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Anomalous Transport Models Applied to HSX
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HSX Plasma Laboratory, U. of Wisconsin, Madison

HSX Geometry and Model Assumptions

Edge Turbulence Measurements from Langmuir Probes

<ne> = 1  1012 cm-3
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sk ~ 0.1 - 0.2
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<k>      0.98 cm-1

<k
2>1/2  0.84 cm-1

Local S(k) spectrum via Langmuir probes

r/a ~ 0.9

<ne> = 1.5  1012 cm-3

• To test if the measured 
particle flux is asymmetric 
around the machine, 
transport was measured at 
two toroidal locations.

Low field side

probe

High field side

probe

• Fluctuation levels (I`sat/<Isat>) are as large as 40% 
at the separatrix.

• Mean wavenumbers measured via probes are ~ 1 
cm-1, with k ~ k.

• Density gradient scale lengths estimated via mean 
Isat and Thomson Scattering are ~ 2-5 cm towards 
the edge.

• Fluctuation levels correlate with simple mixing 
length estimates in the edge, but are smaller.

• Magnitude of measured particle flux is comparable 

to H/3D DEGAS.

• However, the profile shape is inconsistent.

• Direction of measured transport changes with line-

averaged density.

• Measured transport is directed inward at <ne>  1.7 

 1012 cm-3 and outward above.

Density Dependence

• Fluctuation intensities drop above <ne> ~ 1.71012

cm-3, where transport changes direction.

Fluctuation Levels Particle Fluxes Is the Measured Particle 

Flux Asymmetric?
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• Global magnetic shear     is very 
small
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QHS rotational transform

QHS normal curvature

Drift Wave Transport Models Applied to HSX

Model Profiles

• Mean Isat and Vfloat profiles are comparable outside r/a ~ 0.8.

• There are some differences in the fluctuation levels.

Horton Electron Drift 

Wave Model (1976) Weiland ITG/TEM Model

• Electron drift wave model covering all collisionality.

• Dominant instability comes from trapped electrons 
owing to low collisionality.

• Fluctuation estimates:

• Horton suggests using   |e/Te|
2 = (s/Ln)

2(Ls/Ln)

• Instead, use (Liu et al.)  |e/Te|
2  (5/36) (s/Ln)
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Overview

• Growth rates from both models are similar because TEM is the dominant instability.

• Both models provide order-of-magnitude agreement to experiment in inner half of plasma.

• Both models predict negligible transport towards the edge.

• Increasing the model fluctuation levels near the edge to match experimental Isat fluctuation levels 
provides higher model edge transport.

• Toroidal ITG/TEM model treating trapped 
electrons as a fluid.

• TEM provides instability (Ti/Te << 1 and i < 1).

• Fluctuation estimate:
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• There is a significant fraction of superthermal 

electrons at lower densities.

• These could affect standard Langmuir probe 

interpretation.

• Floating potential profiles also show significant 

change in edge Er profile – potential Er shear affects?

Many Edge Models Incorporate Collisional DW or Resistive MHD

• Current plasmas are collisionless even at the edge (* < 1,                              ).

• Simple collisional DW growth rate and transport estimates are small.

• In the quasi-helically symmetric configuration, there is a vacuum magnetic well throughout the 

plasma edge.

• Transport estimates for resistive interchange modes (Shaing & Carreras, 1985; Carreras & 

Diamond, 1989) are orders of magnitude off from experimental estimates.

 Neither collisional DW or resistive pressure gradient driven turbulence is expected to be 

substantial at the edge under present operating conditions.
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r/a ~ 0.8

• HSX has a helical axis of symmetry in |B|.

• Comparison of |B| on a flux surface between 
HSX (N=4, m=1) and tokamak.

• Field line with   1 is superimposed.

Horton   - (sk)max  1.0

Weiland - sk = 0.316

Assumptions
• ECRH absorbed power into electrons:

• No radiation included.

• Loss trough ions is negligible.

 “Experimental” heat flux: dr)r(rP
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Tokamak (Jenko et al., 2001)

W7-AS (Jenko & Kendl, 2002)

ETG Critical Gradients

• Normalized Te gradients are larger than critical gradients determined from linear stability 

ETG calculations for W7-AS, also a low shear stellarator.

• The critical gradient is determined by large  = ZeffTe/Ti at core, e > 0.8 for most of plasma.

• HSX is dominated by anomalous transport, 
as the quasi-helical symmetry greatly 
reduces neoclassical transport.

– Experimental energy and particle fluxes are 
much larger than neoclassical calculations.

– Edge Langmuir probe measurements 
demonstrate large fluctuation levels and 
particle flux.

• Electron drift wave models that include 
trapped electron modes (TEM) provide 
order-of-magnitude agreement with power 
balance energy flux and 3D DEGAS particle 
flux in inner half of plasma.

• Using modeled fluctuation levels 
comparable to measured edge fluctuation 
levels, model edge transport is closer to 
experimental edge transport.

• Small effective toroidal ripple, T  .0023.

 Dominant particle trapping comes from 
helical ripple, H (0.14 at r/a=1).

 Reduced connection length, Lc = qeffR =  
R/|N-m|  1/3R

• Field line curvature is different from tokamak.

• N,max ~ 1/45 cm-1  1/R

 n = Ln/45

Conclusion & Future Directions
• Under present operation conditions, electron drift wave models that include trapped electron 

instabilities produce order-of-magnitude agreement with experimentally inferred transport fluxes.

• Using modeled fluctuation levels comparable to measured edge fluctuation levels, the modeled edge 
transport is closer to experimental edge transport.

Possible Future Work (Collaborations)

• To account for full 3D geometry, linear stability needs to be calculated numerically (e.g., ballooning 
mode, flux tube, or global codes) for present operational regimes (*e << 1, Te/Ti >> 1, i < 1).

• Determine if the predicted microstability changes significantly for varied vacuum magnetic 
configurations through the addition of auxiliary coils, e.g. adding mirror terms or modifying the well 
depth.

• Determine if non-linear simulations can predict fluctuation levels large enough to match experimental 
fluctuation levels.

• Density and temperature profiles from Thomson scattering for central 
resonance heating at <ne> = 1.5  1012 cm-3.

• Edge parameters are estimates only.

• The direction of transport is similar.

ECRH Plasmas Produce Low Collisionality Electrons

• With low collisionality (*e ~ 0.1) and helical ripple (H = 0.14 at r/a=1), trapped electron 

instabilities are likely to be present.

• Very small global magnetic shear.
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Trapped electron (TE)

(Dominguez & Waltz, 1987)

Circulating electron (CE)

(Dominguez & Waltz, 1987)

Theoretical Transport Coefficients – Slab Models

• Trapped electron instabilities dominate circulating electron instabilities in these estimates.

• Both are in order-of-magnitude agreement to experimentally inferred coefficients, but do 

not follow radial profile.

• Models including global magnetic shear (s or Ls) are off by many orders of magnitude.


