Particle Transport and Density Fluctuations in HSX

C. Deng and D.L. Brower

University of California, Los Angeles

J. Canik, D.T. Anderson, F.S.B. Anderson and the HSX Group

University of Wisconsin-Madison

Abstract

- Perturbative particle transport study in the quasihelically symmetric stellarator, HSX, are carried out using a multichannel interferometer system. Density perturbations are produced by modulating the gas fuelling and the particle source is measured by a multichannel H_a system. Diffusion coefficient D and convection velocity V are modeled by solving the continuity equation. Preliminary estimates indicate a diffusion coefficient D_e~2 m²/s. The high-frequency density fluctuations in the range of 25-120 kHz were observed in quasi-helically symmetric plasmas in HSX... These fluctuations have an m=1 mode nature. These fluctuations may be driven by gradients in the plasma pressure.
- *Supported by USDOE under grant DE-FG03-01ER-54615, Task III and DE-FG02-93ER54222.

Outline

Equilibrium electron density profile for *Quasi-Helically Symmetric* (QHS) and
 Mirror Mode (MM) plasmas
 Do direct loss orbits play a role in determining n_e(r)?

- 2. Perturbative studies of particle transport by gas modulation experiments
- 3. High-frequency density fluctuations

Interferometer Capabilities

- Spatial resolution: 9 chords, 1.5cm spacing and width.
- Fast time response: analog: 100-200 µsec, real time digital: <10 µsec maximum bandwidth 250 kHz [with 2 MHz sampling]
- Low phase noise: 24 mrad (1.6°) $(\Delta n_e dl)_{min} = 9 \times 10^{11} \text{ cm}^{-2}$ 0.4% level density fluctuations can be measured
- Density fluctuations: wavenumber resolution (i) $k_{\perp} < 2.1 \text{ cm}^{-1}$, (ii) $k_{\parallel} < 0.07 \text{ cm}^{-1}$

Solid State Source

Solid State Source:

 bias-tuned Gunn diode at 96 GHz with passive solid-state Tripler providing output at 288 GHz (8 mW)

Support of Optical Transmission System:

 2.5 meter tall, 1 ton reaction mass, mounted on structure independent of HSX device. Reduces structure vibration and minimizes phase noise.

Dichroic Filters:

- mounted on port windows to shield interferometer from 28 GHz gyrotron radiation
- − Cut-off frequency: ~220 GHz
- $\sim 10\%$ loss
- attenuation ranging from 92db at 28 GHz to 68 db at 150 GHz.

• Edge Filters:

mounted inside port windows to reduce diffraction of the window

Interferometer Schematic

Beam Expansion Optics and Receiver Array

Density Evolution for QHS Plasma

Flux Surfaces and Interferometer Chords

Inversion Process:

- spline fit Φ=n_edl
- 2. construct path length matrix

$$L \cdot n = \Phi (=n_e dl)$$

3. solve using SVD

HSX Density Profile (QHS)

Measured Line-Integrated Density Profile and fitting

Inverted Density Profile

t=840 ms

Density Evolution for QHS Plasma

QHS and Mirror Mode Density Profiles $n_e \sim 1 \times 10^{12} \text{ cm}^{-3}$

 $W_{OHS} = W_{MM} \sim 20 J$

Profile shapes are

- (1) centrally peaked
- (2) similar shape

QHS and Mirror Mode Density Profiles $n_e \sim 0.4 \times 10^{12} \text{ cm}^{-3}$

Profile is broader for Mirror Mode

Perturbative Particle Transport Study

Density perturbation: obtained by gas puffing modulation

Transport coefficients D and V: obtained by comparing
measured amplitude and phase of density perturbation with
the results of the modeling, which gives the best fit.

Fourier coefficients

The Fourier coefficients of the line-integrated density were obtained by fitting the following function to the measured data:

$$\tilde{I} = \tilde{N}_{re,1}\cos(\omega t) + \tilde{N}_{im,1}\sin(\omega t) + \tilde{N}_{re,2}\cos(2\omega t) + \tilde{N}_{im,2}\sin(2\omega t) + (a_0 + a_1t + a_2t^2)$$

Here $\tilde{N}_{re,i}$ and $\tilde{N}_{im,i}$ are the real and imaginary parts of the Fourier coefficients at the *i*th Harmonic of the modulation frequency. The a0,a1 and a2 correspond to constant, linear and quadratic time dependence and take into account a possible slow time evolution.

