# HSX Final Alignment, Assembly, and Initial Operation

#### Simon Anderson

- D. T. Anderson
- A. F. Almagri
- L. Feldner
- S. Gerhardt
- J. Radder
- V. Sakaguchi
- J. Shafii
- J. N. Talmadge

HSX Plasma Lab,
University of Wisconsin - Madison
for ISW99

## **HSX Support Collaborations**

- UW Madison
  - Callen Hegna theory
  - RFP group Thomson Scattering, soft X ray diagnostic
- UC Davis
  - Domier and Luhmann ECE Imaging
- Princeton
  - Park -Thomson Scattering
  - Takahashi electron beam mapping
- UCLA
  - Brower and Peebles 9 chord interferometer
- Russian
  - Likin ECRH ray tracing/ECRH launcher
  - Karulin ASTRA modeling code
  - Fedyanin magnetics diagnostics
- German
  - Nuhrenberg and Merkel HSX configuration and coil optimization
- Japanese
  - Takayama and Kitajima HSX construction and single particle confinement experiment
- Theory
  - Cooper (Lausanne) MHD Stability
  - Coronado (Mexico) flows
- ORNL
  - Bigelow ECRH gyrotron and transmission line

### Talk Outline

- Introduction to HSX design
- Final fabrication, assembly and alignment of HSX components
- HSX first plasma
- Electron beam mapping of HSX magnetic surfaces
- The next phase of HSX

## **HSX** Design Considerations

- HSX was designed with two major goals
  - provide an experimental test bed for a qhs device which could operate at relevant parameters
    - with accurately fabricated and positioned magnet coils
  - provide a flexible experiment
    - the magnetics can be altered to a more conventional stellarator-like configuration with transport implications
    - there is flexibility in the base qhs configuration in deepening the magnetic well and altering the MHD stability properties without significant qhs degradation

## HSX has a Single Dominant Helical Component in the Magnetic Field Spectrum

Toroidal Curvature Virtually Nonexistent for A=8 Device

- Equivalent to Aspect Ratio 400 Device
- B = B<sub>0</sub> [1  $\epsilon_h$ cos(N $\phi$ -m $\theta$ )] and  $\theta = \iota \phi \rightarrow$  equivalent to tokamak with  $\iota_{eff} = |N\text{-m}\iota| \approx 3$  or  $q_{eff} = 1/3$

Quasi-helically Symmetric (QHS) Configuration in HSX

- Neoclassical transport lower than comparable tokamak
- Direct orbit losses minimized
- Contours of constant | B | rotate about torus; high field side on outside at 1/2 field period as is good curvature region
- Pfirsch-Schlüter current is small (and helical)
  - $\Rightarrow$  high equilibrium beta ( $<\beta>\sim 35 40 \%$ )
  - ⇒robust to finite beta perturbations to spectrum
- Banana widths about 1/3 size in comparable tokamaks
- Bootstrap current reduces transform, magnitude about 1/3 comparable tokamak
- Neoclassical parallel viscosity small due to near-axis of symmetry

## The HSX Stellarator

| Major Radius                     | 1.2 m                  |
|----------------------------------|------------------------|
| Average Plasma Minor Radius      | 0.15 m                 |
| Plasma Volume                    | $\sim .44 \text{ m}^3$ |
| Number of Field Periods          | 4                      |
| Helical Axis Radius              | 20 cm                  |
| Rotational Transform             |                        |
| Axis                             | 1.05                   |
| Edge                             | 1.12                   |
| Number of Coils/period           | 12                     |
| Average Coil Radius              | ~ 30 cm                |
| Number turns/coil                | 14                     |
| Coil Current                     | 13.4 kA                |
| Magnetic Field Strength (max)    | 1.37 T                 |
| Magnet Pulse Length (full field) | ≤ 0.2 s                |
| Auxiliary Coils (total)          | 48                     |

#### Estimated Parameters with 28 GHz ECRH

| Heating Power (source)           | 200 kW                             |
|----------------------------------|------------------------------------|
| Power Density                    | $1 \times 10^{13} \text{ cm}^{-3}$ |
| Density (cut-off)                | $1 \times 10^{13} \text{ cm}^{-3}$ |
| T <sub>eo</sub> (100 kW absorbed | ~1 keV                             |
| power - ASTRA)                   |                                    |
| τ <sub>E</sub> (ASTRA)           | 2 - 4 ms                           |
| ν <sub>e</sub> *                 | ≤ 0.1                              |

# Flexibility is obtained through the Auxiliary Coils



Noncircular, planar auxiliary coils with 10% A-T of main coil set allow for independent control of transport and stability

| Configuration | Auxiliary Current           | Dominant Feature         |
|---------------|-----------------------------|--------------------------|
| QHS           | None                        | Best confinement         |
| MIRROR        | 3 coils on either end       | Transport similar to     |
|               | opposite to coils in center | conventional stellarator |
| WELL          | All aux currents oppose     | Well depth and stability |
|               | main coil current           | increases                |

