epsilon_i \cos(N\phi-m\theta) \right] \) and \(\theta = \iota \phi \rightarrow \) equivalent to tokamak with \(\iota_{\text{eff}} = |N-m| \approx 3 \) or \(q_{\text{eff}} = 1/3 \)

Quasi-helically Symmetric (QHS) Configuration in HSX

- Neoclassical transport lower than comparable tokamak
- Direct orbit losses minimized
- Contours of constant \(\left| \frac{B}{G_e} \right| \) rotate about torus; high field side on outside at 1/2 field period as is good curvature region
- Pfirsch-Schlüter current is small (and helical)
 \(\implies \) high equilibrium beta (\(\langle \beta \rangle \approx 35 - 40 \% \))
 \(\implies \) robust to finite beta perturbations to spectrum
- Banana widths about 1/3 size in comparable tokamaks
- Bootstrap current reduces transform, magnitude about 1/3 comparable tokamak
- Neoclassical parallel viscosity small due to near-axis of symmetry
The HSX Stellarator

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Radius</td>
<td>1.2 m</td>
</tr>
<tr>
<td>Average Plasma Minor Radius</td>
<td>0.15 m</td>
</tr>
<tr>
<td>Plasma Volume</td>
<td>~.44 m³</td>
</tr>
<tr>
<td>Number of Field Periods</td>
<td>4</td>
</tr>
<tr>
<td>Helical Axis Radius</td>
<td>20 cm</td>
</tr>
<tr>
<td>Rotational Transform</td>
<td></td>
</tr>
<tr>
<td>Axis</td>
<td>1.05</td>
</tr>
<tr>
<td>Edge</td>
<td>1.12</td>
</tr>
<tr>
<td>Number of Coils/period</td>
<td>12</td>
</tr>
<tr>
<td>Average Coil Radius</td>
<td>~ 30 cm</td>
</tr>
<tr>
<td>Number turns/coil</td>
<td>14</td>
</tr>
<tr>
<td>Coil Current</td>
<td>13.4 kA</td>
</tr>
<tr>
<td>Magnetic Field Strength (max)</td>
<td>1.37 T</td>
</tr>
<tr>
<td>Magnet Pulse Length (full field)</td>
<td>≤ 0.2 s</td>
</tr>
<tr>
<td>Auxiliary Coils (total)</td>
<td>48</td>
</tr>
</tbody>
</table>

Estimated Parameters with 28 GHz ECRH

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating Power (source)</td>
<td>200 kW</td>
</tr>
<tr>
<td>Power Density</td>
<td>.45 W/cm³</td>
</tr>
<tr>
<td>Density (cut-off)</td>
<td>1 x 10¹³ cm⁻³</td>
</tr>
<tr>
<td>T_e₀ (100 kW absorbed power - ASTRA)</td>
<td>~1 keV</td>
</tr>
<tr>
<td>τₑₑ (ASTRA)</td>
<td>2 - 4 ms</td>
</tr>
<tr>
<td>νₑₑ</td>
<td>≤ 0.1</td>
</tr>
</tbody>
</table>
Flexibility is obtained through the Auxiliary Coils

Auxiliary Currents:

```
+    +    +    -    -    -    -    +    +    +
MIRROR
-    -    -    -    -    -    -    -    -    -    WELL
```

Noncircular, planar auxiliary coils with 10% A-T of main coil set allow for independent control of transport and stability

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Auxiliary Current</th>
<th>Dominant Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>QHS</td>
<td>None</td>
<td>Best confinement</td>
</tr>
<tr>
<td>MIRROR</td>
<td>3 coils on either end opposite to coils in center</td>
<td>Transport similar to conventional stellarator</td>
</tr>
<tr>
<td>WELL</td>
<td>All aux currents oppose main coil current</td>
<td>Well depth and stability increases</td>
</tr>
</tbody>
</table>
Monte-Carlo Diffusion Coefficient

- Electron monoenergetic diffusion coefficient, assuming **NO** radial electric field
- Diffusion in **QHS** is 1-2 orders of magnitude less than conventional stellarator in low collisionality regime
- **MIRROR** mode increases transport back to level of conventional stellarator
- **WELL** configuration shows small degradation of neoclassical transport from QHS case
HSX Assembled
The HSX Device
Coil Module Assembly

- Each coil is initially aligned in a stainless steel support ring and pressure pads, which are epoxied to the coil, mount the coil into the ring
- An auxiliary coil is positioned and clamped on the support ring
- The castings are then fitted to the coil-ring assembly, and final match drilling of the ring to accept the splice plate bolts is performed
- Final measurement of the coil location via CMM provides for accurate coil assembly on the HSX superstructure (assembly to <1 mm at 6 reference points)
HSX Support Structure

