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The Hessian matrix

High beta CDX-U stability analysis

Summary and future work

•The nullspace eigenmodes of the SIESTA Hessian matrix have successfully been 

demonstrated to be parallel  plasma displacements, agreeing with theory.

•A stability analysis has been performed on CDX-U, demonstrating the presence of unstable 

modes in an axisymmetric VMEC equilibrium.  The appearance of unstable modes in 

converged SIESTA equilibria brought into question the eigensolver, dgeev.

•dgeev is insufficient to resolve the small eigenvalues necessary for an accurate stability 

analysis.  SLEPc will be used next as it should be able to handle eigenvalues of vastly 

varying magnitudes.

•The SIESTA eigenspectrum work will be useful for future work on Alfven eigenspectrum 

analysis in the presence of islands. 1D, 2D, and 3D equilibria will be analyzed.
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oSIESTA (Scalable Iterative Equilibrium Solver for Toroidal Applications) is a 3D 

nonlinear MHD equilibrium solver capable of resolving islands in confinement devices in 

an accurate and scalable manner.

oThe presence of a numerical nullspace of the Hessian matrix has important convergence 

implications for SIESTA.  The structure of the nullspace eigenmodes has been calculated  

and compares favorably with expectations.  The calculations were done on a three field-

period stellarator.

oA stability analysis has been carried out for a CDX-U tokamak that is Mercier unstable 

(shown here) and a Solov’ev configuration.  Problems were detected with the LAPACK 

eigensolver dgeev for use on our poorly-conditioned Hessian matrix.

oThe eigenspectrum work is important not only for improving the convergence of 

SIESTA, but also for future work on the physical effect of islands on the MHD Alfven 

spectrum.  The impact of islands on the presence of gap modes and the existence of Alfven 

modes in 3D equilibria will be studied in future work.

Overview

Configuration convergence

A stability analysis was performed on a high beta (8%) CDX-U equilibrium that is known to 

be Mercier unstable.  CDX-U (Current Drive Experiment-Upgrade)  was a small tokamak 

located at Princeton Plasma Physics Lab.

The LAPACK subroutine dgeev was used to solve for all of the eigenvalues of the SIESTA 

Hessian matrix.  Due to conventions used in the code, negative eigenvalues correspond to 

stable modes and positive eigenvalues correspond to unstable modes.
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Total energy for a stationary plasma 

(magnetic + internal):

The Hessian matrix used in SIESTA is defined 

below.  The eigenspectrum for this matrix will 

be discussed throughout the poster for both 

VMEC and SIESTA equilibria.

For quadratic energies, the Hessian 

is essentially the coefficient of the 

second-order term (with a negative 

sign due to the conventions used in 

the code).  For a spring potential, 

the Hessian would essentially be 

the spring constant.

This Hessian is negative definite (has only 

negative eigenvalues) for a completely 

stable equilibrium. 

Below are some results for the computed nullspace structure for a three-field period 

stellarator.  A plasma displacement purely in the direction of this mode would result 

in essentially no change to the linearized MHD force.  These plots of the nullvector 

dotted into the magnetic field show that the mode is parallel (red) or antiparallel 

(blue) to the magnetic field everywhere, as expected.  There is a large degeneracy of 

eigenmodes that result in no net force.
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The nullspace of the Hessian matrix in SIESTA is very important because it can 

lead to huge displacements in directions that result in no change to the MHD force.  

It can easily be seen from the linearized ideal MHD equations that a plasma 

displacement that is purely parallel to the magnetic field everywhere will result in 

zero contribution to the linear force. 

