

Measurements and Modeling of Biased Electrode Discharges in HSX

S.P. Gerhardt, D.T. Anderson, J.M. Canik, W.A. Guttenfelder, and J.N. Talmadge

HSX Plasma Laboratory, U. of Wisconsin, Madison

Key Points

- •IV Characteristics of the Biased Electrode.
- Evidence of Two Time Scale Damping in HSX.
- •Neoclassical Modeling of Plasma Flows.
- •Experimental Verification of Reduced Viscous Damping with Quasi-Symmetry
- Computational Study of Different Configurations

1. Structure of the Experiments

General Structure of Experiments

Mach Probes in HSX 6 tip mach probes measure plasma flow speed and

- direction on a magnetic surface. 2 similar probes are used to simultaneously measure the flow at high and low field locations, both on the
- Data is analyzed using the unmagnetized model by
- $I_{sat}(\theta) = X_1 \exp\left[\left(\frac{X_2}{2}\right) \left[.64(1-\cos(\theta-X_3)) + .7(1+\cos(\theta-X_3))\right]\right]$
- Probe measures V_f with a proud pin.

outboard side of the torus.

Symmetry Can be Intentionally Broken with Auxiliary Coils

 $B/B_o \approx 1 + \varepsilon_H \cos(4\phi - \theta) + \varepsilon_M \cos(4\phi)$

separatrix

profile does not

3. Two Time Scales **Observed in Flow Damping**

Simple Flow Damping Example

- Take a simple 1D damping problem:
- As the damping μ is reduced, the flow rises more slowly, but to a
- Full problem involves two momentum equations on a flux surface→2 time scales & 2 directions.
- Flow Analysis Method
- Convert flow magnitude and angle into flow in two directions $U_{1 \exp}(t) = X_2(t) \cos(X_3(t))$
- $U_{2,\text{exp}}(t) = X_2(t)\sin(X_3(t))$ • Predicted form of flow rise from modeling: $U(t) = C_f \left(1 - \exp\left(-t/\tau_f\right)\right) f + C_s \left(1 - \exp\left(-t/\tau_s\right)\right) \hat{s}$
- Fit flows to models
 - $U_{2,fit}(t) = C_f(1 \exp(-t/\tau_f))\sin(\alpha_f) + C_s(1 \exp(-t/\tau_s))\sin(\alpha_s) + U_{2SS}$ $U_{1,fit}(t) = C_f(1 - \exp(-t/\tau_f))\cos(\alpha_f) + C_s(1 - \exp(-t/\tau_s))\cos(\alpha_s) + U_{1SS}$
- Similar model 2 time scale / 2 direction fit is used to fit the

Model Fits Flow Rise Well

4. Neoclassical Modeling of Plasma Flows

Solve the Momentum Equations on a Flux Surface

- Two time scales/directions come from the coupled momentum equations on a surface.
- $m_i N_i \frac{C}{\partial t} < \bar{B}_P \cdot \bar{U} > = -\frac{\sqrt{g B^+ B^-}}{C} < \bar{J} \cdot \bar{\nabla} \psi > < \bar{B}_P \cdot \bar{\nabla} \cdot \bar{\Pi} > m_i N_i U_{in} < \bar{B}_P \cdot \bar{U} > C$ $m_i N_i \frac{c}{\partial t} < \bar{B} \cdot \bar{U} > = - < \bar{B} \cdot \bar{\nabla} \cdot \bar{\Pi} > - m_i N_i U_{in} < \bar{B} \cdot \bar{U} >$
- Solve these with Ampere's Law
- $-\frac{c}{\partial t}\frac{c\Phi}{\partial w}\left\langle \bar{\nabla}\psi\cdot\bar{\nabla}\psi\right\rangle = -4\pi\left(<\bar{J}_{plasma}\cdot\bar{\nabla}\psi>+<\bar{J}_{ext}\cdot\bar{\nabla}\psi>\right)$ Use Hamada coordinates, using linear neoclassical viscosities

No perpendicular viscosity included.

Formulation #1: The External Radial Current is Quickly Turned On.

