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Abstract

The multichannel interferometer system on the HSX stellarator is optimized to
measure electron density fluctuations by utilizing both phase and amplitude
techniques Information on core and edge fluctuations can be realized by comparing
chords at different locations or by use of the differential interferometry approach.
Both coherent modes and broadband density fluctuations with frequency up to 250
kHz are measured. For quasi-helically symmetric plasmas with B;=1.0 T, significant
changes (both amplitude and frequency) in the turbulent density fluctuation
spectrum are observed when heating location changes from on-axis to high field side.
Density fluctuation amplitude and frequency decrease with increasing of ECRH
power (Te). Changes in fluctuations will be compared with measurements of plasma
flow (by CHERS) as well as electron density and temperature profile modifications.
When HSX is operated without quasi-helical symmetry at B;=1T and n,= 4x10'2 cm3,
a coherent electrostatic mode at 28 kHz is observed. Fluctuation sensitivity to
changes of heating location and ECRH power were not observed for these plasmas.

HSX — Quasi-Helically Symmetry Stellarator
HSX Provides Access to Configurations With and Without Symmetry

QHS: helical axis
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Interferometry System

Measurement Techniques
Interferometry (phase measurement)
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3. Differential Inteferometry
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and Chord Positions
Interferometer System:

1. 9chords

2. 1 MHz bandwidth

3. 1.5 cmchord spacing,
width

4.  k, <2cm?

Density fluctuations can be
measured from information of:
(i)
(ii)
(iii)

Amplitude
Phase
Differential

(1) For density gradient and gradient ;. peam 2| |.—Probe beam 1
fluctuations i plasma
[differential interferometry]
A (x) zjéhe(r)ﬁdz :jme—(r)cosﬁdz
X g a « g a v
mixer 2 =1
(2) For density fluctuations (m=1) L0 .\ f-mirer z T e T
[standard interferometry]
2 7
& (X) :Iﬁe(r) cos 0dz cosf=>
r X

Coherent and Broad Band Fluctuation

Results From Three Techniques

Measured by Far-Forward Scattering
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Plasma Parameter Time Traces

Plasma Parameters

on axis heating:
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Input ECH power are similar, but significantly lower stored energy
for off-axis heated plasma. Measured density fluctuations are of
larger amplitude and at higher frequency for off-axis heating.

Core localized measurement of Density

gradient fluctuations shows large increase in
amplitude for off-axis heating
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Interferometer and Far-Forward Scattering

Show Similar Results
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Lower noise level and core localization for
differential interferometer measurement

Significant change in density fluctuations with
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1) For equivalent ECRH power, off-axis heating

Electron Temperature and Density Profiles

results in lower stored energy and lower core
temperature

2) Plasma flow is significantly reduced with
off-axis heating. Doppler shift cannot account 2
for change in frequency or amplitude of density =

fluctuations

3) Increased core density fluctuations with off-axis
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Very peaked Te profile —> flat or slightly hollow density profile (dTe/dr driven diffusion)
—> negative density gradient —> reduction of density fluctuations
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Coherent mode in QHS Plasma Coherent mode in Mirror Plasma

B.=1T in CCW direction
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Frequency Spectrum of Density
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Density fluctuations
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*No changes for broad band fluctuations
scoherent mode was observed for slightly inboard

heating

Amplitude and Phase of the Coherent
Mode

* Density mode
amplitude peaked near ..

plasma edge
* Density shows &t phase

shift across magnetic y
axis; mis odd
» Weak Magnetic
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Coherent mode in biased QHS

plasma with V,;,,=+300V

® Coherent mode observed
in Biased QHS Plasma, and
while broad band
fluctuations did not change
* Mode observed in both

density, and magnetic signals ==
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*Coherent mode observed in Mirror
Plasma for B;=1 T (ccw) —
* Mode observed in density, not in mﬁ] .
magnetic signals oA
* Density window for mode is “Hppanie
narrow; (3.8-4.5)* 1012 cm3 b
* Decrease in ECE emission suggests
decrease in energetic electron
confinement

Differences in coherent mode for Mirror and QHS configurations:
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1. Mirror: density fluctuation only; QHS: both density and magnetic
fluctuation

2. Mirror: sensitive to equilibrium density; QHS is not

3. Mirror: sensitive to direction of B field [cw or ccw]; QHS is not

4. Mirror: not sensitive to I (heating location); QHS case is very

sensitive to Ig
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Summary and Future Plans

1. Interferometry, Differential Interferometry and Far-forward

Scattering are used to measure density fluctuations in HSX

- line-integrated measurements, some spatial information
available by comparing chords

- differential interferometry is used to obtain core localized

measurements
2. Both coherent modes and broadband fluctuations are
observed
3. For QHS plasma

- Significant changes (amplitude and frequency) of fluctuations
are observed when heating location changes from on-axis
heating to HFS heating

- Density fluctuation amplitude and frequency decrease with
of electron temperature

- core density fluctuations increase and confinement degrades
with off-axis heating

- coherent mode observed on density and magnetic when
heating slightly off-axis

4. Mirror plasma:
- Coherent mode observed on density fluctuation signal only,
- mode not sensitive to ECRH location

Future work will focus on identification of fluctuations