Continuity Equation

The electron density can be constant on magnetic flux surfaces. We use cylindrical geometry transport Equation:

$$\frac{\partial n}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} r \left(D(r, t) \frac{\partial n(r, t)}{\partial r} - V(r, t) n(r, t) \right) + S(r, t) \tag{1}$$

Parameters n and S can be separated into two part: (1) stationary part n_0 and S_0 , and (2) perturbed part $\tilde{\mathcal{N}}$ and \tilde{S} .

$$n = n_0 + \tilde{n} e^{i\omega t} \qquad S = S_0 + \tilde{S} e^{i\omega t} \qquad (2)$$

where ω is the frequency of the density perturbation generated by modulating the gas feed. Also assume D and V are independent of time. Linearizing equation (1) leads to:

Linearized Equations

$$i\omega \tilde{n}(\omega, r) = D(r) \frac{\partial^2 \tilde{n}(\omega, r)}{\partial r^2} + \left(\left(\frac{D(r)}{r} + \frac{\partial D(r)}{\partial r} - V \right) \right) \frac{\partial \tilde{n}(\omega, r)}{\partial r} - \left(\left(\frac{V(r)}{r} + \frac{\partial V(r)}{\partial r} \right) \right) \tilde{n}(\omega, r) + \tilde{S}$$
(5)

$$\tilde{n} = \tilde{n}_{re} + i \tilde{n}_{im}$$

The boundary conditions are:

at r=0;
$$\partial \tilde{n}_{re}/\partial r = \partial \tilde{n}_{im}/\partial r = 0$$
 (6)

at r=a.
$$\tilde{n}_{re} = 10^9 cm^{-3}; \tilde{n}_{im} = 0$$
 (7)

DEGAS code and H_{α} Measurements used to estimate the neutral particle distribution in HSX

Source details: see J. Canik poster

Perturbative Transport

Density Perturbation Amplitude and Phase

- Analysis approach computes Fourier coefficients of the line integral $\tilde{n}_e = \int \tilde{n} dl$
- Linearize the continuity equation for small density perturbations, model $\Gamma (=-D\nabla \tilde{n}_e)$, and solve for amplitude and phase.
- Use ~10 cycles (f~200-400 Hz), $n_e \le 10\%$

Reasonable Fit (to amplitude) using $D_{mod}=2 \text{ m}^2/\text{s}$

Ne~ $1.0*10^{12}$ cm⁻³

- By making modest (<30%) changes to source, fits to phase can be improved significantly
- Results very sensitive to source profile,
- No pinch term required

Reasonable Fit (to amplitude) using $D_{mod}=2 \text{ m}^2/\text{s}$

Ne~ $0.5*10^{12}$ cm⁻³

Comparison of QHS plasma and Mirror Plasma

 $ne=1.7*10^{12}cm^{-3}$

QHS mode, D=0.5m2/s

Mirror mode, D=1.0m2/s

Solving the Continuity Eq. for Steady-State Plasma

$$\nabla \bullet \Gamma = S \qquad where \qquad \Gamma = -D_o \nabla n_e$$

$$D_o \sim D_{mod} \sim 2 m^2/s$$

$$D_o \sim D_{mod} \sim 2 m^2/s$$

$$D_o \sim D_{mod} \sim 2 m^2/s$$

For details, see J. Canik poster on Wed.

Density Fluctuations

Noise: f < 30 kHz

Fluctuation Features

- QHS plasmas
- coherent, m=1
- localized to steep gradient region
- Frequency $\sim 1/n_e$; double frequencies, when ne $< 0.7*10^{12} cm^{-3}$
- Pressure (temperature) driven but no resonant surface!

Density Dependence

Fluctuations Disappear When Symmetry broke

Fluctuations with ECH Power

- Amplitudes of Fluctuations increase with ECRH Power
- Frequency of Fluctuations increase with ECRH
 Power
- T_e measurement shows $T_e(0)$ increase linearly with ECH power
- No fluctuations observed when ECH power lower than 27kW

Density windows of the Fluctuations

•When $n_e < 0.5*10^{12} cm^{-3}$ and $n_e > 3.0*10^{12} cm^{-3}$ no fluctuation were observed

Summary

- 1. Equilibrium electron density profile is peaked for both the QHS and Mirror Mode configurations (at low density, Mirror Mode plasmas are broader than QHS)
- 2. Peaking on axis likely arises because the source profile is centrally peaked and broad.
- 3. Modulated gas feed studies indicate constant $D_{mod} \sim 2 \text{ m}^2/\text{s}$. No inward pinch required due to centrally peaked source profile.
- 4. Future operation (53 GHz) at higher density should move the source to the plasma edge allowing particle transport issues to be addressed
- 5. High-frequency density fluctuations (f~25-120 kHz, m=1) are observed for QHS plasmas.
- 6. These fluctuations are clearly associated with temperature or pressure gradients (but no resonant surface).

HSX Interferometer System

Density Profile Inversion

- Method: Abel inversion; Singular Value Decomposition
 - flexible boundary conditions
 - non-circular geometry
 - plasma scrape-off-layer SOL estimate
- Model: spline fit to 9 channel line-density profile
 - no Shafranov Shift
- Path lengths: calculated for twenty vacuum flux surfaces,
- SOL plasma contribution: One viewing chord is outside the separatrix. This provides information on the SOL contribution.
- Refraction correction: necessary for chord length and position