- Original calculation by Coronado and Talmadge • After solving the coupled ODEs, the contravariant components of the flow are given by:
 - $U^{\alpha} = (1 e^{-t/\tau_1})S_1 + (1 e^{-t/\tau_2})S_2$ $U^{\zeta} = (1 - e^{-t/\tau_1})S_3 + (1 - e^{-t/\tau_2})S_4$
- $S_1...S_4$, τ_1 (slow rate), and τ_2 (fast rate) are flux surface quantities Break the flow into parts damped on each time scale:
 - $\vec{U} = \left(1 e^{-t/\tau_1}\right) \left(S_1 \vec{e}_{\alpha} + S_3 \vec{e}_{\zeta}\right) + \left(1 e^{-t/\tau_2}\right) \left(S_2 \vec{e}_{\alpha} + S_4 \vec{e}_{\zeta}\right)$
- This allows the calculation of the radial electric field evolution:

$\frac{d\Phi}{dw}(t) = \frac{d\Phi}{dw}(t=0) + F_1(1 - e^{-t/\tau_1}) + F_2(1 - e^{-t/\tau_2})$

Formulation #2: The Electric Field is Quickly Turned On.

• Assume that the electric field, $d\Phi/d\psi$ is turned on quickly

$$\frac{\partial \Phi}{\partial \psi} = \begin{cases} E_{r0} & t < 0 \\ E_{r0} + \kappa_E \left(1 - e^{-t/\tau} \right) & t > 0 \end{cases}$$

- ExB flows and compensating Pfirsch-Schlueter flow will grow on the same time scale as the electric field.
- Parallel flow grows with a time constant τ_F determined by viscosity and ion-neutral friction. $\vec{U}(t) = U_E^{\alpha} (1 - e^{-t/\tau}) \vec{e}_{\alpha} + \vec{B} Q_1 \kappa_E (1 - (1 + Q_2) e^{-\nu_F t} + Q_2 e^{-t/\tau})$
- Two time scales/two direction flow evolution.

We Have Developed a Method to Calculate the Hamada Basis Vectors

• Need quantities like $\langle \mathbf{e}_{\alpha} \cdot \mathbf{e}_{\gamma} \rangle$, $\langle \mathbf{e}_{\alpha} \cdot \mathbf{e}_{\gamma} \rangle$, $\langle \mathbf{e}_{\alpha} \cdot \mathbf{e}_{\gamma} \rangle$, $\langle |\nabla \psi| \rangle$, $\langle |\nabla \psi| \rangle$. Previous calculation used large aspect ratio tokamak approximations • Method involves calculating the lab frame components of the contravariant basis vectors along a field line, similar to Nemov

Tokamak Basis Vectors Can Differ from those in Net Current Free Stellarator.

"Forced E," Plasma Response Rate is Between the Slow and Fast Rates.

Per Unit Drive

+ + + + + + + + + + + + + Percentage indicates the ratio of amp-turns in the two

Large Change in Surface Shape for Deep Hill Configuration

Configurations of HSX and with Modeling **QHS Modeled Radial Conductivity agrees to**

5. Comparisons Between QHS and Mirror

QHS Damps Less Than Mirror; Some Physics Besides Neoclassical and Neutral Damping Appears to be Necessary to Explain the QHS Data.

6. Computational Study: Viscous Damping in Different Configurations of HSX

16.66% Hill

Hamada Spectrum

Increasing the N4 Mirror Percentage is Efficient at Increasing the Damping QHS Scan of N4 Mirror Percentage 10% N4 (Standard) Mirror Hamada Spectrum **Other Mirror Configurations Result** in Less Damping 0 0.2 0.4 0.6 0.8 10% N12 Mirror Hamada Spectrum Deep Hill Mode Leads to a Slight **Damping Increase** 0.4 0.6 0.8 sqrt(\P/\P_{r/a=1})

Scan of Hill Percentage

13.33% Hill

2. I-V Characteristics of Electrode Indicate Transport Limits the Current

Bias Waveforms Indicate a "Capacitance" and an Impedance

Impedance is Smaller in the Mirror Configuration

Radial Conductivity Has a 1/n Scaling

Impedance∞1/n consistent with radial conductivity scaling like n. Consistent with both neoclassical modeling by Coronado and Talmadge or anomalous modeling by, for instance, Rozhansky and Tendler.

Positive Part of I-V Curve is Linear

Consistent with linear viscosity assumption. Very little current drawn when collecting ions = collect electrons in all experiments in this 0 200 400

Plasma dielectric constant proportional to density. Low frequency dielectric constant: Expected

Capacitance is Linear in

the Density

Capacitance from "Charging Current' Capacitance from Decay Time QHS $C = \frac{2\pi 1500 \cdot 8.854 \times 10^{-12} (2\pi \cdot 1.2)}{16(\pi - 1.2)} \approx 1 \mu F$