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« Quasihelically symmetric stellarators have high effective transform, given

HSX is the World’s First Test of QuasiSymmetry by N —mz=3for N =4, m = 1 helical field and a transform just above 1. 3.1 Thomson Scattering and ECE measure T, profiles 3.2 Nonthermal population drives GAE MHD mode in QHS plasmas
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blob propagation - Stored energy increases linearly with power, contrary to

symmetry can be broken by adding a mirror power and density. Also, more extensive turbulence measurements. 4.1 Neoclassical transport 4.2 Does turbulence
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