Neutral Density Measurement and Modeling in HSX

J. Canik, D.T. Anderson, S.P. Gerhardt, J.N. Talmadge

HSX Plasma Lab. Madison, Wisconsin, USA

Abstract

The neutral density and particle source rate have been measured experimentally in the Helically Symmetric eXperiment (HSX) using an absolutely calibrated set of 15 $\rm H_{\alpha}$ detectors. These experiments have been carried out in ECH heated plasma with densities ranging from 0.4 to 1.5 x 10^{12} cm $^{-3}$ and injected power up to 65 kW. The $\rm H_{\alpha}$ brightness from these detectors has been used together with the output from 3-D DEGAS¹ simulations to yield the full neutral density and source rate distributions. The plasma density and source profiles are used to calculate an effective diffusivity of $\sim\!10^4$ cm $^2/\rm s$, which increases towards the plasma edge. The diffusivity shows a dependence on density, but is independent of power. Initial work on accounting for recycling in the DEGAS simulations is also presented.

[1] Heifetz, D.B. et. al., J. Comp. Phys. **46**, (1982) 309

Outline

- Experimental setup
- Computational setup
- Simulation results and comparison with experiment
- Progress on including recycling
- Conclusion

The H_α Arrays on HSX

- Light from the plasma is passed through interference filters and imaged onto 1mm core fiber-optic cables.
- The fibers couple the light to photodiodes, which are leadshielded to prevent contamination by xrays
- The entire assembly has been absolutely calibrated using an integrating sphere.

H_α Array Placement

- HSX has 15 H_α detectors forming two arrays
 - Toroidal array: 7 detectors on magnetically equivalent ports
 - Poloidal array: 9 detectors
 viewing cross section of
 plasma
 plasma

Example Discharge to be Modeled

• 8/25/03 Shot 60: QHS, $n_e = 1.5 \times 10^{12}$ cm⁻³, P = 37 kW

Neutral Gas Modeling with DEGAS

- DEGAS is a Monte-Carlo neutral gas code (see end of poster)
- Takes as input the plasma position, density and temperature
- Given a location of a gas puff, gives the steady state neutral distribution
- Outputs neutral density, H_{α} emission, ionization rate, etc.

HSX Grid

- 15 radial, 25 poloidal, 121 toroidal points
- 3 radial SOL points

DEGAS Input

- Density from inverted interferometer data
- T_e profile is parabolic, agrees with central Thomson scattering data
- SOL parameters are estimated

DEGAS Results are Scaled to Match H_α Brightness

- Results are multiplied to match the central chord of the poloidal array
- Poloidal array shows good match to experiment
- Toroidal array matches at puff, but DEGAS results are low on chords away from puffer -> room for recycling?

DEGAS Output: Atomic H

Molecular Hydrogen

Atomic H: Cross Sectional View

Molecular H: Cross Section

Flux Surface Averaged Quantities

 Source profile is peaked at r/a ~ 0.7, but central fuelling is non-negligible

Transport Quantities

- The total source inside each flux surface and the electron density gradient give an effective diffusion coefficient
- Yields D(r) ~ 10⁴ cm²/s, increasing towards edge
- $n_e = 1.5 \times 10^{12} \text{ cm}^{-3}, P = 37 \text{ kW}$

Power and Density Scan

- Discharges were analyzed for powers ranging from 25 to 65 kW, and line averaged densities from 4x10¹¹ to 1.5x10¹² cm⁻³
- Results shown to right:
 - D for power scan with density held constant at 1.5x10¹² cm⁻³
 - D for density scan with power held constant at 37 kW
- Diffusivity appears to have a much stronger dependence on density than on power

Power and Density Dependence

- Local D and n_e plotted for all power levels
- Clear dependence on density, but not power
- Fit gives
 D=10⁴n_e^{-.57}P^{.09},
 confirming weak power scaling (n_e in 10¹² cm⁻³, power in kW)

Recycling

- The complete fuelling model must include recycling
- First estimate is that all recycling occurs where the field lines intersect the vessel (shown below)

First Recycling Results

- DEGAS results including only recycling shown on right
- Source rate and neutral density appears to be ~0.2-0.5 times that from puff
- Work under way to combine recycling and puff

Conclusions

- H_α diagnostics have been combined with DEGAS simulations to provide the plasma source rate distribution.
- Transport analysis yields $D(r) \sim 10^4 \text{ cm}^2/\text{s}$, increasing towards the plasma edge.
- D has a density dependence, but a very weak power dependence.
- Work has begun to include recycling in the DEGAS model for HSX.

How DEGAS Works

- Input geometry and plasma profiles
- Tell it a source magnitude (#/s) and location
- DEGAS gives each flight a part of that source as its weight
- Calculates mean free paths along trajectory and moves particle to a collision point
- At collision, flight weight reduced by $(1 \rho_{ion})$, ρ_{ion} is probability of ionization
- Continue until weight too small to care

Continued...

- Each collision gives (weight * ρ_{ion}) ionizations
 / sec at the location of the collision
- When you're done, you have the ionization source rate (S) everywhere
- Now you get neutral density through the equation $S = n_0(n_e < \sigma_e v > + n_i < \sigma_i v >)$