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Overview

Turbulence measurements at the edge are very similar
between the quasi-symmetric and non-symmetric
configurations, including:

— Fluctuation levels and spectra

— Correlation lengths and times

— Growth rates inferred from bispectral analysis

Many of the turbulence features are consistent with electron
drift waves, including:

— Mode velocities

— Correlation time scales on order of linear growth rates

— n-¢ cross-phases

Inward turbulent transport is measured at low density where
ExB shear rates are larger than at high density
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Experimental Details

*HSX has a helical axis of symmetry in |B| and a resulting predicted very low
level of neoclassical transport

«For experimental flexibility, the quasi-helical symmetry can be broken by
adding a mirror tield
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«To verify improved neoclassical transport, anomalous transport will have to be
accounted for between configurations with and without quasi-symmetry

Langmuir Probes Used to Measure Edge Plasma
« lon saturation current and floating potential measurements are
acquired at two different toroidal locations
+ Two probes in regions of bad & good curvature (low field and high
field regions)
+ Tungsten tips separated ~3 mm poloidally
« Caninfer ky, n-¢ cross phase = I' = ky/BIN||®| sin(c,.,)
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Edge Turbulence is Similar in Quasi-Symmetric and

Non-symmetric configurations

ECRH Plasmas Produce Low Collisionality Electrons

«Profiles from Thomson scattering for central resonance heating
T, = 25 eV from Doppler spectroscopy
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«Electron thermal diffusivities in quasi-symmetric and non-symmetric
configurations are similar at the edge, ~10 m%s (see poster by J. Canik).

Mean Edge Profiles
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Comparable Fluctuation Intensity, Correlation
Lengths & Tlmes

*Fluctuation levels (from ion saturation
current) at the edge are same in QHS
and Mirror — similar to mixing length
estimates (3-10 p4/L,,)
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«Correlation lengths (L, ~ ky™*) and times are similar over a range of densities.
kops~ 0.15

*Turbulent diffusivities (L,%/t) are ~ 20 m?/s at high density — on the order of
local transport analysis at the edge
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Measured Particle Flux is Directed Inward
Particle flux

+At this density, resulting turbulent
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Sl N ; driven particle flux is inward

*Spectrum-averaged poloidal
aks e - wavenumber and n-¢ cross-phase are
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Inward Transport Measured at Two Toroidal Locations
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«Transport is inward directed near the separatrix 0 Law field side
at both low field and high field toroidal locations w', |
~ +
*ls4 fluctuation levels are similar at the far edge Viioat i :“.f.
(rfa=0.8-1.0) "

Floating potential fluctuations at the high field o0
side are as low as ~50% those at low field side

Many Features Consistent with Electron Drift Waves
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*With VT, estimate included, mode
velocity (Vphase - Vi) is in electron
diamagnetic drift direction
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«Inverse correlation times comparable to i 2 8
maximum linear growth rates predicted for
axisymmetric TEM (Horton, 1976)

*Growth rate spectra determined from
bispectral analysis (Kim et al., 1996) _ P
comparable to TEM linear growth rates e oS | -
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<At higher density (<ng> = 2.0 x 102 cm?)  Fuy
measured cross phase slightly larger than
linear TEM theory o

Outward Transport
Measured at Highi Density

Profiles at Two Densities are Similar
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Turbulence Characteristics are Similar
But Opposite Sign of Ky-a,, = T’
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*n- cross phase remains the same

«Poloidal wavenumber similar in magnitude, but negative due to
reversed phase velocity

*There is also evidence for significant super-thermal electrons at
low density (see poster by A. Abdou)

Shear Rates Are Larger at Low Density

+Floating potential profiles change Assume
significantly with density '5°“°"'°
*E,xB shear rate, wg, calculated for quasi- \VWHB x V\v\
symmetric geometry (Hahm, 1997) using
floating potential, are larger at low density
«Inward edge transport measured in CHS (l*N)E{( “N)ov ‘I’n( )}
and H-1 with significant E, shear, L og >
Vihase (Shats, 2000).
QHS floating potential ExB shear rates
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