

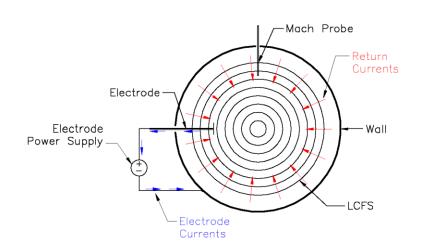
Characteristics of Biased Electrode Discharges in HSX

S.P. Gerhardt, D.T. Anderson, J. Canik, W.A. Guttenfelder, and J.N. Talmadge

HSX Plasma Laboratory, U. of Wisconsin, Madison

1. Structure of the Experiments

General Structure of Experiments



Mach Probes in HSX

2 similar probes are used to simultaneously measure

Data is analyzed using the unmagnetized model by



Probe measures V_f with a proud pin.

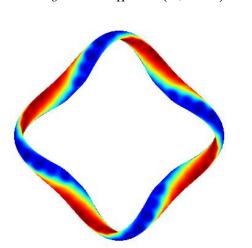
Symmetry Can be Intentionally Broken with Trim Coils

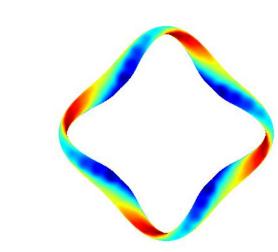
 $B/B_o \approx 1 + \varepsilon_H \cos(4\phi - \theta)$

neoclassical modeling by Coronado and Talmadge or

anomalous modeling by, for instance, Rozhansky and

 $B/B_o \approx 1 + \varepsilon_H \cos(4\phi - \theta) + \varepsilon_M \cos(4\phi)$





Line Density (x10¹³ cm⁻³)

3. Two Time Scales **Observed in Flow** Damping

Simple Flow Damping Example

Has solution
$$mn\frac{dU}{dt} = F - \mu U, \quad F = \begin{cases} 0 & t < 0 \\ jB & t > 0 \end{cases}$$

$$U = \begin{cases} 0 & t < 0 \\ \frac{jB}{\mu} (1 - \exp[-t\mu/nm]) & t > 0 \end{cases}$$

- As the damping μ is reduced, the flow rises more slowly, but to a
- Full problem involves two momentum equations on a flux surface→2 time scales & 2 directions.

Flow Analysis Method

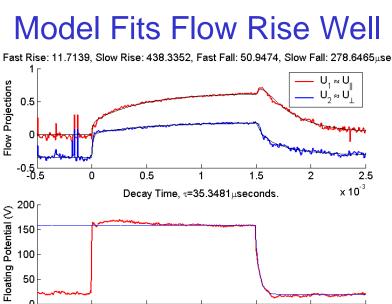
 Convert flow magnitude and angle into flow in two $U_{1 \exp}(t) = X_2(t) \cos(X_3(t))$

$$U_{2,\exp}(t) = X_2(t)\sin(X_3(t))$$

Predicted form of flow rise from modeling $U(t) = C_f \left(1 - \exp\left(-t/\tau_f\right) \right) f + C_s \left(1 - \exp\left(-t/\tau_s\right) \right) \hat{s}$

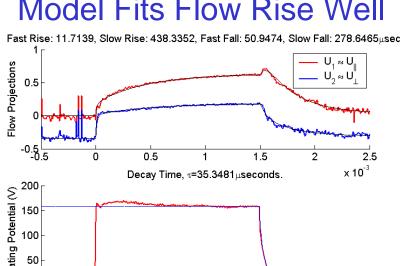
 $U_{2,fit}(t) = C_f(1 - \exp(-t/\tau_f))\sin(\alpha_f) + C_s(1 - \exp(-t/\tau_s))\sin(\alpha_s) + U_{2SSS}$ $U_{1,fit}(t) = C_f(1 - \exp(-t/\tau_f))\cos(\alpha_f) + C_s(1 - \exp(-t/\tau_s))\cos(\alpha_s) + U_{1SS}$

