

Electron Cyclotron Heating by X-wave in the HSX stellarator

K.M.Likin¹, A.Abdou¹, A.F.Almagri¹, D.T.Anderson¹, F.S.B.Anderson¹, J.Canik¹, C.Deng², C.W.Domier³, S.P.Gerhardt¹, R.W.Harvey⁴, H.J.Lu¹, J.Radder¹, J.N.Talmadge¹, K.Zhai¹

¹HSX Plasma Laboratory, Madison, USA ³Electrical Engineering Department, UCLA, USA ²Department of Applied Science, UC, Davis, USA ⁴CompX, Del Mar, USA

- > Introduction on HSX stellarator
- **>** Gyrotron power into the machine
- ➤ Absorption of launched power in HSX plasma
- **ECE** measurements
- > Fokker-Planck code
- >Summary

The Helically Symmetric Experiment

R, m	1.2
a _p , m	0.15
B _o , T	0.5
n _e , m ⁻³	<
	$5 \cdot 10^{18}$
T _e , keV	≤ 0.6
F, GHz	28
P _{rf} , kW	≤ 130
f trapped 1	sartkles

Symmetry in |B| leads to a small deviation of traffied porbits from a flux surface and, as a result, to improved neoclassical confinement in a low collisionality regime

13th Joint Workshop on ECE and ECRH, Nizhny Novgorod, Russia, May 17-20, 2004

HSX Cross-sections along 1/2 Field Period

Launching Antenna

X-wave (E $_{\perp}$ B) is launched from the low magnetic field side and is focused at the plasma center with a waist of 2 cm (e⁻² level)

Gyrotron power on HSX window

Gyrotron Power vs. Beam Current

- Calorimetric measurements are made with a compact dummy load just before the barrier window
- > In these measurements μ-wave diode on the wg directional coupler is calibrated as well

Absorption along the machine

Six absolutely calibrated μ -wave detectors are installed around the HSX at 6°, 36°, \pm 70° and \pm 100° (0.2 m, 0.9 m, 1.6 m and 2.6 m away from μ -wave power launch port, respectively). #3 and #5, #4 and #6 are located symmetrically to the ECRH antenna

Absorption in vicinity of ECRH antenna

- > The same μ-wave probes have been installed on the ports next to the ECRH antenna
- > ECRH power is mostly absorbed in first passes through the plasma column
- > Absorption is symmetric with respect to the ECRH antenna

Ray tracing calculations

3-D Code is used to estimate absorption in HSX plasma

- ➤ The code runs on a parallel computer with OpenMP and MPI constructs
- ➤ The code returns an absorbed power profile and integrated efficiency
- ➤ An optical depth and ECE spectrum can be calculated as well
- ➤ Bi-Maxwellian plasma is applied if necessary

Profile and Efficiency

Single-pass absorption

- Single-pass absorbed power profile is quite narrow (< 0.1a_p)
- > Second Pass: Rays are reflected from the wall and back into the plasma, the absorption is up to 70% while the profile does not broaden
- > Absorption versus plasma density is calculated (1) at constant T_e and (2) based on the TS, ECE and diamagnetic loop data in bi-Maxwellian plasma
- Owing to a high non-thermal electron population the absorption can be high enough at a low plasma density

13th Joint Workshop on ECE and ECRH, Nighny Noogorod, Russia, May 17-20, 2004

Multi-pass absorption

- ➤ 240 rays are launched into the plasma from 80 points distributed uniformly across and along the machine at a random angle
- Multi-pass absorption adds

 (4 − 7)% to the total efficiency in a wide range of plasma density
 (0.5 − 2)·10¹⁸ m⁻³
- This multi-pass absorption is low due to (1) low power density in the plasma core and (2) high ray refraction

ECE Radiometer

- Conventional 8 channel
 radiometer implemented:
 6 channels receive ECE power
 emitted by plasma at a low
 magnetic field side and 2
 frequency channels at a high
 field side
- \triangleright 60 dB BS filter is used to reject the gyrotron power at (28 ± 0.3) GHz and 40 dB fast pin diode protects the mixer from the spurious modes on a leading edge of gyrotron pulse

ECE Temperature vs.

Plasma Density

- ➤ ECE temperature drops with plasma density while the electron temperature from Thomson scattering diagnostic is almost independent of plasma density
- ➤ In plasma density scan the non-thermal feature at a low magnetic field side increases first and then the high frequency emission gets risen

ECE at high plasma density

$$\langle n_e \rangle = 2.5 \cdot 10^{18} \text{ m}^{-3}$$

- > Emission at the high plasma density is thermal
- ➤ HSX plasma is not a black body: an optical depth should be taken into account to estimate the electron temperature:

$$\mathbf{T}_{\mathbf{ece}} = \mathbf{T}_{\mathbf{e}} \cdot (\mathbf{1} - \mathbf{e}^{-\tau})$$

> Thomson scattering and interferometer data are used to calculate the optical depth

ECE at low plasma density

- **ECE** signal is high at both low and high field sides
- ➤ High signal from outboard side is due to emission from central resonance region where a population of supra-thermal particles is supposed to be high at a central heating
- ➤ Oblique emission from central regions can contribute to the signal detected at higher frequencies (> 28 GHz, inboard side)

Perpendicular and Oblique

sight view

Solid lines represent the local absorption at perpendicular propagation and dash lines — at oblique propagation

- ➤ Two propagation angles are chosen. Along each direction we assume "Maxwellian tail" with different T_e and n_e
- ➤ The following profiles are assumed for tail electrons:

13th Joint Workshop on ECE and ECRH, Nighny Noogorod, Russia, May 17-20, 2004

ECE Spectrum at 0.5·10¹⁸ m⁻³

- \triangleright ECE temperature is defined as $T_{ece} = T_1 \cdot (1 e^{-\tau_1}) + T_2 \cdot (1 e^{-\tau_2})$
- This estimate shows that about 30% of electron density belongs to the tail with $T_{1max} = 6$ keV and $T_{2max} = 12$ keV, $n_{1max} = 0.15 \cdot 10^{18}$ m⁻³ and $n_{2max} = 0.25 \cdot 10^{18}$ m⁻³

CQL3D code for HSX

Absorbed Power Profile Cuts at some pitch angles

rho

- > QHS configuration in HSX has a helical axis of symmetry and its mod-B is tokamak-like. So with **CQL3D** code we can simulate the distribution function in HSX flux coordinates
- First runs of CQL3D have been made for HSX plasma at 3·10¹⁸ m⁻³ of central density and 100 kW of launched power. At plasma center a distortion of distribution function occurs in the energy range of (5-15) keV

Summary

- ➤ Measured multi-pass absorption efficiency in HSX plasma is high in a wide range of plasma densities
- ➤ ECE measurements in HSX exhibit a nonthermal feature at a low plasma density
- ➤ Bi-Maxwellian plasma model partly explains the high absorption and enhanced emission
- ➤ CQL3D code predicts 5 15 keV electrons in the HSX plasma core at 100 kW of launched power