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Overview Finding the SIESTA Equilibrium Island Formation in HSX

SIESTA solves for the ideal MHD equilibrium using Newton’s Method, a nonlinear optimization

o SIESTA (Scalable Iterative Equilibrium Solver for Toroidal Applications) is a 3D ideal MHD algorithm. Using this method, the energy is approximated locally as a quadratic function, HSX Is a 4 field-period, quasi-helically symmetric stellarator located at the University of Wisconsin-
equilibrium solver capable of resolving islands and stochastic regions in an accurate and scalable obtained from the Taylor series expansion of the energy function. Madison. Due to the distinctive, strong helical shaping, more modes (particularly toroidal modes) are
manner required to resolve islands using SIESTA. A perturbed tokamak, for example, can be simulated using

~ - 1 - = fewer modes.
W = Wk + VWk5§k+1 + E 5§kT+1V2Wk5§k+l

e The VMEC output is used as the initial equilibrium which is perturbed using the nonlinear energy

minimization procedures of SIESTA e Configurations studied chosen for resonant iota and size of islands .
T\ 24 o Islands were previously observed in Biot-Savart field-line followin 4/4 surface Is lowest
| | | | | | | | minW < VZ\Nk5§k+1 =-VW, . Vere p y D oate . J rational found in HSX
o Simulations on HSX configurations are being done in order to analyze code resolution of islands . L . . . O Hill configuration shows large 4/4 (m=4, n=4) island chain
in stellarators The local quadratic approximation to the energy function has been made. Since the first o Well configuration shows somewhat smaller 8/7 (m=7, n=8) island chain
derivative of the energy is the force and the second derivative is the Hessian of our function,
e Large, complicated mode structure from helical shaping in HSX requires at least 10 poloidal and this can be rewritten as: _ _
10 toroidal Fourier modes to be included in SIESTA runs s Then find new displacement & & =
Hocgi =—F  astollows Sk = Sk T 06 Addala
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® A pentadiagonal solver is being tested and implemented to improve convergence of the code on o _ _ _ o _ _ _ _ P PECERERNTEE
HSX and other devices with complex geometry/Fourier spectrums Beginning with a converged VMEC solution gives an equilibrium starting con_flguratlon. This strong helical shaping of HSX outsimmsst closed flx stiface (pots genetated with Visig
stationary point is potentially unstable. Applying an initial resonant perturbation at the lowest-
o  This work will be a precursor to implementation in stellarator optimization suites, for study of new order rational surfaces may lead to island formation and a lower energy equilibrium. This Is Hill
conce tS hOW the SImUIatIOn 1S Started egin n= dd non-ideal resonan . . .
P \\/ per (a eratom et 4/4 (m=4, n=4) Island formation evolves by including more modes
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‘ Axis has a lot of spectral content Below plots are in SIESTA curvilinear
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A fast (~mins), scalable 3D MHD-equilibrium solver that resolves magnetic islands and stochastic At each,lteratlon of the nonlinear Nonlinear Ideal Force Iterations to minimize W (1<k<100) steps) MOTe MOEs are Itiude
regions would be useful for numerous applications Newton’s method, the above Fo=J xB —Vp, B =B, +3B(&) Pressure Profiles BdotJ Profiles
linear equation must be solved. J, =VxB, 0, = p. +5p(E) g oo S pre—
D STELLARATOR OPTIMIZATION‘ lnCIUde ThIS amounts to Invertlng a ' ﬁ"xﬁ“; 3 =
. .- . . . ; : . o ] - Lgk:P‘lFideal, L=d?/dt?>+wd/dt Parallel calculation of o
In Optlmlzatlon pr.ocedure atrun-time (I.e.’ ALY Ee T i Final optimized trIdIaQOHBJ Hesslan matrix. _ . 2 «— | Hessian H and pre- :d;;i
INn STELLOPT SU|te) .P : . P=H+a,l (8o, >0with [Fey ) conditioner P* e S
- I configuration lterative solvers such as (BeveLIC code) foloidal s
_ - GMRES and variants of Amensiol-
Od  STELLARATOR/3D TOKAMAK st o || cateutate| conjugate gradient work best for T pefwrbaﬁonsm
EQUILIBRIUM RECONSTRUCTION' spl:-giellee: [ equilibrium ™ X > thls, due tO the Ial’ge COndItIOn SB = _Vx A (A~77J) A Z;;ngzt(::;;ﬁzzal
(J. D. Hanson, V3FIT). . NESCOIL number of the Hessian. ) surfaces) T —————
| e l Radial dimension .. e BdotJ Profiles-{Resonant Component)--
