

Similarity of Edge Turbulence in Various Configurations of HSX

HSX

W. Guttenfelder, D.T. Anderson, J.M. Canik, C.H. Lechte, J.N. Talmadge HSX Plasma Laboratory, U. of Wisconsin, Madison

Overview

- Turbulence measurements at the edge are very similar between the quasi-symmetric and non-symmetric configurations, including:
- Fluctuation levels and spectra
- Correlation lengths and times
- Growth rates inferred from bispectral analysis
- Many of the turbulence features are consistent with electron drift waves, including:
 - Mode velocities
 - Correlation time scales on order of linear growth rates
 - n-φ cross-phases
- Inward turbulent transport is measured at low density where ExB shear rates are larger than at high density

Experimental Details

•HSX has a helical axis of symmetry in |B| and a resulting predicted very low level of neoclassical transport

•For experimental flexibility, the quasi-helical symmetry can be broken by adding a mirror field

To verify improved neoclassical transport, anomalous transport will have to be accounted for between configurations with and without quasi-symmetry.

Langmuir Probes Used to Measure Edge Plasma

- Ion saturation current and floating potential measurements are acquired at two different toroidal locations
- Two probes in regions of bad & good curvature (low field and high field regions)
- Tungsten tips separated ~3 mm poloidally
- Can infer k_n, n-φ cross phase ⇒ Γ = k_n/B|N||Φ| sin(α_{n-n})

Edge Turbulence is Similar in Quasi-Symmetric and Non-symmetric configurations

ECRH Plasmas Produce Low Collisionality Electrons

•Profiles from Thomson scattering for central resonance heating

•Electron thermal diffusivities in quasi-symmetric and non-symmetric configurations are similar at the edge, ~10 m²/s (see poster by J. Canik).

Mean Edge Profiles

Comparable Fluctuation Intensity, Correlation Lengths & Times

•Fluctuation levels (from ion saturation current) at the edge are same in QHS and Mirror – similar to mixing length estimates (3-10 ρ_s/L_n)

- •Correlation lengths ($L_r \approx k_\theta^{-1}$) and times are similar over a range of densities • $k_0 \rho_0 \approx 0.15$
- •Turbulent diffusivities (L_r^2/τ) are ~ 20 m²/s at high density on the order of local transport analysis at the edge

Measured Particle Flux is Directed Inward

Inward Transport Measured at Two Toroidal Locations

- •Transport is inward directed near the separatrix at both low field and high field toroidal locations
- $\bullet I_{sat}$ fluctuation levels are similar at the far edge (r/a = 0.8 1.0)
- $\bullet Floating$ potential fluctuations at the high field side are as low as $\sim\!\!50\%$ those at low field side

Many Features Consistent with Electron Drift Waves

- With ∇T_e estimate included, mode velocity (V_{phase} - V_{ExB}) is in electron diamagnetic drift direction
- Inverse correlation times comparable to maximum linear growth rates predicted for axisymmetric TEM (Horton, 1976)
- Growth rate spectra determined from bispectral analysis (Kim et al., 1996) comparable to TEM linear growth rates
- •At higher density (<n $_e>$ = 2.0×10^{12} cm $^{-3}$) measured cross phase slightly larger than linear TEM theory

High field side

Outward Transport Measured at High Density

Profiles at Two Densities are Similar

Turbulence Characteristics are Similar But Opposite Sign of k_{θ} - $\alpha_{n_0} \Rightarrow \Gamma$

- •n- ϕ cross phase remains the same
- Poloidal wavenumber similar in magnitude, but negative due to reversed phase velocity
- •There is also evidence for significant super-thermal electrons at low density (see poster by A. Abdou)

Shear Rates Are Larger at Low Density

 E_r×B shear rate, ω_E, calculated for quasisymmetric geometry (Hahm, 1997) using floating potential, are larger at low density

