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Key Points

|\ Characteristics of the Biased Electrode.

*Evidence of Two Time Scale Damping in HSX.

*Neoclassical Modeling of Plasma Flows

Experimental Verification of Reduced Viscous Damping with Quasi-Symmetry
Computational Study of Different Configurations

1. Structure of the

Experiments

General Structure of Experiments

Mach Probe

Return
Currents

Electrode

Electrode Wall

Power Supply

LCFS

\

Electrode
Currents

Mach Probes in HSX

6 tip mach probes measure plasma flow speed and
direction on a magnetic surface.

2 similar probes are used to simultaneously measure
the flow at high and low field locations, both on the wf o
outboard side of the torus.

Data is analyzed using the unmagnetized model by
Hutchinson. v
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Symmetry Can be Intentionally

Broken with Auxiliary Coils
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Note: Floating Potential

Rises Much Faster /ﬁ

Than the Flows.

3. Two Time Scales

Observed in Flow Damping

Simple Flow Damping Example
Take a simple 1D damping problem:

du 0 t<O
mn—=F-uU, F= i 0
Has solution B t>
0 t<0
U=41JB

7(1—exp[—ty/nm]) t>0
As the damping pu is reduced, the flow rises more slowly, but to a
higher value.

Full problem involves two momentum equations on a flux
surface—2 time scales & 2 directions.

Flow Analysis Method

Convert flow magnitude and angle into flow in two directions:
Uy ep(t) = X (t)cos(X (1))
U eplt) = X, (t)sin(X(t))
Predicted form of flow rise from modeling:
N =c'T-eb(-ne! L +C’F-eb(-ns)k
Fit flows to models

Y (I)= ct (]-—exb (—[\s_l ))2!11(@# )+ C2(1—6><b(—;\&2 ))Z!U(Cﬁe)+n322
nrw (I) =c! (]’—GXb (—;\s_l \,)coa(ml \,_|_ C (]._be (—[\&.2 ))coe(txe)+nm

Similar model 2 time scale / 2 direction fit is used to fit the
flow decay.

Model Fits Flow Rise Well

Fast Rise: 11.7139, Slow Rise: 438.3352, Fast Fall: 50.9474, Slow Fall: 278.6465sec.
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4. Neoclassical Modeling of Plasma Flows

We Have Developed a Method to Calculate
the Hamada Basis Vectors

Need quantities like <e,-e >, <e e >, <e, e ><|Vy> <|Vy-  Vy|>.
Previous calculation used large aspect ratio tokamak approximations.

Method involves calculating the lab frame components of the
contravariant basis vectors along a field line, similar to Nemov.

Solve the Momentum Equations on a
Flux Surface

« Two time scales/directions come from the coupled momentum

equations on a surface.
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» Solve these with Ampere’s Law

of Ofn
—§@<éh-éh> = —qx&(< 1
+ Use Hamada coordinates, using linear neoclassical viscosities.

* No perpendicular viscosity included.
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Formulation #1: The External Radial Current
is Quickly Turned On.

Original calculation by Coronado and Talmadge

After solving the coupled ODEs, the contravariant components of
the flow are given by:

U ={l—e" )5, +([1—e'" s,
US =(1—en)s, +[1—et'™ s,

S,...S,, 1, (slow rate), and 1, (fast rate) are flux surface quantities
related to the geometry.

Break the flow into parts damped on each time scale:

U=[-e"")sg +Sg J+ll-e'=)s,zg +Sz8. )

This allows the calculation of the radial electric field evolution:

%(t): g%( =0)+F[l—e ")+ F,(1-e V")

Formulation #2: The Electric Field is Quickly
Turned On.

Assume that the electric field, d®/dyis turned on quickly

ob E., t<0
oy |Eo+rell-e'") t>0

ExB flows and compensating Pfirsch-Schlueter flow will grow on the
same time scale as the electric field.

Parallel flow grows with a time constant t- determined by viscosity
and ion-neutral friction.

Ut)=Ug(l—e 5, + BQuxr (1-(1+Q,)e " +Q,e ")

Two time scales/two direction flow evolution.
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Tokamak Basis Vectors Can Differ from
those in Net Current Free Stellarator.
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2. I-V Characteristics of Electrode Indicate Transport Limits the Current

Bias Waveforms Indicate a
“Capacitance” and an Impedance

0

Electrode current
profile does not
follow the density

Volt

C=1/R=8.9x10""F

Decay Time: « Current peaks at the
1=33x10% seconds s calculated
Impedance: R=V/I=36 Q %m'_r k separatrix.

=200 L

Accumulated Charge

2Br

from “Charging Current™: 2| L ﬁz)(:fgsrrﬁ@%(ig\?v?r?gis
Q=2.33 Coulombs Sl !
Voltage: V=310 Volts 3 °|| gllje;(r:gr?tn saturation
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time 10t

Original Formulation of Capacitance/Impedance modeling published in J.G.
Gorman, L.H. Rietjens, Phys. Fluids 9, 2504 (1966)
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Measurements and Modeling of Bilased Electrode Discharges in HSX

5. Comparisons Between QHS and Mirror

Configurations of HSX and with Modeling

QHS Modeled Radial Conductivity agrees to

QHS Flow Damps Slower, Goes Faster

For Less Drive.
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» Define the radial conductivity as

(3%
dd/dy

« Combination of neutral friction and viscosity
determines radial conductivity.

* Mirror agreement is somewhat better.
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QHS Damping Does Not Appear

constant.
*See Poster by J.

Canik for more details

x10"

to Scale with the Neutrals

*H,, signal is linear in
the density=neutral
density approximately §

on the H, system and

interpretation.

*Flow decay time
becomes longer as
density increases.
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OHS Damps Less Than Mirror; Some Physics Besides Neoclassical and
Neutral Damping Appears to be Necessary to Explain the QHS Data.

6. Computational Study: Viscous Damping In

Different Configurations of HSX

Increasing the N4 Mirror Percentage is
Efficient at Increasin

Well Depth

Many Different Configurations are

Accessible

Aux. Coil Current
Direction (+ for

adding to the toroidal
field of the mail coils)
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Percentage indicates the ratio of amp-turns in the two
coil sets.
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