Thus we would expect that a parallel plasma displacement would serve as a 

nullspace vector for the Hessian matrix; that is a parallel displacement should 

satisfy the following equation:
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Put another way, we hope to find numerically that the nullspace eigenvectors of the 

SIESTA Hessian matrix are displacements that are essentially parallel to the 

magnetic field everywhere in the domain.  

dW = x H x = - dVolò x TF » - dVolò x THx

3 field-period 

stellarator 
Initial run force residual:  

5.039E-32

Stellarator convergence

CDX-U 
Initial run force 

residual: 

1.010E-30 

Solov'ev 
Initial run force 

residual:  9.518E-13

HSX
Initial run force 

residual:  

1.157E-01

Tokamak convergence

CDX-U axisymmetric VMEC 

equilibrium converged on SIESTA  mesh

CDX-U SIESTA equilibrium w/ m=1, 

n=1 island

During cross-checks, it was determined that dgeev does NOT solve for the smaller 

eigenvalues of our Hessian to any reasonable precision.  The calculated “unstable” 

modes were shown to yield a positive δW.  This demonstrates that the sign of the small 

dgeev-calculated eigenvalues could not be trusted, explaining the appearance of spurious 

unstable modes.

dW = -l dVolx Txò > 0
For a stable eigenmode, this leads to the following formula:

Since the change in energy was positive, the positive eigenvalues corresponding to 

unstable modes were calculated inaccurately by dgeev and should actually be negative, 

stable eigenvalues.

The table below demonstrates that dgeev does NOT solve the eigenvalues (notably the 

smaller ones) to any reasonable precision for matrices of condition number ~1012.

Take-away: The stronger-shaped, far-from-axisymmetric stellarators are more 

difficult to converge due to their larger mode structure.

Tokamaks are in general much easier to converge to a stable equilibrium.  Strongly 

shaped stellarators like HSX are more difficult due to larger mode content and a 

more complicated Hessian matrix.  This matrix will generally have a larger 

condition number, making the linear solve at each step much more challenging.  

Convergence work on SIESTA is ongoing to improve performance on helical 

stellarators.

Config Condition 

number

Smallest 

eigenvalue

Largest 

eigenvalue

||Hx-lx||/||lx|| 

(-25.926)

||Hx-lx||/||lx||

(-5.179E-002)

||Hx-lx||/||lx||

(4.449E-007)

CDX-U 7.286E11 -8.282E-010 -17.702 6.970E-004 1.8126E-002 468.390

Condition 

number

Smallest 

eigenvalue

Largest 

eigenvalue

||Hx-lx||/||lx||

(-79.082)

||Hx-lx||/||lx||

(2.179E-004)

||Hx-lx||/||lx||

(-7.687E-008)

Solov’ev 7.416E11 -7.687E-008 -15448.345 2.865E-003 320.469 634112.128

Basic equations of SIESTA

Ideal MHD energy (target function for 

minimization):

For any plasma displacement, the linearized system becomes the following:

The force in the unperturbed state which 

is not necessarily yet in equilibrium is 

given by:

To find equilibrium, minimize nonlinear force                                           and update fields. 

Perturbed, linear system

Faraday’s law

Ampere’s law

Mass conservation

dVol
pB

W
12 0

2


  

 

 

   


















00

0

0

00

1

1

ppp

BJ

BB

pBJBJF









0000 pBJF 


0


 pBJF

res

res

F
F

FH



















 

Ideal Linear MHD (at step n) 

 

Nonlinear Ideal Force Iterations to minimize W (1<k<100) steps) 
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Add resistive perturbations to B 

    ( ~ )B A A J    

IF 
2

ideal tolF  , END 

 ELSE REPEAT n=n+1 UNTIL n = nTerminate 

Begin n=1 Add non-ideal resonant 

pert  (at iteration n=1)

||
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Parallel calculation of 

Hessian H and pre-

conditioner 1P

(BCYCLIC code) 

Resonant current 

diffusion (tear ideal 

surfaces) 

At a VMEC or SIESTA equilibrium, 

the eigenvalues of the SIESTA 

Hessian correspond to actual physical 

stable/unstable modes.  VMEC 

equilibria will in general contain 

unstable modes in the SIESTA 

context, because  VMEC does not 

allow for radial magnetic 

perturbations Bs.

Linear equation 

to be solved 

iteratively by 

GMRES:

Why are there 

still unstable 

eigenmodes 

appearing in 

this converged 

equilibrium?

SLEPc is being implemented so that the eigenspectrum can be solved in an accurate 

manner.  SLEPc is highly scalable and includes multiple direct and iterative solvers.


