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Time Evolution
3d susceptance matrix links toroidal and poloidal currents and magnetic fluxes

S12 = S21 = 0 for Tokamaks

S11 ≈ S12 ≈ S21 for HSX

1-D diffusion equation for rotational transform 

Boundary conditions

On axis: finite current density @ LCFS :set by measurement

3D Reconstruction and Modeling of Equilibrium Currents in the HSX Stellarator
J.C. Schmitt, J.N. Talmadge, J. Lore 

HSX Plasma Laboratory, Univ. of Wisconsin, Madison, USA

Near-axis ECRH alters the local 

current density

• 2 poloidal arrays  of 16 triplets measure local changes in the magnetic 

field

• Mounted on the exterior of the vacuum chamber

• Recently modified to reduce noise in measured signal

• Rogowski coils (internal and external) measure the net toroidal current

• Toroidal Flux loops: Sensitive mainly to pressure-driven diamagnetic flux

• Internal poloidal and toroidal Mirnov arrays

• Thomson Scattering, Microwave Interferometer, CHERS

• A carbon graphite limiter is placed at the vacuum LCFS

Future Work
• Refine reconstruction

• Adjust fit parameterization to improve the ‘goodness-of-fit’

• Increase radial grid density/resolution near axis

• Identify the source of the asymmetric current density

• Ion-root vs. electron-root effects?   ECH-driven?

• Automate reconstruction process 

• Incorporate more diagnostics in reconstruction

• Thomson Scattering, Soft X-ray, etc.

• Improve modeling of induced fields/eddy currents.  Improve diagnostics, if necessary.

• Impose vacuum magnetic islands and study plasma equilibrium and/or transport response.  

• See C.R Cook UP9.00088 “Application of SIESTA to Well and Hill Equilibria in HSX”

The Helically Symmetric eXperiment
• is Quasi-Helically Symmetric and has almost no toroidal curvature

• B0 = 1 Tesla

• 26 kW – 100 kW ECR Heating (1st Harmonic O-mode)

• Perpendicular launch 

• Toroidal current is predominantly bootstrap-driven

• Flows in opposite direction and reduced compared to a tokamak

• Reverses with B-field direction

• Induces toroidal current with long decay times: τη
||
/μ0

≥ τEXP

• Predicting/controlling the toroidal current profile is important for the next 

generation of stellarators. 

• 3D equilibrium reconstruction is important for stellarators, RFPs and 

tokamaks with non-axisymmetric fields.

• The steady-state neoclassical bootstrap current is calculated by PENTA1

and the evolving current profile is modeled by a diffusion equation with a 3D 

susceptance matrix2 (forward model).  The magnetic signals for the model 

plasma profile are computed by V3FIT3.

• 3D reconstruction of plasma and current profiles are performed with V3FIT.

Special thanks to Jim Hanson, Steve Knowlton and 

the entire V3FIT team!!!

Overview

Diagnostics

PENTA  Uses measured plasma profiles (Te, Ne, Ti, Ni) and predicts the 

ambipolar radial electric field and steady-state parallel flows and bootstrap current.  

Includes the effects of momentum conservation between plasma species.
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V3FIT uses VMEC for the equilibrium calculation.  The pressure and current profiles 

each have four parameters which can be adjusted during the reconstruction step.  The 

net toroidal flux is another fit parameter (total fit parameters = 9).

Pressure profile Enclosed current  profile
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QHS

QHS Equiv Tok

MirFL14 10%

Any non-inductive source

• V3FIT adjusts the profile parameters to minimize the difference between the measured 

and modeled magnetic signals and limiter position.
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sign(B)·Itor, net vs ECRH Location

Φ=1/2 Field Period
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Forward Modeling
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Electron root
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• In the “ion root”, the bootstrap 

current density is || to B,  J·B > 0.

• In the “electron root”, the bootstrap 

current is counter-|| to B, J·B < 0, 

and can significantly alter the total 

(enclosed) toroidal current.

• The measured net current decays 

resistively and approaches an 

extrapolated steady state value 

(240 A) consistent with an “ion root 

dominant” solution.

• This motivates using the “ion root” 

current density profile for forward 

modeling.
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• Early in time, the dipole-field from the Pfirsch-

Schlüter current is seen.  Later in time, the effects 

of the bootstrap current dominate.

• The reconstructed pressure profiles evolve and 

are broader than those derived from Thomson 

Scattering, which are stationary after initial 

plasma breakdown.

Initial guess

Reconstruction

t = 8 ms

t = 50 ms

Initial guess

Reconstruction

t = 8 ms

t = 50 ms

Initial guess

Reconstruction

t = 8 ms

t = 50 ms

Initial guess

Reconstruction

t = 8 ms

t = 50 ms

t = 8 ms

t = 50 ms

t = 8 ms

t = 50 ms

Measured, initial guess and reconstructed signals

The evolved current and measured profiles 

serve as an ‘initial guess’ for the reconstruction
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A single “triplet’”diagnostic

¾” cube

Photo courtesy P. Probert
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PENTA (line)

Extrapolated

Inboard (HFS)      Outboard (LFS)

• and B in the CCW direction, the 

parallel current is reduced on-axis, 

compared to the neoclassical estimate.

• and B in the CW direction, the 

parallel current on-axis is similar to the 

neoclassical estimate.

With HFS heating …

• and B in the CCW direction, the 

parallel current on-axis is similar to the 

neoclassical estimate.

• and B in the CW direction, the parallel 

current is reduced on-axis compared to 

the neoclassical estimate.

With LFS heating …

Main Field Direction

CCW in black, CW in green
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Flip Field experiments reveal non-

symmetric component of net current
sign(B)· Itor, net vs Ne

1 2 3 4 5
0

200

400

600

10
18

 #/m
3

A
m

p
s

 

 

PENTA (line)

Extrapolated
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LFS Heating

ρECRH ≈ + 0.05

• The ECRH resonance location was scanned from 

inboard (HFS) heating to outboard (LFS) heating.

• Maximum central Te is achieved with ρECRH ≈ +0.18.

• The direction of the main field is reversed to identify 

any ‘non-symmetric’ contribution or effects

• The neoclassical calculation tends to underestimate 

the net toroidal current (extrapolated).

• To compensate for the lack of non-inductive current,  

the Forward Model requires a toroidal electric field 

to drive the excess current (not shown).

• and B in the CCW direction, the 

parallel current is approaching the 

neoclassical ion-root estimate.

• and B in the CW direction, the 

parallel current on-axis is reduced 

compared to  the neoclassical ion-root 

estimate.

With Ne ~ 3 …

• The parallel current density is similar 

to the neoclassical ion-root estimate 

regardless of field direction.  

With Ne ~ 5 …

• With the ECRH location fixed at ρECRH ≈ +0.18, 

the line-averaged line density was varied from 

2 – 5 x 1018 #/m3.

• At low density, the net current is similar for 

each direction, but as the density is raised, 

more current is measured with the field in the 

CW direction.  The difference increases with 

density.

• For Ne ≥ 4 x1018 #/m3, the extrapolated total 

(net) current exceeds the neoclassical 

estimate by up to x2
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• The ‘Signal Effectiveness’ is a measure of the impact that a diagnostic has on 

a particular reconstruction parameter
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CCW in black, CW in green
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