#### Monte-Carlo Diffusion Coefficient



- Electron monoenergetic diffusion coefficient, assuming NO radial electric field
- Diffusion in QHS is 1-2 orders of magnitude less than conventional stellarator in low collisionality regime
- MIRROR mode increases transport back to level of conventional stellarator
- WELL configuration shows small degradation of neoclassical transport from QHS case

# **HSX** Assembled



# The HSX Device





- Each coil is initially aligned in a stainless steel support ring and pressure pads, which are epoxied to the coil, mount the coil into the ring
- An auxiliary coil is positioned and clamped on the support ring
- The castings are then fitted to the coil-ring assembly, and final match drilling of the ring to accept the splice plate bolts is performed
- Final measurement of the coil location via CMM provides for accurate coil assembly on the HSX superstructure (assembly to <1 mm at 6 reference points)</li>

# HSX Support Structure



- Modular interior box-beam support structure
  - 4 periods, each moves out for assembly and access
- Each coil support ring has a 3 point, multiaxis adjustable support
- External stiffening is supplied by the toroidal rig assembly for 1 Tesla operation



- Each piece was laser cut to the required length, and the port holes cut by laser to <0.5 mm accuracy
- The Metrecom (CMM (.1 mm accuracy over a 1 m radius sphere)) was used to accurately align the port tubes to the design orientation
- An alignment pointer located the port orientation correctly to the previous CMM setup while each port was welded to the vessel



- Each half-period section is made up of 2 separate pieces, with matching ends trimmed by laser cutting
- These pieces are accurately (< 1mm) aligned in HSX space to form a full period section
- The vacuum flange, which allows for period separation, is fitted to the section and accurately aligned
- Re-measurement and alignment then permits the contours for box-port matching to be measured

## HSX First plasma at boxport



- 2.45 GHz rf ~900 gauss
- < 1 kW power
- $2 * 10^{-4} \text{ torr H}_2$
- > 30 Second duration

# Magnetic Surface Mapping

#### Rationale

- Compare ι profile to design
- Check surfaces for islands/break-up
- Compare the surface shape to calculated qhs predicted shape

#### Method

- Low energy electron gun (< 100 eV)
- Highly transparent (95%) fluorescent mesh
- View using sensitive (10<sup>-5</sup> lux) CCD camera
- Capture images on video and framegrab for later analysis

## Beam Mapping Layout



- The electron gun assembly is almost 180° toroidally from the fluorescent mesh
- The periscope optics is close to the mesh and views at 30° off perpendicular

### Electron Gun



- Can supply up to 2 mA of emission, but usually only 10's of µA are required
- Electron acceleration energies up to 200 eV can be used
- Radially positionable via stepper control
- Rotary alignment of gun to field
- Situated ~180° from the fluorescent screen

## Fluorescent Mesh



- 95% transparent mesh
  - 3 mm spaced wire, 0.2 mm diameter
- 22 reference LEDs on border for image reconstruction
- Viewed with periscope and sensitive CCD camera

# Mirror Configuration Compared to QHS



MIRROR mode has similar transform to **QHS** with large increase in neoclassical transport

| Configuration | Center Transform | Edge Transform |
|---------------|------------------|----------------|
| QHS           | 1.05             | 1.12           |
| MIRROR        | 1.07             | 1.16           |
| WELL          | 1.17             | 1.26           |

# Rotational transform calculation

Electron beam exp't 4 cm launch 1 kG



- CCD camera image of 4 cm gun launch preliminary
- 64 segment, 14 filament Biot-Savart field line following calculation
- Initial transform from 'dot' count to compare to experimental data

# 1 kG QHS e-beam



- Composite of 4 frames from frame-grabber
- No image restoration performed as yet
- Blue outer 'dots' are frame reference leds
- Dot poloidal progression provides transform information

# 1 kG QHS e-beam



- First 'dot' is from a half toroidal transit from the known gun radial launch position
- subsequent 'dots' make a complete toroidal transit, and 1+ poloidal transits
- number of 'dots' per  $2\pi$  poloidally provide a measure of  $\iota$

## Rotational transform profile



- Iota-bar from 2 different methods of analysis
- Includes a scan at 1 kG and 100 gauss
- Comparison to electron transit information from Biot-Savart calculation
  - 14 filaments, 64 segments/filament, 48 coils
- Experiment is in agreement to < 1% with computed profile

## HSX near-term plans

- Continue electron beam magnetic surface mapping
  - apply image restoration techniques to CCD images to permit comparison of surface shapes between experiment and calculation
  - further investigate magnetic configurations
    - Well
    - Mirror
- Single particle orbit experiments to test qhs confinement
- 0.5 T plasma operation at 2<sup>nd</sup> harmonic ECRH

# HSX Magnetic Flexibility





### **Conclusions**

- The HSX main assembly is complete
- 1st plasma at low field has been achieved
- Electron beam mapping of 1 kG magnetic field show well-formed surfaces, no measurable magnetic islands within the confinement region, and a transform profile in agreement to < 1% with calculation
- HSX is now up and running for physics experiments