

Plasma Turbulence in the HSX Stellarator C. Lechte, W. Guttenfelder, K. Likin, J.N. Talmadge, D.T. Anderson HSX Plasma Laboratory, University of Wisconsin, Madison

Overview

- Look at fusion plasma edge turbulence with multiple multi-tip Langmuir probes
- **Correlation with fixed reference probe on connecting** field line gives 2D spatial resolution \Rightarrow
- \Rightarrow **Propagating Blobs**
- \Rightarrow Relationship of density and potential structures (crossphase)
- \Rightarrow First results
- Particle transport measurement with probes:
 - \Rightarrow Influence of magnetic Hill, Well and Mirror fields on the flux frequency spectrum

Experiment and Probes

HSX has a Helically Symmetric Field

- Region of high field strength red) follows rotational
- HFS can be inboard or outboard Helical ripple is very low

Langmuir Probes in Good and Bad Curvature

First Results from 2D Correlation

Reference probe at fixed location, multi pin probe is moved radially between discharges

• Seven pins on the multi pin probe configured for ion saturation current measurement, eight for floating potential measurement • Correlation function computed for 2D region

 \Rightarrow E×B drift from slightly displaced potential Blob causes radial flux

 \Rightarrow Earlier single probe measurements (see poster [PP1.046]) showed the same:

a reversal from net inward to net outward transport at high densities

• a reversal of the poloidal phase velocity

• In all cases, there is a weak dipole present

• Potential and Density Blobs are nearly on top of each other (no large cross phase) • This first result hints at the drift wave / trapped electron family of instabilities, not the ballooning / interchange kind

Transport

- Data taken with 4-pin probes at the low field side (LFS) and high field side (HFS), at r/a = 0.5—0.6 (much further in than the 2D correlation probes)
- Particle flux from electrostatic fluctuations is estimated with a three point Langmuir probe

$$\Gamma(t) = \langle n^{(t)}V_{r}(t) \rangle = \langle n^{(t)}E_{\theta}(t) \rangle / B_{\phi}$$

$$\mathsf{E}_{\theta} = -\nabla \mathsf{V}_{\mathsf{float}} = (\mathsf{V}_{\mathsf{f2}} - \mathsf{V}_{\mathsf{f1}})/\mathsf{d}$$

 $n = I_{sat} / (0.6eA_{probe}c_s)$

Te fluctuations are neglected

• Alternatively (Powers, Nucl. Fusion 14 (1974) 749)

$$\Gamma(\mathbf{f}) = \mathbf{Re}\{\mathbf{N}^{*}(\mathbf{f})\mathbf{E}_{\theta}(\mathbf{f})\}/\mathbf{B} = |\mathbf{P}_{\mathsf{n}\mathsf{E}\theta}(\mathbf{f})| \cos[\alpha_{\mathsf{n}\mathsf{E}\theta}(\mathbf{f})]/\mathbf{B}$$

Direction of transport depends on sign of crossphase $\alpha_{nE\theta}$.

Adding a magnetic Hill increases turbulent transport at high densities

High and Low Field Side have similar spectra **Except at GAE Mode** \Rightarrow Flux Reversal

Mode at 45—50 kHz is seen on:

- Langmuir probes
- Interferometer
- Magnetic Probe

Between LFS and HFS, crossphases $\alpha_{nE\theta}$ differ by more than π (at mode frequency and elsewhere) This could mean that in this case, MHD instabilities are dominant (sensitive to good/bad curvature)

Conclusions

- Multi pin multi probe operation possible without disrupting macroscopic plasma parameters
- 2D correlation analysis yields density and potential structures
- Radial Blob motion qualitatively explained by E×B drifts from potential Blobs
- High densities \Rightarrow reversal of flux
- Increasing magnetic Hill increases turbulent flux
- A Hill discharge with a GAE shows sensitivity to good/bad curvature

Future Work

- More in-depth look at influence of Mirror fields and magnetic Hill and Well on Blob dynamics
- Comparison with turbulence models (see poster [PP1.046] in this session)
- Parallel correlation and phase difference for long connection lengths, GAE mode (see posters [PP1.044] and [PP1.045])
- Wave number spectra and scaling
- New fluctuation diagnostic for core turbulence: Reflectometry

Contact Author: chlechte@wisc.edu

necessitate Microwave Imaging Reflectometry (MIR)

Proposed HSX Heterodyne Reflectometer Schematic

Radially outward (cm)

- Radial Blob moved by E×B drift from
- accompanying potential blob
 Net radial flux because density blob slightly off-center
- Reversal of motion going from low to high density

• Transport increases with Hill strength

Flux at GAE mode reverses at high field side
 → MHD/interchange