

Overview of HSX Experimental Program

J.N. Talmadge, A. Abdou, A.F. Almagri, D.T. Anderson, F.S.B. Anderson, D.L. Brower*, J.M. Canik, C. Deng*, S.P. Gerhardt+, W. Guttenfelder, C.H. Lechte, K.M. Likin, J. Lu, S. Oh, J. Radder, V. Sakaguchi, J. Schmitt, K. Zhai, HSX Plasma Laboratory, U. of Wisconsin, Madison (* UCLA, + Princeton)

1. The HSX Experiment

HSX is the World's First Test of QuasiSymmetry

28 GHz ECH

Up to 150 kW

 $B = B_0 [1 + \varepsilon_h \cos(N - m_i)\phi + \varepsilon_M \cos(N\phi)]$

- HSX has a helical axis of symmetry in |B|
- ➤ Reduction of direct loss orbits
- ➤ Low level of neoclassical transport
- Small viscous damping of plasma flow
- For experimental flexibility, the quasi-helical symmetry can be broken by adding a mirror

Overview

- Quasihelically symmetric stellarators have high effective transform, given by N - mt = 3 for N = 4, m = 1 helical field and a transform just above 1.
- Previously demonstrated B spectrum does not contain toroidal curvature and that high effective transform reduces drift from flux surface. • We have shown that quasisymmetry is effective in reducing direct orbit losses and viscous damping of plasma flow.
- 2nd harmonicECH with 28 GHz gyrotron produces central T_e up to 1 keV with 150 kW, measured by 10 chord Thomson scattering.
- Nonthermal electron population is evident in ECE, TS and X-ray measurements. This population skews HSX scaling studies with respect to International Stellarator database.
- However, good confinement of the nonthermal population in QHS configuration has led to unforeseen MHD activity (with no effect on confinement): Global Alfven Eigenmode.
- Presently concentrating on determining whether neoclassical transport influences particle and heat diffusivities.
- > Thermodiffusion possibly flattens density profile in Mirror configuration. In QHS, this term is very small and profiles are peaked.
- ➤ Preliminary evidence that T_e is higher in QHS than for Mirror.
- Anomalous transport dominates towards plasma edge.
 - ➤ Turbulent driven flux measured with probes only loosely correlates with H_{α} measurements of particle flux.
- ➤ Initial modeling suggests drift wave turbulence dominates transport. • Future plans include more flow measurements, higher magnetic field, power and density. Also, more extensive turbulence measurements.

3. Nonthermal Population Observed During ECH Excites MHD Mode

• Some preliminary data indicating difference in QHS/Mirror T_e profiles Neoclassical thermal conductivity i QHS is about 3 orders of magnitude

smaller than Mirror configuration.

- 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 • Power scan shows up to 1 keV measured in
 - 10 channel Thomson scattering diagnostic. • Comparing signal in different spectral channels indicates nonthermal population

4.1 Neoclassical transport

shapes density profile

Poster by Zhai PP1.042

- ECE shows nonthermal population at low density • Bi-Maxwellian plasma can model high absorption and ECE emission.
- Poster by Likin PP1.041

3.2 Nonthermal population drives GAE MHD mode in QHS plasmas

fluid code (Spong).

Poster by Deng PP1.044

Eigenmode.

- Magnetic fluctuations coherent with density
- Poster by Oh PP1.045

4. Neoclassical vs Anomalous Transport: Crucial Issue for Quasisymmetric Stellarators

4.3 2-D correlation

blob propagation

-1.6 μ s

10 11 12

0μs

10 11 12

1.6 μ s

10 11 12

• Correlation of multi-pin probe

propagation of blobs at plasma edge

and potential points to drift waves.

→ Well 10% → Hill 5% → Hill 15%

6 8 10 12 14

• Turbulent driven flux increases with

Poster by Lechte PP1.047

magnetic hill.

measurements show

2. Symmetry Matters!

2.1 Reduction of Direct **Loss Orbits** Faster breakdown, more

QHS

Mirror

2.3 Breaking symmetry with islands increases viscous damping

• Process is similar to rotation modes in tokamaks.

Poster by Schmitt PP1.048

Decreased x-ray flux when symmetry is broken

2.2 First evidence that parallel viscous damping is reduced with quasi-symmetry

For equivalent drive QHS has slower rise and fall and reaches a higher flow velocity

Two time scales observed; slow corresponds to the damping in the direction of

Although quasi-symmetry reduces neoclassical damping, there remains a residual anomalous damping mechanism similar to tokamaks

Invited talk by Gerhardt El1.003

Poster by Canik PP1.043

• Density profile peaked in QHS, flat

in Mirror configuration

4.2 Does turbulence dominate at the edge?

- Turbulent driven flux, measured with probe, is comparable to that measured with H_{α} detectors and DEGAS code.
- Trapped electron model provides rough agreement with particle and heat diffusivities.

Poster by Guttenfelder PP1.046

4.4 Stellarator Modeling and Scaling

- Stellarator Database shows offsets dependent on configuration. Machine dependent normalization factor indicates confinement degrades as effective ripple increases.
- ➤ Occurs even for high collisionality
- ➤ Could energetic particle confinement or viscous damping of flow be responsible?
- HSX can vary effective ripple over broad range and investigate confinement, viscous damping diffusivities and energetic particle confinement

- ASTRA modeling shows T_e and stored energy are consistent with anomalous $\gamma_a \sim 1/n$.
- Stored energy increases linearly with power, contrary to stellarator database in which W $\sim P^{0.4}$
- Mirror neoclassical transport very much dependent on E_r
- Nonthermal population possibly skewing HSX scaling

5. Future Plans

- Build on present plasma flow results by measuring flow damping near magnetic islands and across separatrix; correlate with turbulence.
- Install magnetic probe arrays and measure poloidal, toroidal mode numbers of GAE mode.
- Compare CQL3D Fokker-Planck results to X-ray measurements
- Increase power, density and magnetic field to minimize nonthermal population and accentuate neoclassical transport
- Increase operating field to B=1.0 T
- ➤ O-mode operation at 1 T gives factor of 2 in n_e and reduction of tail population.
- > Reduce anomalous transport and increase neoclassical.
- Implement a 2nd 28 GHz gyrotron
- > Available power increased from 200 to 400 kW.
- ➤ Vary heating profiles, allow for pulse propagation. • Identify characteristics of anomalous transport in quasi-
- symmetric configurations through diagnostic improvements
- > ECEI for temperature fluctuations
- > Reflectometry for density fluctuations
- It would be desirable to measure the radial electric field since neoclassical transport in Mirror very much depends on E_r.

● anti-Mirror

• Decreasing rotational transform

- The quasisymmetry is broken by these additional spectral components and the viscous damping rate increases
- damping due to resistive wall