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Finding the SIESTA Equilibrium

Basic Equations of SIESTA

Introduction to SIESTA

SIESTA solves for the ideal MHD equilibrium using Newton’s Method, a nonlinear optimization 

algorithm.  Using this method, the energy is approximated locally as a quadratic function, 

obtained from the Taylor series expansion of the energy function.  

A fast (~mins), scalable 3D MHD-equilibrium solver that resolves magnetic islands and stochastic 

regions would be useful for numerous applications

 STELLARATOR OPTIMIZATION.- include 

in optimization procedure at run-time (i.e., 

in STELLOPT suite).

 STELLARATOR/3D TOKAMAK 

EQUILIBRIUM RECONSTRUCTION.-

(J. D. Hanson, V3FIT).

 EXTENDED-MHD SIMULATIONS.-

initialize MHD simulations of neoclassical 

tearing modes at ITER-relevant resolutions.

[Source: CEMM, PPPL]

 EXPERIMENT DESIGN and 

INTERPRETATION.- control of 

ELMs via resonant magnetic 

perturbations?

Ideal MHD energy (target function for minimization):

For any plasma displacement, conservation of magnetic flux and mass requires:

The force in the “displaced” state is given by:

The force in the unperturbed 

state is given by:

To find equilibrium, solve nonlinear equation and update fields. 

Faraday’s law   

Mass conservation

GUIDING PRINCIPLES.- avoid integration along magnetic field lines (slow/inaccurate) and retain 

scalability (to parallel environments). Also, build on previous ORNL expertise with 3D MHD codes 

(VMEC, COBRA…)

Levenberg-Marquardt Technique 

and Pentadiagonal Solver
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The local quadratic approximation to the energy function has been made.  Since the first 

derivative of the energy is the force and the second derivative is the Hessian of our function, 

this can be rewritten as:
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Beginning with a converged VMEC solution gives an equilibrium starting configuration.  This 

stationary point is potentially unstable.  Applying an initial resonant perturbation at the lowest-

order rational surfaces may lead to island formation and a lower energy equilibrium.  This is 

how the simulation is started.

The Levenberg-Marquardt technique is used to ensure that the Hessian matrix is positive-

definite, which is required for a decrease of the linearized energy at each iteration.  Solving the 

linear problems more efficiently leads to faster convergence of the overall nonlinear problem.  

The eigenvalues of the Hessian matrix are both positive and negative, corresponding to stable 

and unstable modes.  The current working version of SIESTA uses a block tridiagonal solver 

which approximates the Levenberg-Marquardt technique as follows:

This shifts the eigenvalue spectrum completely to the positive side if done correctly.  This 

results in a positive definite Hessian matrix.

The difficulty is in choosing the LM parameter such that the spectrum shifts completely to one 

side of 0. The full Levenberg-Marquardt technique is being implemented so that there is no 

guessing which parameter to pick.  This is accomplished by first squaring the Hessian and then 

adding the LM parameter, thus ensuring positive-definiteness:
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Squaring the Hessian changes the structure to block pentadiagonal.  This requires a different 

solver, which has already been written implementing the Thomas algorithm.  This full LM 

technique should greatly improve convergence, and is currently being implemented into the code.

SIESTA uses a hybrid spectral/finite differencing representation of the 

fields in terms of the VMEC coordinates as follows:
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Ideal Linear MHD (at step n) 

 

Nonlinear Ideal Force Iterations to minimize W (1<k<100) steps) 
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Add resistive perturbations to B 

    ( ~ )B A A J    

IF 
2

ideal tolF  , END 

 ELSE REPEAT n=n+1 UNTIL n = nTerminate 

Begin n=1 Add non-ideal resonant 

pert  (at iteration n=1)

||

resB A    

 

Parallel calculation of 

Hessian H and pre-

conditioner 1P

(BCYCLIC code) 

Resonant current 

diffusion (tear ideal 

surfaces) 

Since highest order radial 

derivative is second order, 

the resulting Hessian matrix 

is block tridiagonal.  This 

lends itself to fast, 

optimized solvers, such as 

BCYCLIC.

