Key Points

- IV Characteristics of the Biased Electrode
 - Evidence of Two Time Scale Damping in HSX
 - Neoclassical Modeling of Plasma Flows
 - Experimental Verification of Reduced viscous damping with quasi-symmetry
 - Computational Study of different Configurations

1. Structure of the Experiments

 Mach Probes in HSX
 - 6 tip mach probes measure plasma flow speed and 4 are on a magnetic axis
 - 2 probes are used to infer density measurement by measuring the Mach number of the flow, and the density is assumed to be constant.
 - Data is analyzed using the unprimed model by addition.
 -Probe measures \(V \) and \(\mu \) from \(\dot{\beta} \)
 - Probe measure \(V \) with a gridded probe

 Symmetry can be intentionally Broken with Auxiliary Coils

 Model Fits Flow Rise Well

2. I-V Characteristics of Electrode Indicate Transport Limits the Current

 Bias Wavesforms Indicate a “Forced E” and an Impedance
 - Current peaks at the collision frequency
 - Impedance is Smaller in the Mirror Configuration
 - Radial Conductivity Has a 1/n Scaling
 - Positive Part of I-V Curve is Linear
 - Capacitance is Linear in the Density

 Decay Time: \(\tau = \frac{L}{V} \) (for the HSX coils)
 - Current peaks at the collision frequency
 - Current decays exponentially
 - Impedance is smaller in the mirror configuration
 - Radial conductivity scaling is \(\frac{1}{n} \)
 - Linear IV relationship: \(V \) needs density scaling
 - Capacitance is linear in the density
 - \(\frac{dV}{dt} \) tells the \(\frac{dV}{dt} \) due to \(\mu \)
 - \(\frac{dV}{dt} \) due to \(\mu \)

3. Two Time Scales Observed in Flow Damping

 Simple Flow Damping Example
 - Take a simple 1D damping problem: \(\frac{DV}{dt} = -\mu \frac{dV}{dt} \)
 - Heat scallop: \(\frac{dv}{dt} < 0 \)
 - As the damping is reduced, the flow rises more slowly, faster rising flow.
 - Full problem involves two momentum equations on a flux surface and a time scale \(\tau \) and \(\alpha \)

 Flow Analysis Method
 - Code is written to simulate cold and single flux flow in these dimensions:
 - \(\frac{dv}{dt} = -\mu \frac{dV}{dt} \)
 - Predicted from model:
 - \(\frac{dv}{dt} = -\mu \frac{dV}{dt} \)
 - \(\frac{dv}{dt} \) at model:
 - \(\frac{dv}{dt} \) at model:
 - Similar model 2 time scales 2 direction fit is used to time flow decay.

 Solve the Momentum Equations on a Flux Surface
 - Flux time scales depend on the coupled momentum
 - Flux flow speed evolves, not from real time evolution
 - Solve these with Ampere’s Law
 - Very little current drawn
 - Plotted with Ampere’s Law
 - Use手册 to combine the neoclassical viscosity, no propagation velocity included.

 Formulation 1: The External Radial Current is Quickly Turned On.
 - Original calculation by Coronado and Talmadge
 - Two time scales/directions come from the coupled momentum
 - Predicted calculation and experimental representations.
 - Predicted calculation and experimental representations.

 Formulation 2: The Electric Field is Quickly Turned On.
 - Assumes the electric field is known and quickly turned on.
 - Flux lines and compensating pinch dilutant flow will grow as the same time scale as the electric field.
 - Flux lines grow with a time constant \(\alpha \) determined by viscosity and radial convection.
 - \(\frac{dv}{dt} = -\mu \frac{dV}{dt} \)
 - \(\frac{dv}{dt} \) time scales due to flow evolution.

5. Comparisons Between QHS and Mirror Configurations of HSX and with Modeling

 QHS Flow Damps Slower, Goes Faster For Less Drive.
 - QHS modeled radial conductivity agrees to factor of \(\alpha^2 \)
 - \(\frac{dv}{dt} \) is slower in the HSX model and faster in the mirror.
 - \(\frac{dv}{dt} \) is slower in the HSX model and faster in the mirror.

 The “Forced E” Model Underestimates the QHS time.
 - Corredos and Talmadge Model Overestimates the Rise Times.
 - QHS Damping Data appears to scale with the neutrals.

6. Computational Study: Viscous Damping In Different Configurations of HSX

 Many Different Configurations are Accessible with the Auxiliary Coils.
 - Increasing the N4 mirror percentage is efficient at increasing the damping.
 - Other Mirror Configurations result in less damping.

 Large Change in Surface Shape for Deep Hill Configuration
 - Deep Hill Mode leads to a slight damping increase.