Density fluctuation measurements on the HSX stellarator
reveal broadband turbulence that correlates with plasma
density gradient and flow. For quasi-helically symmetric
in the turbulent density
fluctuations are observed when plasma heating location is
moved from on-axis to inboard high-field side. Measurements
show that the plasma flow velocity also decreases significantly
for off-axis heating. In addition, as the electron-cyclotron-
resonance-heating power is decreased, core density fluctuations
rise while the plasma parallel flow is reduced. When HSX is
operated without quasi-helical symmetry, both plasma flow
and turbulence characteristics are little changed. No sensitivity
to electron temperature gradient is observed.
fluctuation amplitude correlates with both increasing density
gradient and reduced flow, suggesting a causal relation. In
addition to improved neoclassical confinement, quasi-helical
symmetry can also lead to increased flow (and flow shear) in
the direction of symmetry along with reduced fluctuations and
anomalous transport.*Supported by USDOE grants DE-FGO03-
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Core Density Fluctuations in the HSX Stellarator

C. Deng, D.L. Brower, University of California, Los Angeles,
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Density Fluctuations in biased QHS plasma

Density Fluctuations Increase with off-axis Heating (QHS plasma, Bt=1T in CCW)

Plasma Parameters
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Significantly lower stored energy for off-axis heated
plasma. In addition, Measured density fluctuations are

larger amplitude and higher frequency for off-axis heating.

Change in Density Fluctuations with Heating
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QHS 11% Mirror Plasma

on axis heating:
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11% Mirror — 50 kW
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Plasma stored energy and density are comparable: Core
temperature gradient is much larger for QHS plasma
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1) On-Axis: as ECRH power increases, core density
fluctuations are reduced in amplitude and
frequency (significant increase in T, gradient)

2) Off-axis (inboard): as ECRH power increases, core
density fluctuations are reduced in amplitude
and frequency

3) Density profile unchanged for both cases

3 Different Electron Heating Scenarios

Electron Density
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1) For equivariaent ECRH power, off-axis heating results in

lower stored energy and lower core temperature

2) Plasma flow is significantly reduced with off-axis
heating. Doppler shift cannot account for change in
frequency

3) Increased core density fluctuations with off-axis
heating ; appear related to density gradient, not
temperature (electron drift waves?), and correlate with
degraded energy confinement

Density Gradient Fluctuations Show

Little Change for QHS and 11% Mirror
Configurations
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f~30kHz coherent mode in 11% Mirror plasma

1)  QHS: transport dominated by anomalous
effects

2) 11% Mirror: transport dominated by
neoclassical effects

3) Plasma turbulence and flow are little changed

between the 2 different magnetic configurations
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2) Doppler shift from plasma flow cannot account
for higher frequency density fluctuations with off-

axis ECRH

3) Density turbulence largest for case with
reduced flow (off-axis heating or lower power)

Density Fluctuations Lever Similar in QHS 11% Mirror Plasma

Density Fluctuations Show Little
Change for QHS and 11% Mirror
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Time Evolutions for Biasing Experiment
(n,=4.0x10%°cm=3)

Core Density Fluctuations Decrease, Ho Reduction
Increases with Bias Voltage (n,=3.0x10%?cm-3)
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with biasing (edge localized) — frequency scales with V.. (plasma flow)
*Both parallel and perpendicular plasma flow increase with biasing (in
the edge).

When bias voltage increases:
* Core density fluctuations (20 < f < 140 kHz) decrease (increasing flow)
* Edge density fluctuation increase

Bias Excited Mode Located at the Edge, 15kHz Mode * Reduction of H, emission

Edge Density Gradient and Plasma Stored Energy

Located in Plasma Core (n,=4.0x10%cm-3)
Increase with Bias Voltage (n,=3.0x10'2cm-3)
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*Bias-induced mode is not observed by core differential When bias voltage Increases:

interferometer measurement - but was observed for the edge chords.
*Coherent mode at 15kHz observed, frequency did not change with
Biasing (core localized)

* Edge density gradients increase and core density gradient is reduced
* Plasma stored energy increases
*Change in density fluctuations consistent with density gradient drive

Summary and Future Plans

Broadband Density Fluctuations Suppressed During

1. Interferometry and Differential Interferometry are used to measure
density fluctuations in HSX
- line-integrated measurements; spatial information available by comparing
chords
- differential interferometry is used to obtain core localized measurements

+500V Biasing
Differential Interferometer Results
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2. Both coherent modes and broadband fluctuations are observed
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3. For QHS plasma
- Significant changes (amplitude and frequency) of fluctuations are observed
with changes in heating location and power
- measured density fluctuation changes consistent with density gradient
drive (not T, gradient)
- Reduction of density fluctuations is accompanied by increase in plasma
flow.

Positive Biasing suppresses core density fluctuations for f=(40-100)kHz
and the coherent mode not observed for higher biasing voltage (+500V)

Time Evolutions for Bias Voltage Scan Experiment
(n,=3.0x10%cm=3)
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*Density fluctuations suppressed = g/ ke @) O
*Hao decreased 100 \ - 4. Mirror plasma:
*Edge density gradient increased. i , ; , , ; : - Coherent mode observed on density fluctuation signal only
*Edge plasma flow increases. 1HC din,rddx (edge) - broadband fluctuations and plasma flow similar to those in QHS plasma.
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Future work will focus on identification of fluctuations and
relation to transport



