

Anomalous Transport Models Applied to HSX

W. Guttenfelder, D.T. Anderson, C.H. Lechte, J.N. Talmadge HSX Plasma Laboratory, U. of Wisconsin, Madison

Overview

- HSX is dominated by anomalous transport, as the quasi-helical symmetry greatly reduces neoclassical transport.
- Experimental energy and particle fluxes are much larger than neoclassical calculations.
- Edge Langmuir probe measurements demonstrate large fluctuation levels and particle flux.
- Electron drift wave models that include trapped electron modes (TEM) provide order-of-magnitude agreement with power balance energy flux and 3D DEGAS particle flux in inner half of plasma.
- Using modeled fluctuation levels comparable to measured edge fluctuation levels, model edge transport is closer to experimental edge transport.

HSX Geometry and Model Assumptions

- HSX has a helical axis of symmetry in |B|.
- Comparison of |B| on a flux surface between HSX (N=4, m=1) and tokamak.
- Field line with $\iota \approx 1$ is superimposed.

- ⇒ Dominant particle trapping comes from helical ripple, ε_H (0.14 at r/a=1).

Small effective toroidal ripple, $\varepsilon_T \approx .0023$.

 \Rightarrow Reduced connection length, $L_c = q_{eff}R =$ $R/|N-m\iota| \approx 1/3R$

$\kappa_{\rm N,max} \sim 1/45 \, {\rm cm}^{-1} \neq 1/{\rm R}$ $\Rightarrow \epsilon_n = L_n/45$

Global magnetic shear \$ is very

Assumptions

Model Profiles

- Density and temperature profiles from Thomson scattering for central resonance heating at $\langle n_e \rangle = 1.5 \times 10^{12} \text{ cm}^{-3}$.
- Edge parameters are estimates only.

Edge Turbulence Measurements from Langmuir Probes

Fluctuation Levels

- Fluctuation levels (l`_{sat}/<l_{sat}>) are as large as 40% at the separatrix.
- Mean wavenumbers measured via probes are ~ 1 cm⁻¹, with $\Delta k \sim k$.

- Density gradient scale lengths estimated via mean I_{sat} and Thomson Scattering are ~ 2-5 cm towards
- Fluctuation levels correlate with simple mixing length estimates in the edge, but are smaller.

Particle Fluxes

- Magnitude of measured particle flux is comparable to $H_{\alpha}/3D$ DEGAS.
- However, the profile shape is inconsistent
- Direction of measured transport changes with lineaveraged density.

Density Dependence

 Measured transport is directed inward at <n_e> ≤ 1.7 \times 10¹² cm⁻³ and outward above.

• Fluctuation intensities drop above <n₂> ~ 1.7×10¹² cm⁻³, where transport changes direction.

- There is a significant fraction of superthermal electrons at lower densities.
- These could affect standard Langmuir probe interpretation.
- Floating potential profiles also show significant change in edge E_r profile – potential E_r shear affects?

Is the Measured Particle Flux Asymmetric?

The direction of transport is similar.

Drift Wave Transport Models Applied to HSX

ECRH Plasmas Produce Low Collisionality Electrons

- With low collisionality ($v_{*e} \sim 0.1$) and helical ripple ($\varepsilon_H = 0.14$ at r/a=1), trapped electron instabilities are likely to be present.
- Very small global magnetic shear.

Theoretical Transport Coefficients – Slab Models

- Trapped electron instabilities dominate circulating electron instabilities in these estimates.
- Both are in order-of-magnitude agreement to experimentally inferred coefficients, but do not follow radial profile.
- Models including global magnetic shear (s or L_s) are off by many orders of magnitude.

ETG Critical Gradients

- Normalized T_e gradients are larger than critical gradients determined from linear stability ETG calculations for W7-AS, also a low shear stellarator.
- The critical gradient is determined by large $\tau = Z_{eff}T_e/T_i$ at core, $\eta_e > 0.8$ for most of plasma.

Many Edge Models Incorporate Collisional DW or Resistive MHD

- Current plasmas are collisionless even at the edge ($v^* < 1$, $\alpha = \frac{|x|}{|x|}$
- Simple collisional DW growth rate and transport estimates are small.
- In the quasi-helically symmetric configuration, there is a vacuum magnetic well throughout the
- Transport estimates for resistive interchange modes (Shaing & Carreras, 1985; Carreras & Diamond, 1989) are orders of magnitude off from experimental estimates.
- ⇒ Neither collisional DW or resistive pressure gradient driven turbulence is expected to be substantial at the edge under present operating conditions.

Horton Electron Drift Wave Model (1976)

- Electron drift wave model covering all collisionality. Dominant instability comes from trapped electrons owing to low collisionality.
- Fluctuation estimates: • Horton suggests using $|e\phi/T_e|^2 = \alpha(\rho_s/L_n)^2(L_s/L_n)$
- Instead, use (Liu et al.) $|e\phi/T_e|^2 \le (5/36) (\rho_s/L_n)^2$

electrons as a fluid. • TEM provides instability $(T_i/T_e \ll 1)$ and $\eta_i \ll 1$. Fluctuation estimate:

Weiland ITG/TEM Model

Toroidal ITG/TEM model treating trapped

- Growth rates from both models are similar because TEM is the dominant instability.
- Both models provide order-of-magnitude agreement to experiment in inner half of plasma.
- Both models predict negligible transport towards the edge.
- Increasing the model fluctuation levels near the edge to match experimental I_{sat} fluctuation levels

Conclusion & Future Directions

0.2 0.4

- Under present operation conditions, electron drift wave models that include trapped electron instabilities produce order-of-magnitude agreement with experimentally inferred transport fluxes.
- Using modeled fluctuation levels comparable to measured edge fluctuation levels, the modeled edge transport is closer to experimental edge transport.

Possible Future Work (Collaborations)

- To account for full 3D geometry, linear stability needs to be calculated numerically (e.g., ballooning mode, flux tube, or global codes) for present operational regimes ($v_{*e} \ll 1$, $T_e/T_i >> 1$, $\eta_i < 1$).
- · Determine if the predicted microstability changes significantly for varied vacuum magnetic configurations through the addition of auxiliary coils, e.g. adding mirror terms or modifying the well
- Determine if non-linear simulations can predict fluctuation levels large enough to match experimental fluctuation levels.