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Outline

« Quasihelically symmetric with no toroidal curvature C high effective
transform

C Small deviation from flux surface; Parallel currents reduced in
magnitude

C Helical Pfirsch-Schltter current
C Bootstrap current reduces transform
C Good agreement of V3FIT code to diagnostic coil data

Good confinement of trapped particles C MHD instability

C First reflectometer measurements shows core localization of mode

B = 0.5 T: Reduction of neoclassical momentum, particle and heat
transport with anomalous component dominant in QHS

B =1.0 T: Thermal plasmas, T, up to 2.5 keV
1D transport simulation C Large curvature drives TEM

C Good model for temperature profile and confinement scaling

Future Plans and Conclusions



Quasihelical stellarators have high effective transform

Quasihelical: Fully 3-D, BUT
Symmetry in |B| :B = Bo[l- &, COE(Nf - mq)]

In straight line coordinates g =/f , so that

B=B,|1- g,co{N - m/)f|

In HSX: N=4, m=1, andi ~ 1
ieff: N'm | - 3
with £2 1 andn=4 periodicity of

the quasisymmetric field, modulation
of |B| on field line C £ ~3



High effective transform is beneficial for neoclassical
— how does it affect anomalous transport?
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Consequences of high effective transform:

« Small drift of passing particles from flux
surface

* Pfirsch-Schltter and bootstrap currents
are reduced in magnitude

» Easy to achieve low collisionality
plasmas

« Small banana orbits; very low
neoclassical transport

* Large curvature, short connection length
C is there evidence that anomalous
transport might be large?
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Lack of toroidal curvature verified by passing orbit

measurements

Electron orbits
mapped into
Boozer
coordinates
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 Grad B drift in HSX confirms lack of toroidal curvature

« Small orbit shift confirms large effective transform of N- m/



High effective transform reduces Pfirsch-Schluter and
bootstrap current

Pfirsch-Schliter current: 1 dp. nl +mg

g cos(nf-n
PS de?.n ( q)

* reduced in magnitude
* helical in HSX due to lack of toroidal curvature

» dipole currents are opposite of tokamak where field
in HSX is tokamak-like (grad B drift is opposite).

Bootstrap current: ~1.46./b / m g [grad|ents]

* reduced in magnitude

 opposite direction to tokamak
Boozer,

* reduces transform but confinement improves
slightly due to N- m/ factor




3 axis coills measure current evolution at two
toroidal locations
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« 16 3-axis pick-up coils mounted in a poloidal array
» Two sets of measurements separated by <1/2 field period.

* From Pfirsch-SchllUter current: By~ cos 6 and B, ~ sin 6



Rogowsky confirms bootstrap current unwinds
transform

ECH turnoff

Off-axis
ECRH
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» For on-axis heating, bootstrap current rises during 50 ms ECH
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 Colder plasmas with off-axis heating show saturation
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« Good agreement with BOOTSJ (ORNL) for extrapolated currents

* Current direction consistent with lack of toroidal curvature



Coil array shows Pfirsch-Schltter current dominant
early in time
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- Early time t=10 ms C Iz = 0 in model

» Bootstrap current probably underestimated



Bootstrap current shows up later in time
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* Bootstrap current shows up as DC offset in By

- Later in time t=50 ms C Iz = BOOTSJ value (overestimated)

* Helical PS current evident in reversal of B,

*** Special thanks to Steve Knowlton and V3FIT team! ***




Bootstrap current decreases transform in HSX
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See Schmitt poster
Wednesday
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» Pressure profile from TS; current density profile from BOOTSJ
* Pressure and Current density profiles in VMEC C transform profile

« With 500 A, iota is just above one C no instability signatures observed



Symmetry is broken with auxiliary coils

* Phasing currents in auxiliary coils breaks quasihelical
symmetry (n=4, m = 1) withn =4 & 8, m = 0 mirror terms