- Modular interior box-beam support structure
 - 4 periods, each moves out for assembly and access
- Each coil support ring has a 3 point, multi-axis adjustable support
- External stiffening is supplied by the toroidal rig assembly for 1 Tesla operation
Vacuum Vessel Assembly

- Each piece was laser cut to the required length, and the port holes cut by laser to <0.5 mm accuracy
- The Metrecom (CMM (.1 mm accuracy over a 1 m radius sphere)) was used to accurately align the port tubes to the design orientation
- An alignment pointer located the port orientation correctly to the previous CMM setup while each port was welded to the vessel
Vacuum Vessel Assembly

- Each half-period section is made up of 2 separate pieces, with matching ends trimmed by laser cutting.
- These pieces are accurately (< 1mm) aligned in HSX space to form a full period section.
- The vacuum flange, which allows for period separation, is fitted to the section and accurately aligned.
- Re-measurement and alignment then permits the contours for box-port matching to be measured.
HSX First plasma at boxport

- 2.45 GHz rf - ~900 gauss
- < 1 kW power
- 2×10^{-4} torr H$_2$
- > 30 Second duration
Magnetic Surface Mapping

• Rationale
 – Compare t profile to design
 – Check surfaces for islands/break-up
 – Compare the surface shape to calculated qhs predicted shape

• Method
 – Low energy electron gun (< 100 eV)
 – Highly transparent (95%) fluorescent mesh
 – View using sensitive (10^-5 lux) CCD camera
 – Capture images on video and frame-grab for later analysis
Beam Mapping Layout

- The electron gun assembly is almost 180° toroidally from the fluorescent mesh.
- The periscope optics is close to the mesh and views at 30° off perpendicular.
Electron Gun

- Can supply up to 2 mA of emission, but usually only 10’s of µA are required
- Electron acceleration energies up to 200 eV can be used
- Radially positionable via stepper control
- Rotary alignment of gun to field
- Situated ~180° from the fluorescent screen
Fluorescent Mesh

- 95% transparent mesh
 - 3 mm spaced wire, 0.2 mm diameter
- 22 reference LEDs on border for image reconstruction
- Viewed with periscope and sensitive CCD camera
Mirror Configuration Compared to QHS

MIRROR mode has similar transform to QHS with large increase in neoclassical transport

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Center Transform</th>
<th>Edge Transform</th>
</tr>
</thead>
<tbody>
<tr>
<td>QHS</td>
<td>1.05</td>
<td>1.12</td>
</tr>
<tr>
<td>MIRROR</td>
<td>1.07</td>
<td>1.16</td>
</tr>
<tr>
<td>WELL</td>
<td>1.17</td>
<td>1.26</td>
</tr>
</tbody>
</table>
Rotational transform calculation

- CCD camera image of 4 cm gun launch - preliminary
- 64 segment, 14 filament Biot-Savart field line following calculation
- Initial transform from ‘dot’ count to compare to experimental data
1 kG QHS e-beam

- Composite of 4 frames from frame-grabber
- No image restoration performed as yet
- Blue outer ‘dots’ are frame reference leds
- Dot poloidal progression provides transform information
1 kG QHS e-beam

- First ‘dot’ is from a half toroidal transit from the known gun radial launch position.
- Subsequent ‘dots’ make a complete toroidal transit, and 1+ poloidal transits.
- Number of ‘dots’ per 2π poloidally provide a measure of ι.

Reference leds
Rotational transform profile

- Iota-bar from 2 different methods of analysis
- Includes a scan at 1 kG and 100 gauss
- Comparison to electron transit information from Biot-Savart calculation
 - 14 filaments, 64 segments/filament, 48 coils
- Experiment is in agreement to < 1% with computed profile
HSX near-term plans

• Continue electron beam magnetic surface mapping
 – apply image restoration techniques to CCD images to permit comparison of surface shapes between experiment and calculation
 – further investigate magnetic configurations
 • Well
 • Mirror
• Single particle orbit experiments to test qhs confinement
• 0.5 T plasma operation at 2nd harmonic ECRH
HSX Magnetic Flexibility
Conclusions

• The HSX main assembly is complete
• 1st plasma at low field has been achieved
• Electron beam mapping of 1 kG magnetic field show well-formed surfaces, no measurable magnetic islands within the confinement region, and a transform profile in agreement to < 1% with calculation
• HSX is now up and running for physics experiments