At each iteration of the nonlinear 

Newton’s method, the above 

linear equation must be solved.  

This amounts to inverting a 

tridiagonal Hessian matrix.  

Iterative solvers such as 

GMRES and variants of 

conjugate gradient work best for 

this, due to the large condition 

number of the Hessian.

Overview

o SIESTA (Scalable Iterative Equilibrium Solver for Toroidal Applications) is a 3D ideal MHD 

equilibrium solver capable of resolving islands and stochastic regions in an accurate and scalable 

manner

o The VMEC output is used as the initial equilibrium which is perturbed using the nonlinear energy 

minimization procedures of SIESTA

o Simulations on HSX configurations are being done in order to analyze code resolution of  islands   

in stellarators

o Large, complicated mode structure from helical shaping in HSX requires at least 10 poloidal and 

10 toroidal Fourier modes to be included in SIESTA runs

o A pentadiagonal solver is being tested and implemented to improve convergence of the code on 

HSX and other devices with complex geometry/Fourier spectrums

o This work will be a precursor to implementation in stellarator optimization suites, for study of new 

concepts

Note that a smart choice of the LM 

parameter can now be used not 

only to guarantee the system is 

positive definite, but also to reduce 

the condition number.  This will 

decrease the number of iterations 

required to solve the linear 

problem.

The Thomas Algorithm is a method to efficiently factor and invert a block diagonal matrix; 

in this case a block pentadiagonal matrix.

Island Formation in HSX

HSX is a 4 field-period, quasi-helically symmetric stellarator located at the University of Wisconsin-

Madison.  Due to the distinctive, strong helical shaping, more modes (particularly toroidal modes) are 

required to resolve islands using SIESTA.  A perturbed tokamak, for example, can be simulated using 

fewer modes.

o Configurations studied chosen for resonant iota and size of islands

o Islands were previously observed in Biot-Savart field-line following

o Hill configuration shows large 4/4 (m=4, n=4) island chain

o Well configuration shows somewhat smaller 8/7 (m=7, n=8) island chain

Strong helical shaping of HSX outermost closed flux surface (plots generated with VisIt)

Pressure doublets are slowly resolved by including 

more m/n modes that are resonant with the safety 

factor (iota) of the rational surface!

4/4 (m=4, n=4) Island formation evolves by including more modes

4/4 surface is lowest 

rational found in HSX

Hill

Well

Vacuum field-line following vs. SIESTA 

pressure contours.  A qualitative look.
(field-line following from Gerhardt thesis)

8/7 surface is lowest rational found in 6.2% Well 
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Summary

• 4/4 island chain requires at least m=10, n=10 modes for resolution of 

islands.

• 8/7 island chain in Well requires more modes (m=10, n~20) currently to 

start to see island formation.

• Several multiples of resonant m/n are required for flattening of pressure 

profiles within islands.

• Implementation of pentadiagonal solver should improve convergence of 

SIESTA, yielding better results for stellarator applications.
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Thanks to J. Schmitt for lots of VMEC help!

Then find new displacement 

as follows:

Thomas Algorithm
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This can be solved starting 

with the following equation
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mpol=10, ntor=10 mpol=12, ntor=12 mpol=10, ntor=10 mpol=12, ntor=12

Pressure Profiles

BdotJ Profiles (Resonant Component)

BdotJ Profiles

Extended MHD simulation

ELMs control on DIII-D

• Axis has a lot of spectral content

• Islands get wider, pressures relax as 

more modes are included

Smaller island size and 

larger mode content of 

Well case makes it 

difficult to converge on an 

island solution.

4/4, 8/8 resonances included in left simulation;

4/4, 8/8, 12/12 resonances included in right 

simulation

Below plots are in SIESTA curvilinear 

coordinates at constant toroidal angle

Radial dimension

Poloidal

dimension

Add 4/4 

perturbation here

poloidal

radial

Pressure Contours