* Neoclassical transport and parallel viscous damping increased

+ + + - - - ‘Old’ Mirror

- + -+ + - - ‘New’ Mirror

Minimal displacement
of magnetic axis at
ECH and TS ports




Mode Amplitude

‘New’ mirror excites n =4 and 8, m=0 modes

QHS
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New mirror configuration increases effective
ripple while keeping magnetic axis stationary

New Mirror Configuration allows for

Eeff INCreases by factor of 8 both on-axis heating and on-axis

atr/a ~ 2/3 Thomson profiles
Thomson
10° . . . - ; —  Scattering
] Laser Path

Mirror

(separated by
1 field period)

«— ECRH Beam

r/a




Verification of ~ 1 mm shift in magnetic axis

inboard TP outboard

Electron emitter

Large collector
1 mm collector

1 mm Shift

Mirror peak

QHS peak



Transform

Rotational Transform Well Depth
1.2 . . . . 1 ; . .
115! \?0-8'
fgo.s- QHS -
1.1} _ g o
% 504 -
é Mirror
1.05 QHS | 0.2}
19 02 04 ; 06 08 1 % 02 04 ; 06 08 1
QHS | 6 Ne Wb
Mirror
Transform/a=2/3) | 1.062 | 1.071 <1%
Volume (m3) 0.384 | 0.355 < 10%
Axis location (m) | 1.4454| 1.4447 <1 mm shift
U (/a = 2/3) 0.005 | 0.040 factor of 8

.... While transform, well depth and volume
remain almost fixed




Good confinement of trapped particles

Floating Potential vs Density
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- Collector plate in direction of electron
DB drift shows large negative potential
when quasisymmetry broken.
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BUT ... global coherent mode observed at 0.5 T
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Frequency (kHz)

Frequency (GHz)

First results from Reflectometer

Reflectometer Frequency Sweep, 9/25/07, shot # 99
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« Extraordinary mode at B
=05T

» Coherent mode in QHS
localized to core region

* Mode is absent at high
symmetry-breaking

 Broad turbulent spectrum
observed in Mirror mode
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kHz

HSX has demonstrated benefits of quasisymmetry
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« Reduction in momentum, particle and heat transport: B=05T

* Neoclassical is reduced BUT anomalous contribution now dominates

Momentum

Flow Decay: Slow Time Scale

Mirror Measurements
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Larger flows in QHS with
equivalent torque

C Lower parallel viscous
damping

Particle Heat
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Peaked density profiles in Higher T, in QHS with
QHS same absorbed power

C Reduced thermodiffusion C Lower Xe



Off-axis Heating Confirms Thermodiffusive Flux in
Mirror

« With off-axis heating, core temperature is flattened
« Mirror density profile becomes centrally peaked
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Off-axis Heating Confirms Thermodiffusive Flux in
Mirror

« With off-axis heating, core temperature is flattened
« Mirror density profile becomes centrally peaked
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Electron temperature profiles can be well matched
between QHS and Mirror

« To get the same electron temperature in Mirror as QHS requires 2.5 times
the power

— 26 kW in QHS, 67 kW in Mirror C large nonthermal population at 0.5 T
— Density profiles don’t match because of thermodiffusion in Mirror
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Thermal Diffusivity is Reduced in QHS

QHS has lower core G, 0

— Atr/a~0.25, G, is 2.5 m?/sin 8l
QHS, 4 m?/s in Mirror

— Difference is comparable to K
neoclassical reduction (~2 m?/s) £

P..am 4_

& ol Mirror Exp.

Two configurations have similar 2}
transport outside of r/a~0.5

% 01 02 03 04 05 o8



Anomalous conductivity is difference between
experimental and neoclassical
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- Little difference in anomalous transport between QHS and
Mirror
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« Good agreement between kinetic and diamagnetic stored energy

C minimal nonthermal contribution
» Core T, about twice as large in QHS as Mirror configuration
* Mirror density profile more hollow as T, gradient increases



Minimum difference profiles to compare
transportatB=1.0T
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» More than twice the power in Mirror configuration to approximate the
temperature profile