• Similar model 2 time scale / 2 direction fit is used to fit the flow decay



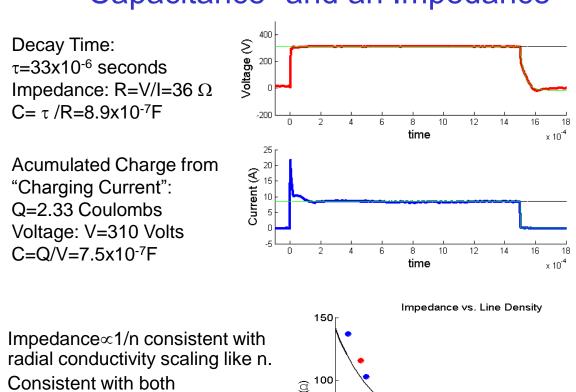
Has solution
$$mn \frac{dU}{dt} = F - \mu U, \quad F = \begin{cases} 0 & t < 0 \\ jB & t > 0 \end{cases}$$

$$U = \begin{cases} 0 & t < 0 \\ \frac{jB}{\mu} (1 - \exp[-t\mu/nm]) & t > 0 \end{cases}$$

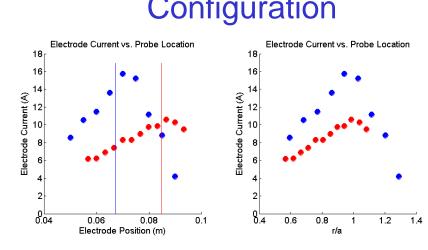


2. The Biased Plasma as a Capacitor

Bias Waveforms Indicate a "Capacitance" and an Impedance



Impedance in Smaller in the Mirror Configuration



- Current peaks at the calculated separatrix. Electrode Current Profile does not follow the density profile⇒Electrode is not simply drawing electron saturation
- Consistent with linear viscosity Very little current drawn when electrons in all experiments in this poster.

• 50 kHz mode remains unsuppressed by bias. See Poster by C. Deng

4. Neoclassical Modeling of Plasma Flows

Solve the Momentum Equations on a Flux Surface

Two time scales/directions come from the coupled momentum equations on a surface.

 $m_i N_i \frac{\partial}{\partial t} < \bar{B}_P \cdot \bar{U} > = -\frac{\sqrt{g B^* B^*}}{c} < \bar{J} \cdot \bar{\nabla} \psi > - < \bar{B}_P \cdot \bar{\nabla} \cdot \bar{\Pi} > - m_i N_i v_{in} < \bar{B}_P \cdot \bar{U} >$ $m_i N_i \frac{C}{\partial t} < \bar{B} \cdot \bar{U} > = - < \bar{B} \cdot \bar{\nabla} \cdot \bar{\Pi} > - m_i N_i U_{in} < \bar{B} \cdot \bar{U} >$

- Solve these with Ampere's Law $-\frac{c}{\partial t}\frac{\partial \mathbf{\Phi}}{\partial \mathbf{\psi}}\left\langle \bar{\nabla}\mathbf{\psi}\cdot\bar{\nabla}\mathbf{\psi}\right\rangle = -4\pi\left(\langle\bar{J}_{plasma}\cdot\bar{\nabla}\mathbf{\psi}\rangle + \langle\bar{J}_{ext}\cdot\bar{\nabla}\mathbf{\psi}\rangle\right)$
- Use Hamada coordinates, using linear neoclassical viscosities

No perpendicular viscosity included.

Formulation #1: The External Radial Current is Quickly Turned On.

 Original calculation by Coronado and Talmadge · After solving the coupled ODEs, the contravariant components of the flow are $U^{\alpha} = (1 - e^{-t/\tau_1})S_1 + (1 - e^{-t/\tau_2})S_2$

$$U^{\zeta} = (1 - e^{-t/\tau_1})S_3 + (1 - e^{-t/\tau_2})S_4$$

- $S_1...S_4$, τ_1 (slow rate), and τ_2 (fast rate) are flux surface quantities related to the
- Break the flow into parts damped on each time scale: $\vec{U} = \left(1 - e^{-t/\tau_1}\right) \left(S_1 \vec{e}_{\alpha} + S_3 \vec{e}_{\gamma}\right) + \left(1 - e^{-t/\tau_2}\right) \left(S_2 \vec{e}_{\alpha} + S_4 \vec{e}_{\gamma}\right)$

