Effects of Symmetry-Breaking on Stored Energy and density scaling in HSX

Presented by A.F. Almagri

for the HSX Team

University of Wisconsin-Madison

13th International Stellarator Workshop Canberra, Australia

Outline

•Stored energy and resonance location.

With and without symmetry.

•Stored energy and density scaling.

•Energy confinement scaling.

The HSX Device

Major Radius	1.2 m
<r></r>	0.15 m
Volume	~.44 m ³
Field periods	4
ι_{axis}	1.05
ι_{edge}	1.12
Coils/period	12
B ₀ (max.)	1.25 T
Pulse length	0.2 s
Auxiliary	48
Coils	

Auxiliary Coils Provide Flexibility for HSX

Configuration	Auxiliary Coil Currents	Dominant Feature
QHS	None	Best transport; symmetry
MIRROR	3 coils on ends add to main; center 6 opposite	Transport similar to conventional stellarator
ANTI-MIRROR	Opposite phasing to mirror; same global transport	Deep ripple on low-field side at ECH launcher
WELL	All currents opposite to main coil currents	Well depth and stability increase

Present experimental program focuses on improvement of electron transport through quasi-helical symmetry

- 28 GHz gyrotron (200kW) is used to heat electrons into low collisionality regime where conventional stellarators have very large neoclassical losses.
- We are presently focusing on second harmonic x-mode heating at B = 0.5 T to generate <u>hot tail electrons</u> for energetic particle confinement studies.
- We are only injecting 50 kW and coupling no more than about 10-20 kW. This is in rough agreement with estimates based on the optical depth and ray-tracing calculations.

Particle Orbits at ECH Launch (ϕ =0): QHS

Particle Orbits at ECH Launch (ϕ =0): Mirror Mode

Higher Stored Energies Can be Achieved in the QHS Mode of Operation

- •With similar densities, large variations are observed in the stored energies measured by a diamagnetic loop
- Variations are with magnetic field spectrum, resonance location, and line-averaged density

Stored Energy in the Mirror Mode is asymmetric with resonance location

Restoration of symmetry is important

Low field side heating: there is a strong dependence on the mode of operation reflecting the importance of trapped particles.

High field side heating: the energy content is similar in both modes. The small decrease may be due to change in plasma volume.

Stored energy has a peak in the high field side resonance QHS.

QHS HFS

QHS LFS

Soft x-ray does not show the low density peak (Bulk plasma).

Hard x-ray (CdTe detector) shows high energy tail in the QHS.

QHS

10% Mirror

Hard x-ray shows no high energy tail in the QHS at high density.

QHS Low Density

QHS High Density

Stored energy at low density decreases with the amplitude of symmetry-breaking-ripple.

Stored energy at low density decreases with the amplitude of symmetry-breaking-ripple.

Stored energy exhibits a complicated density scaling

Store energy has a peak at low density. *This peak strongly dependent on resonance location*

$$4x10^{11} \text{ cm}^{-3} < n_e < 10^{12} \text{ cm}^{-3}$$

Stored energy increases with density. <u>Strongly dependent on amplitude of symmetry breaking</u>

$$n_e < 4 \times 10^{11} \text{ cm}^{-3}$$

At low density we have well confined energetic electron tail for all resonance locations

The confinement of energetic electron tail degrades with increased ripples.

Confinement and scaling

• At low density, QHS confinement time is a factor of 2 or so higher than Mirror.

• At higher density, confinement times are similar.

• Mirror scales roughly like ISS95, but a factor of 2 lower. QHS has different scaling

Similar Density Profiles for QHS and Mirror

Line-density profiles insensitive to heating location

The Helically Symmetric Experiment Is the First Stellarator to Have an Axis of Symmetry

•Quasi-helical symmetry (QHS) is symmetry ONLY in the magnitude of B. In a straight field line coordinate system where $\theta = \iota \phi$

$$B = B_{\scriptscriptstyle 0} [1 - \varepsilon_{\scriptscriptstyle h} \cos(N - m t) \phi]$$

- \Rightarrow Equivalent to a tokamak with transform given by $N-m\iota$
- •In HSX: N = 4, m=1 and $t \sim 1$ the effective transform is approximately 3.

High Effective Transform and Helical Symmetry Is Responsible For:

- Low Neoclassical Transport
- •Small deviations from magnetic surfaces, small banana widths
- Minimal number of direct loss particles
- Small Pfirsch-Schlüter and bootstrap currents
- •Robust magnetic surfaces, high equilibrium beta limit
- Low parallel viscosity in the direction of symmetry

Particle Orbits at ECH Launch (ϕ =0): Anti-Mirror

Variation of stored energy with resonance.

