

# Laser Blow-Off Impurity Injection Experiments in the HSX Stellarator C. Clark<sup>1</sup>, D.T. Anderson<sup>1</sup>, F.S.B Anderson<sup>1</sup>, K. Likin<sup>1</sup>, J.N. Talmadge<sup>1</sup>, K. Zhai<sup>1</sup>, J. Lore<sup>2</sup>,

#### **Overview and Motivation** • Impurity control and effective helium exhaust are open areas of research for the stellarator **HSX Beam Line Details:** reactor concept • The expected "Ion Root" operating point of a stellarator reactor is predicted to enhance impurity confinement at 7 J/cm<sup>2</sup> • Some stellarators have seen unexpected, and unexplained increase in impurity • Solid angle of injection: 3 x 10<sup>-3</sup> sr transport under specific operating conditions • W7-AS had an "High Density H-mode" [Grigull, '01] into the plasma per pulse • LHD has an impurity "hole" [Ida, '09] • No clear path exists to satisfactory impurity handling in a reactor scale stellarator • We have undertaken an experimental program to measure the impurity transport properties **Initial Results:** of the HSX stellarator. Our goals are to: Inject aluminum neutrals into HSX plasmas using a laser blow-off technique • Measure the resulting radiation using AXUV photodiode arrays • Determine the impurity diffusivity and convective velocity using the STRAHL code • Compare these findings with the neoclassical model using the PENTA code • Progress has been made toward the experimental goals • Aluminum has been injected into HSX discharges • The injection was visible on a photodiode

The injection did not perturbing the background plasma parameters

• Two photodiode pinhole cameras have been installed on HSX, and five more are under construction.

### Laser Blow-Off

- A glass slide with a 0.5–2.0 µm thick layer of the selected material is back-illuminated with a laser
  - This creates short burst of neutrals, which ballistically enter the plasma
  - The energy spectrum of neutrals is a function of the laser energy density, film thickness, and materia
  - The number of neutrals injected can be controlled with spot size and film thickness

 The laser blow-off properties of aluminum have been particularly well characterized by other researchers [Marmar, '75 & Breton, '80]



A schematic view of the laser blow-off process



A laser blow-off target that has been used on HSX



### Simulation of Impurity Beam Penetration:

- Neutral spectrum taken from [Breton '80] · Projects adequate deposition within the confinement volume

### Simulation of Impurity Radiation Profiles:

- Total emissivity was calculated with ADAS, using HSX plasma parameters

<sup>1</sup>HSX Plasma Laboratory, Univ. of Wisconsin, Madison, USA, <sup>2</sup> Oak Ridge National Lab, Oak Ridge, TN

## The HSX Laser Blow-Off System

- Laser: 850 mJ YAG Surelight III
  - Allows use of up to a 4 mm spot
- Spot size adjustable by movable lens • Projected to inject up to 10<sup>16</sup> neutrals





Test injections have been performed with:

- 1 µm aluminum layer
- Full laser power (850 mJ)
- 1 mm diameter laser spot

• The injections were visible on photodiode • They did not significantly impact the lineaveraged density or stored energy



### **Simulation of Laser Blow-Off**

Considers only electron impact ionization

Atomic data from ADAS

• Assumes  $n_{AI} = 0.01 n_{e}$ 

- Integrated:  $P_{Tot} = 1.65 \text{ kW}$
- The portion of the radiation that would
- transmit through a 5 µm beryllium filter was also calculated
  - Integrated:  $P_{SXR} = 10 W$
  - SXR data won't be useful in the outer two-thirds of the plasma



#### **Total Emissivity Profile**



#### **Background Plasma Parameters**



0.3 0.4 0.5 0.6 0.7 Normalized Minor Radius (p)

### **Determining the View of Each Detector**

# Calculating Transport Coefficients with STRAHL

## 53rd Annual Meeting of the Division of Plasma Physics, November 13 – November 18, 2011, Salt Lake City, UT



### **Reconstruction of Impurity Emissivity Profile**

- Impurity radiation will be detected with AXUV photodiode arrays
  - Two have been installed on HSX
  - Five more are under construction
- The detectors view the plasma through a 1 mm pinhole to achieve spatial resolution

• A beryllium filter can be rotated over the pinhole on several of the detectors so that the photodiode detects only the soft X-ray emission

• The volume around the paraxial ray is discretized • The solid angle of the detector, as viewed from the center of each volume element, is calculated

• This gives the relationship between the emission in each volume element and the signal at the detector

• Since each volume element is small, it is taken to be located at a single radial location

• The volume elements can be binned into the appropriate portion of a matrix relating the 1D emissivity profile to the power incident on each detector

#### Synthetic Diagnostic with Noisy Data:

• Exact expected signals are calculated for each detector from the view information and the emissivity profile

 A Monte-Carlo code adds uncorrelated noise (5% std. dev.) to the exact signal predicted for each detector

> • At each iteration, a least-squares inversion is performed

• The mean and standard deviation of the inversion results are compared to the exact profile





• The transport code STRAHL [Behringer, '87] is used to solve the 1-D continuity equation for each impurity charge state, including the source / sink term due to ionization / recombination from adjacent charge states

$$\frac{\partial n_{I,Z}}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} r \left( D^* \frac{\partial n_{I,Z}}{\partial r} - v^* n_{I,Z} \right) + Q_{I,Z}$$

ADAS is used for atomic data calculations

• The background plasma parameters are assumed to be constant and are inputs to the code • Temporal and spatial impurity source rates, diffusivities and convective velocities are inputs to the code • The code outputs the time dependent emissivity profile

• When used in conjunction with a nonlinear optimization algorithm, STRAHL can be used to determine the impurity convective velocity and diffusivity from the time dependent emissivity