• This allows the calculation of the radial electric field evolution:
$$d\Phi = d\Phi = d\Phi = (1 - \epsilon)$$

$\frac{d\Phi}{dw}(t) = \frac{d\Phi}{dw}(t=0) + F_1(1-e^{-t/\tau_1}) + F_2(1-e^{-t/\tau_2})$ Formulation #2: The Electric Field is Quickly

Turned On. • Assume that the electric field, $d\Phi/d\psi$ is turned on quickly

$$\frac{\partial \Phi}{\partial \psi} = \begin{cases} E_{r0} & t < 0 \\ E_{r0} + \kappa_E \left(1 - e^{-t/\tau} \right) & t > 0 \end{cases}$$

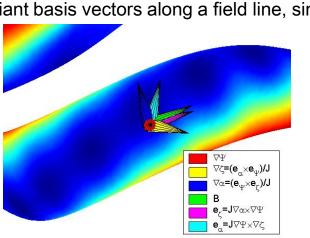
• ExB flows and compensating Pfirsch-Schlueter flow will grow on the same time scale as the electric field.

Two time scales/two direction flow evolution.

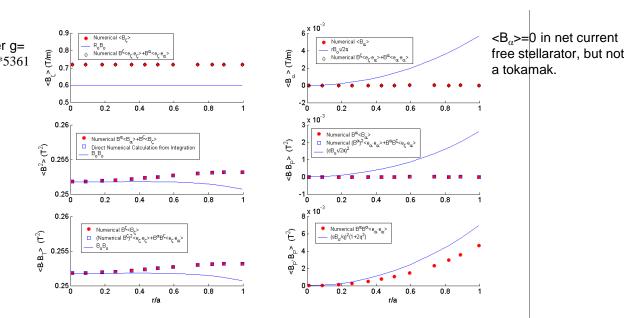
- Parallel flow grows with a time constant τ_{F} determined by viscosity and ion-neutral friction.
 - $\vec{U}(t) = U_E^{\alpha} (1 e^{-t/\tau}) \vec{e}_{\alpha} + \vec{B} Q_1 \kappa_E (1 (1 + Q_2) e^{-\nu_F t} + Q_2 e^{-t/\tau})$

We Have Developed a Method to Calculate the Hamada Basis Vectors

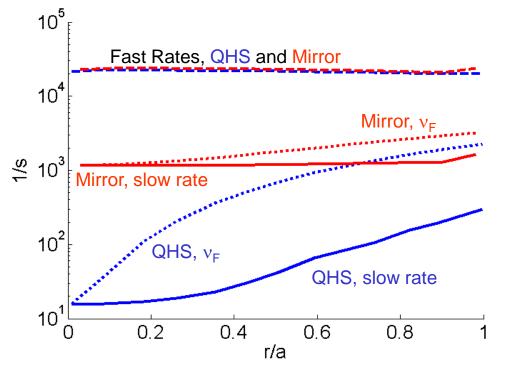
- Need quantities like $\langle \mathbf{e}_{\alpha} \cdot \mathbf{e}_{\zeta} \rangle$, $\langle \mathbf{e}_{\alpha} \cdot \mathbf{e}_{\zeta} \rangle$, $\langle \mathbf{e}_{\alpha} \cdot \mathbf{e}_{\zeta} \rangle$, $\langle |\nabla \psi| \rangle$, $\langle |\nabla \psi| \rangle$
- Previous calculation used large aspect ratio tokamak
- Method involves calculating the lab frame components of the



Tokamak Basis Vectors Can Differ from those in Net Current Free Stellarator.

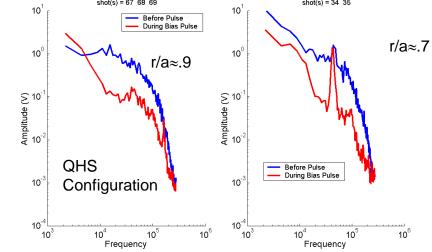


"Forced E," Plasma Response Rate is Between the Slow and Fast Rates.



