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The Hessian matrix 

High beta CDX-U stability analysis 

Summary 
•The nullspace eigenmodes of the SIESTA Hessian matrix have successfully been demonstrated 
to be parallel  plasma displacements, agreeing with theory. 
•A stability analysis has been performed on CDX-U, demonstrating the presence of unstable 
modes in an axisymmetric VMEC equilibrium.  After convergence in SIESTA and formation of a 
magnetic island, the number of unstable modes decreases. 
•The remaining instabilities are currently being considered.  They could be due to numerical 
inaccuracies. 
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Numerically, we are worried about the eigenproblem in 
which the inertia (T) matrix is set to unity: 
In this case the eigenvalue problem is given by the equation 
to the right.  
We want to solve for the eigenfrequencies and eigenmodes. 
Note that these are not the  MHD normal modes as we have 
set the inertia matrix to the identity matrix. 
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CDXU axisymmetric VMEC equilibrium converged on 
SIESTA  mesh (51 surfaces) 

CDXU SIESTA equilibrium w/ m=1, n=1 island 
(51 surfaces) 

o SIESTA (Scalable Iterative Equilibrium Solver for Toroidal Applications) is a 3D 
nonlinear ideal MHD equilibrium solver capable of resolving islands in confinement 
devices in an accurate and scalable manner. 
 

o The presence of a numerical nullspace of the Hessian matrix has important convergence 
implications for SIESTA. 
 

o The structure of the nullspace eigenmodes has been calculated  and compares favorably 
with expectations.  The calculations were done on a field-period 3 stellarator. 
 

o A detailed stability analysis has been carried  out for a CDX-U tokamak configuration 
that is Mercier unstable. 
 

o There is a decrease in unstable modes from the VMEC axisymmetric equilibrium to the 
SIESTA equilibrium containing an m=1, n=1 island. 
 

Overview Mechanical analogue for eigenproblem 

VMEC equilibrium is ideal MHD stable 
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Flux surfaces break and islands form to 
find stable SIESTA equilibrium 

SIESTA includes resistivity and non-ideal 
perturbations to allow for tearing mode 
instabilities 
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A normal mode analysis on the equations of 
motion gives the following expression: 
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Leading to the normal mode eigenfrequency: 
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The normal mode analysis for ideal 
MHD proceeds in a similar fashion 

The following equation gives the  
MHD eigenfrequncies: 

CDXU axisymmetric VMEC equilibrium converged on 
SIESTA  mesh (101 surfaces) 

CDXU SIESTA equilibrium w/ m=1, n=1 island  
(101 surfaces) 

A stability analysis was performed on a high beta (8%) CDX-U equilibrium that is known to be 
Mercier unstable.  CDX-U (Current Drive Experiment-Upgrade)  is a small tokamak located at 
Princeton Plasma Physics Lab. 
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Total energy for a stationary plasma  
(magnetic + internal): 

The Hessian matrix used in SIESTA is defined 
below.  The eigenspectrum for this matrix will be 
discussed throughout the poster for both VMEC 
and SIESTA equilibria. 

For quadratic energies, the Hessian is 
essentially the coefficient of the 
second-order term (with a negative 
sign due to the conventions used in 
the code).  For a spring potential, the 
Hessian would essentially be the 
spring constant. 

This Hessian is negative definite (has only 
negative eigenvalues) for a completely stable 
equilibrium. 

These plots of the 
nullvector dotted into 
the magnetic field show 
that the mode is parallel 
(red) or antiparallel 
(blue) to the magnetic 
field everywhere, as 
expected.  There is a 
large degeneracy of 
eigenmodes resulting in 
no net force. 
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The nullspace of the Hessian matrix in SIESTA is very important because it can lead to huge 
displacements in directions that result in no change to the MHD force.  It can easily be seen 
from the linearized ideal MHD equations that a plasma displacement that is purely parallel to 
the magnetic field everywhere will result in zero contribution to the linear force.  

Here incompressibility is used, ie 
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

Thus we would expect that a parallel plasma displacement would serve as a nullspace 
vector for the Hessian matrix; that is a parallel displacement should satisfy the following 
equation: 
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Put another way, we hope to find numerically that the nullspace eigenvectors of the 
SIESTA Hessian matrix are displacements that are essentially parallel to the magnetic field 
everywhere in the domain.  This has been verified as discussed to the right. 

The origin and 
consequences of these 
remaining unstable modes 
are under investigation. 

Spring MHD 

Real eigenfrequencies correspond to numerically stable modes while imaginary 
eigenfrequencies correspond to numerically unstable modes.  For a classical, l=3 
stellarator, a nullspace eigenvector was plotted below.  This plasma displacement 
would result in essentially no change in the linearized MHD force. 
 

Plots of modulus of the nullspace eigenmode 
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