

ECE spectrum of HSX plasma at 0.5 T <u>K.M.Likin</u>, H.J.Lu, D.T.Anderson, F.S.B.Anderson, J.M.Canik, C.Deng¹, C.W.Domier², R.W.Harvey³, J.N.Talmadge, K.Zhai HSX Plasma Laboratory, University of Wisconsin, Madison, WI, USA; ¹UCLA, CA, USA; ²UC, Davis, CA, USA; ³CompX, Del Mar, CA, USA

the plasma with off-axis heating

1. ECE Radiometer

•The spectrum of the Electron Cyclotron Emission (ECE) from HSX is measured with an eight channel radiometer at a magnetic field of 0.5 T

•The central region of the plasma is not accessible because the plasma is heated by the extraordinary wave at the second harmonic

•60 dB stop-band filter at 28±0.3 GHz is used to suppress the non-absorbed microwave power

•A low-pass filter with 40 dB attenuation in the band of (50-95) GHz reduces pick-up from the heating source at its second harmonic

2. Calibration

Directional Coupler •Network analyzer is used as a microwave source in CW regime •The frequency is fixed within the band width of each channel

•20 dB Directional Coupler has been calibrated with a network analyzer, i.e. transmission is measured into the forward and arm sections •8-way power divider followed by IF filters have been calibrated with a network analyzer separately for each channel, i.e. a transmission coefficient is measured in 1 GHz frequency intervals within the corresponding frequency band

2.2 Measured Sensitivity of the Channels

•Calibration has been made for two sets of eight IF filters --- one set is for receiving the electron cyclotron emission from the low magnetic field side and the other one – from the high magnetic field side

•Sensitivity of each channel has been measured at different input power, i.e. at 2.5 μ W, 5 μ W, 7.5 μ W, 10 μ W and 15 μ W, so that the output signal varies from 0.5 V up to about 5 V, respectively

•Sensitivity has been measured at various frequencies within the band width of IF filters

be 5.84 cm²*sterad

of each channel

3. Results of measurements

3.1 ECE vs. Thomson Scattering

3.2 ECE Spectra in QHS and Mirror configurations

•TS and ECE data are shown in the quasi-helically symmetric (QHS) and 10% Mirror magnetic configurations in the case of the central resonance (CR) heating

47th Annual Meeting of the Division of Plasma Physics, October 24-28, 2005, Denver, Colorado

•ECE channels have been also calibrated against the electron temperature measured by Thomson scattering (TS) diagnostic in

•TS and ECE data are averaged over 5 shots •Optical depth is calculated based on the TS profiles •ECE temperature is corrected on the calculated optical depth

Frequency (GHz)

•Higher ECE temperature in the Mirror mode is due to a lower central plasma density in Mirror as compared to QHS

4. Bi-Maxwellian plasma model

4.1 QHS Spectrum

•Solution of the radiation transport equation is used to find a population and a temperature for energetic electrons •Bulk plasma density and electron temperature are from TS • The best fit is for the following parameters: $N_{tail} = 0.1 \cdot 10^{18} \text{ m}^{-3}$ in QHS, $0.2 \cdot 10^{18} \text{ m}^{-3}$ in Mirror and $T_{tail} = 2.5 \text{ keV}$ for both modes

5. CQL3D code **5.1 Maxwellian Electron Distribution Function** rad_temperature(keV) plasma temperature(keV) 1.9 2.0 2.1 2.2 2.3 2.4 2.5 1.9 2.0 2.1 2.2 2.3 2.4 2 omega/omegace0 omega/omegace0 **5.2 Non-Maxwellian Distribution Function** rad_temperature(keV) plasma temperature(keV) 1.9 2.0 2.1 2.2 2.3 2.4 2.5 1.9 2.0 2.1 2.2 2.3 2.4 2.5 omega/omegace0 omega/omegace0

•CQL3D code is used to simulate the electron cyclotron heating in QHS and to calculate a radiation intensity at the second harmonic of ω_{ce}

•On the left figures the results of two runs are shown

•The plasma parameters are as follows: central T_e = 0.4 keV, central N_e = $1 \cdot 10^{18}$ m⁻³ and input power is 100 kW

•On the left bottom figure it is clearly seen that the ECE temperature for the non-Maxwellian electron distribution function is above 4 keV

•Further work should be done to understand why CQL3D predicts low ECH absorption in HSX plasmas