* Density profile still slightly more peaked in QHS than Mirror



Electron thermal conductivity lower in QHS than Mirror

» Ray-tracing code calculates power deposition profiles
« Total power scaled to diamagnetic loop measurement of stored energy
* QHS experimental thermal conductivity ~ 3 times lower than Mirror:

* Possibility that anomalous lower in QHS, but this needs more conclusive data



Can we model anomalous transport in HSX?

e— LHD ‘ ‘ (
— = NCSX

- &= = NCSX-J=0
= | === W7-X
Q4| ERS .+=. 1 <Rewoldt’05 using FULL code showed
.,g —a--- NCSX-TOK HSX had largest linear growth rate to
= ITG/TEM modes compared to W7-X,
& . NCSX, QPS

. » Goal is to apply predictive transport
ol Il modeling to HSX using multi-mode
approach

» Neoclassical transport based on
DKES, anomalous transport based on
Weiland analytic model




Microstability estimates using axisymmetric models with
“guasisymmetric” approximation

« 3D stability calculations find most unstable
eigenmodes (ITG/TEM) ballooning in the low Real [$]

field, bad curvature region in HSX 11 GS2 (QHS)
calculations

« Dominant particle trapping comes from helical
ripple, e, (0.14@a = 1.40R)

« Reduced connection length, L, = g.4R = R/|[N-mi| |B]
° R/3, leads to very low collisionality electrons QHs | |
across the minor radius - TEM (T, >>T))

* Normal curvature rotates helically, with bad
curvature following the location of low field
strength

~K, - (bxx)
_Imtl curvature ' I QHS

*  Kymax ~ 1/45cm? 1/R (R=120cm)

e To account for toroidal drifts in drift wave models,
R/L - (R/S)/L - good curvature N .
-4 ) 0 2 4




Weiland model with simplified assumptions
benchmarked against GS2 code

GS2 - HSX Weiland - HSX Weiland - TOK
Growth Rates Growth Rates Growth Rates

=
= — [ [N = N (s3]

* Linear growth rates from Weiland and 3D GS2 are in agreement
near experimental gradients (a/L,, a/L,, =2 - 5, largest
difference ~30%)

» Weiland growth rates 23 smaller without “quasisymmetric”
approximation



Model predicts gross features of T, profile and
confinement scaling

Pahs = 36.0 kW Energy Confinement Time
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See Guttenfelder talk,
Wednesday morning

» Weiland model, with geometry approximations, gives reasonable fit to
temperature profile.

» Captures the scaling and magnitude of confinementtimesatB=1.0T



Future plans

« 16 channel ECE system to be installed soon

- Need to measure radial electric field C diagnostic neutral beam
mounted on HSX for CHERS

* Novel low-cost HIBP system being developed with RPI

» Second 28 GHz gyrotron for additional heating, pulse
propagation and Bernstein wave heating

* ICRF to heat ions into low collisionality regime C Obtain ion
root plasma for Mirror to maximize neoclassical and possibly
anomalous differences with QHS configuration



Conclusions

« Lack of toroidal curvature verified by
» grad-B drift of passing particle
* helical Pfirsch-Schllter current
* bootstrap current that decreases transform
 High effective transform verified by
« small drift of passing particles from flux surface
 reduced magnitude PS and bootstrap currents

« Good confinement of trapped particles with quasisymmetry C
MHD mode observed

* first reflectometer results shows mode localized to core

* broad density fluctuation spectrum in Mirror compared to
QHS



Conclusions

*ECHatB=05T

* Reduction of particle, momentum and heat transport with
guasisymmetry

* Large themaodiffusive flux in Mirror yields hollow density profiles,
reduction of neoclassical in QHS results in peaked density.

. Ce (r/a=0.25) is 4.0 m?/s in Mirror, 2.5 m?/s in QHS
ECHatB=10T

* Nonthermal component is small

* T.upto 2.5 keV is observed

. Ce (r/a=0.25) is 1.5 m?/s in Mirror, 0.5 m?/s in QHS

» Weiland model with geometric approximations gives reasonable fit
to anomalous transport

C High effective transform is good for neoclassical transport,
perhaps not so good for anomalous



