Evidence for Alfvénic Fluctuations in Quasi-Helically Symmetric HSX Plasmas

C. Deng and D.L. Brower, University of California, Los Angeles; A. Abdou, A.F. Almagri, D.T. Anderson, F.S.B. Anderson,

S.P. Gerhardt, K. Likin, S. Oh, V. Sakaguchi, J.N. Talmadge, K. Zhai, University of Wisconsin-Madison;

D.A. Spong, Oak Ridge National Laboratory

Key Results

- Alfvén Continua for QHS and Mirror Mode Plasmas (conventional stellarator) on HSX
- 2. Characteristics of observed fluctuations in Quasi-Helically Symmetric plasma
- 3. Evidence for fast-electron driven GAE mode

Helically Symmetry Configuration

> Conventional stellarators exhibit poor neoclassical transport in low-

>HSX: helical axis of symmetry, no toroidal curvature, no toroidal ripple

Symmetry in $|\mathbf{B}|$: $B = B_0 [1 - \varepsilon_h \cos(N - mt)\phi]$, $\varepsilon_t \approx 0$

>Symmetry in |B| leads to small deviation of trapped particles orbits from a flux surface and, as a result, to improved neoclassical confinement in low collisionality regime

reduction in '1/v' transport

le (MM) configuration

B=0.5 T

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Alfvén continua: n = 1 mode family

Mirror Mode: toroidal mirror term **Quasi-Helical Symmetry: Helical axis of** introduced to magnetic configuration, symmetry, no toroidal curvature equivalent to conventional stellarator **GAE Gap:** 0 - 40kHz, for m=1, n=1 **GAE Gap: 0 - 60kHz, for m=1, n=1** B=0.5 T, $n_e(0)=1.8\times10^{12}$ cm⁻³ B=0.5 T, $n_o(0)=1.8\times10^{12}$ cm⁻³ m = 3m = 6m = 6m = 8m = 8m = 9m = 9

(QHS) configuration

B=0.5 T

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

STELLGAP code (D. Spong)

10% mirror perturbation (STELLGAP code)

HSX Interferometer Channels

Density Fluctuations

R-R₀ (cm)

1. only observed in QHS plasmas

2. coherent, m=1 (n=?)

6. Electromagnetic

3. localized to steep gradient

5. Satellite mode appears at low

densities, ∆f~20 kHz

Frequency chirping sometimes observed

1000 2000 3000 Time -816300(µs)

Coherent Fluctuation observed over broad

ECRH power =50 kW

range of density

 $n_e^{} (10^{12} cm^{-3})$

•When heating location at the magnetic axis, and

when $n_e < 0.5 \times 10^{12} \text{cm}^{-3}$ or $n_e > 3.0 \times 10^{12} \text{cm}^{-3}$, no

density fluctuation is observed

Mode Frequency Scaling

Dispersion and Density and mass scalings consistent with Alfvénic mode

Fluctuations with symmetry Breaking

The GAE Mode Growth Rates **HSX Plasma**

 $a_{nth} = 8\pi n_{e_nonth} T_{e_nonth} / B^2$ and $v_{e_nonth}^2 = 2T_{e_nonth} / B^2$

distribution function. $\omega^*_{e\ nonth}$ is diamagnetic drift frequency of the non-thermal electrons

-large $\beta_{e \text{ non-th}}$ and $\omega *_{e \text{ non-th}}$ increase growth

- low shear (1.05< ι <1.12) and cold ions (no ion Landau damping) may also play a role

The GAE Mode Driving

Case I. Passing Particles

600 800

Energy (Kev)

 $\omega^*_{e}/\omega_{mode} > 1$ [first term Eq.(1)], and

2. $V_A \sim V_e \sim 10^9$ cm/s; occurs at r/a=0.2 for thermal population. To drive mode unstable at larger radii, non-thermal electrons must provide the

For $L_n = 3$ cm, non-thermal electron population **30%**, $k_r = 0$ and $k_{\perp} = 1/a$

From, Eq. (1), perpendicular temperature needed to drive the mode unstable is $T_{\perp} > 4.4 \, keV$

Energetic electrons are able to drive fast particle

Case II: Trapped Particles

 $\omega_{GAE} = \omega_{De_nonth}$, where ω_{De_nonth} is the precession drift frequency

 $\omega_{De\ nonth}/2\pi = v^2_{\perp e_nonth}/(t 4\pi \omega_{ce\ nonth} rR)$

If GAE mode frequency is ~50kHz,

- for r_{eff} =0.1*a=1.3cm, R=120cm, perpendicular energy $\varepsilon_{\perp e_nonth} = m_e v^2_{\perp e_nonth} / 2 = 2.4 \text{ keV}$

ECRH produces non-thermal electrons with $T_{\perp} > T_{//}$ **Instability depends on energy of fast particles, not mass**

Experimental Evidence for non-thermal Electrons

- 1. ECE measurement: shows the perpendicular energy of the non-thermal electrons \sim 4-16 keV at n_e =0.5-2*10¹²cm⁻³, at 50kW ECRH power [see K.M. Likin's Poster]
- 2. Soft X-ray measurement: (0.6-6kV)
- 3. Hard X-ray measurement: shows non-thermal electrons have energy up to 200keV

Summary

- Calculations of Alfven Wave Continuum by 3-D gyro-fluid code shows the possibility of GAE mode in HSX
- Density fluctuation characterized as m=1 global mode
- Electromagnetic component: Fluctuation observed on Magnetic probe is coherent with the density fluctuation
- frequency ~ density scaling and frequency- mass scaling of the fluctuations show the mode is Alfvénic
- The growth rate calculations and experiment show that the fluctuations is most likely driven by non-thermal electrons.
- Mode is only observed for QHS configuration in HSX, not for Mirror Configuration (i) non-thermal electrons are better confined
 - (ii) the damping of the mode in Mirror Configuration is likely greater than in QHS case
- 7. Experimental evidence suggests the observed fluctuation is a GAE mode

Fluctuations in Hill Configurations

• n_{crit} decreases with Hill mode percentage and the transition becomes less frequent. When Hill percentage greater than 7.5%, no transition

•Explanation: 1 ~ 1 ι>1: see fluctuation

1<1: no fluctuation (mode stable)