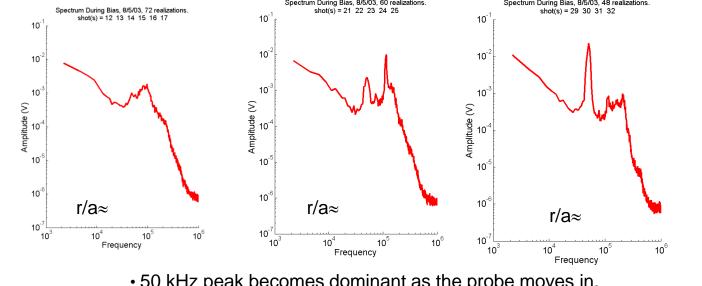
6. Observations of and Reductions in **Turbulence With Electrode Bias.**

V_f Fluctuation Reduction with Bias



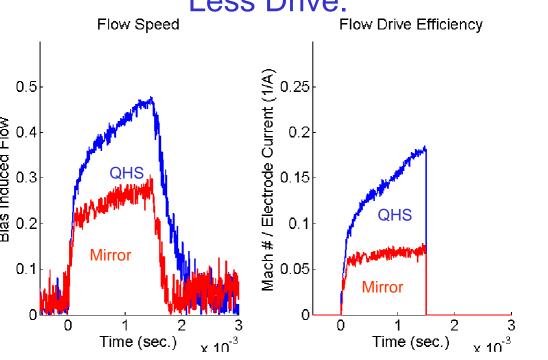
Electrostatic transport measurements soon, See Poster by W. Guttenfelder

Distinct Spectral Peaks in the Electrode Current

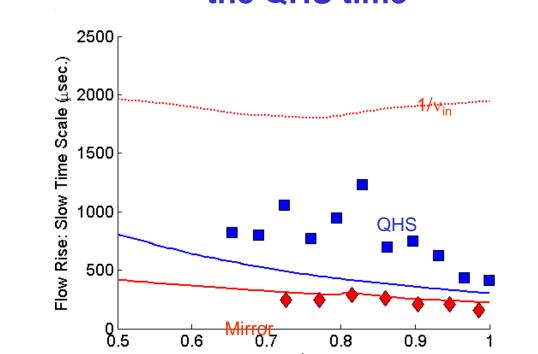


Do these simply reflect density fluctuations?

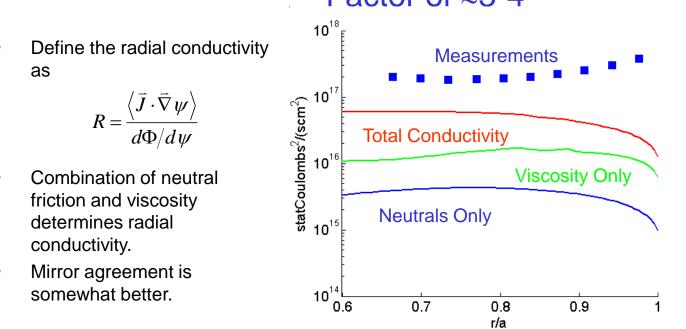
5. Comparisons Between QHS and Mirror Configurations of HSX



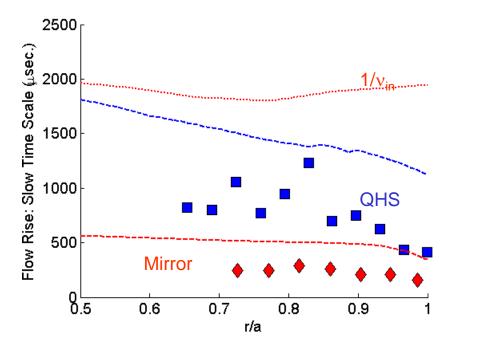
The "Forced E_r" model Underestimates the QHS time



QHS Modeled Radial Conductivity agrees to a Factor of ≈3-4



The Coronado and Talmadge Model **Overestimates the Rise Times By 2**



7. Computational Study: Viscous Damping in Different Configurations of HSX