O  EXTENDED-MHD SIMULATIONS.- o | evenberg-Marquardt 1F |Fideat| < &t END — — e — ___ e
initialize MHD SimUIationS Of neOCIaSSicaI 22: Minimize y* ELSE REPEAT n=n+1 UNTIL n = nTerminate i" “;%»g_ [I { ; :ﬁo
tearing modes at ITER-relevant resolutions. ) i i E* Eg‘;g i it
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Levenberg-Marquardt Technique P A
d  EXPERIMENT DESIGN and _ = = A
INTERPRETATION.- control of 2 = s —
NIERPRETATION. contolof 2 and Pentadiagonal Solver o -
perturbations? 2. The Levenberg-Marquardt technique is used to ensure that the Hessian matrix is positive- mpol=10, ntor=10 mpol=12, ntor=12 MpoO=-1, nor= _ mPO e _n or” _
definite, which is required for a decrease of the linearized energy at each iteration. Solving the . _ 4/4, 8/8 resonances included in left simulation;
Extended MHD simulation . linear problems more efficiently leads to faster convergence of the overall nonlinear problem. Pressure doublets are slowly resolvepl by including 4/4, 8/8, 12/12 resonances included in right
Source: CEMM, PPPL] ELMs control on DIll-D o o~ % xm) The eigenvalues of the Hessian matrix are both positive and negative, corresponding to stable ]lcnotre m/ rt] mo?tehs thatt_ arelresofnan|t with the safety simulation
! and unstable modes. The current working version of SIESTA uses a block tridiagonal solver actor (lota) of the rational surface!
GUIDING PRINCIPLES.- avoid integration along magnetic field lines (sIow/inaccurate) and retain which approximates the Levenberg-Marquardt technique as follows: WQ"
scalability (to parallel environments). Also, build on previous ORNL expertise with 3D MHD codes — — — -
(VMEC, COBRA...) H k5§k+1 — _Fk —> (H K + lle | )5§k+1 — _Fk 8/7 surface is lowest rational found in 6.2% Well N
This shifts the eigenvalue spectrum completely to the positive side if done correctly. This Pressure Contours S atlor ieland < . : .
- - results in a positive definite Hessian matrix. | ' = maller Island size an
Basic Equations of SIESTA S | , | e larger mode conient of
Ideal MHD energy (target function for minimization): € lorce In L be .unpertur € T.he difficulty is in choosing the LM parameter-such- that.the.spectrum shifts completely to one difficult to converge on an R
82 State Is given by: side of 0. The full Levenberg-Marquardt technique is being implemented so that there is no sland solution. Vacuum field-line following vs. SIESTA
W = j n P dVol F — -1 (V < B) x B — Vp guessing which parameter to pick. This is accomplished by first squaring the Hessian and then i — pressure contours. »~ dualitative look.
2 7 y — 1 zuo adding the LM parameter, thus ensuring positive-definiteness: poloidal
O .
For any plasma displacement, conservation of magnetic flux and mass requires: HTH | 5" —_HT If Note that a smart choice of the LM
( k T Tk + Hy ) §k+1 — Ty parameter can now be used not
aé’(g) V x (5’ y B’) ) only to guarantee the system is Su m mal'y
— Faraday's law iti ini : : : -
Y A ~ Aex T Ay positive definite, but also to reduce ° 4/4 island chain requires at least m=10, n=10 modes for resolution of
= - = K= > K = > the condition number. This will sland
d:)(é‘) =—¢-Vp—nV-& Mass conservation ;i’min ;l’min + L decrease the number of iterations IS1ands. o _
required to solve the linear . 8/7 island chain in Well requires more modes (m=10, n~20) currently to
The force in the “displaced” state is given by: problem. start to see island formation.
F+0F(E) =1, (Vx(B+B(E)) x(B+B(E)) — V(p +P(E)) Squaring the Hessian changes the structure to block pentadiagonal. This requires a different ’ Several multiples of resonant m/n are required for flattening of pressure
solver, which has already been written implementing the Thomas algorithm. This full LM profiles within islands.
To find equilibrium, solve nonlinear equation Fmt S = ﬂ:(ﬁ) = 0| and update fields. technique should greatly improve convergence, and is currently being implemented into the code. o |Sn|1Ep§_|r_r;\ent-a’?ccl)-n oLpentamaglon?l SOIVlTr should |r?prqve convergence of
- , ylelding better results 1or stellarator applications.
SIESTA uses a hybrid spectral/finite differencing representation of the Thomas Algo"thm
fields in terms of the VMEC coordinates as follows: Since highest order radial The Thomas Algorithm is a method to efficiently factor and invert a block diagonal matrix; References
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