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High Effective Transform and Quasi-Helical
Symmetry Lead to Unique Properties

Low Neoclassical Transport
» Small deviations from magnetic surfaces, small banana widths
« Minimal direct loss particles, reduction in ]/ U’ transport, very small
neoclassical thermal conductivity

Plasma Currents are Small
« Small Pfirsch-Schliter and bootstrap currents
* Robust magnetic surfaces, high equilibrium beta limit

Low parallel viscosity in the direction of symmetry
» Possihility of high E x B shear to reduce turbulence

Lower anomalous transport ?  L-2 experimental results X anom U }l/



The HSX Device

Magor Radius 1.2m
Average Plasma Minor Radius 0.15m
Plasma Volume ~44 m?
Number of Field Periods 4
Helical Axis Radius 20 cm
Rotational Transform
AXis 1.05
Edge 1.12
Number of Coilg/period 12
Average Coil Radius ~30cm
Number turns/coail 14
Coil Current 13.4 kA
Magnetic Field Strength (max) 1.25T
Magnet Pulse Length (full field) <0.2s
Auxiliary Coails (total) 48
Estimated Parameterswith 28 GHz ECH

Heating Power (source) 200 kW

Power Density 45 W/cm?

Density (cut-off) 1% 108 cm

Teo (ASTRA modeling) 1 keV

T 2-5ms

Ue <0.1




The HSX experimental program focuses on improvements
of electron transport through quasi-helical symmetry

Utilize 28 GHz ECH (200 kW) to put electronsinto low
collisionality regime

Second har monic heating at B=0.5T to generate hot tail
electronsfor energetic particle confinement studies

Fundamental heating at B=1.0T to study bulk confinement and
reduced electron ther mal conductivity with QHS

Auxiliary coils providetheflexibility to alter the
magnetic field spectrum between QHS and fully 3-D
for comparison



Main and Auxiliary HSX Coil Module in Supporting Assembly
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AUXILIARY COILSCANALTER MAGNETIC
CONFIGURATION

Auxiliary Currents:
+ + + - - - ---+++ MIRROR

- - - - - - ---- - - WELL

* Noncircular, planar auxiliary coils with 10% A-T of
main coil set allow for independent control of transport
and stability

*ﬁ;"

af

Configuration Auxiliary Current Dominant Feature
QHS None Best transport
MIRROR 3 coilson either end opposite to | Transport similar to
coilsin center conventional stellarator
WELL All aux currents oppose main Well depth and stability
coil current Increases




Typical ripple along the magnetic field lines for
the two modes of operation
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28 GHz ECH heating at the 2" harmonicisbeing
utilized to examine the confinement properties of
these two modes of operation by:

- Studies of the breakdown time as a function
of the magnetic field spectrum and resonance
location

- Variationsin the stored energy with average
density, resonance location and spectrum

At fixed neutral density (puff) and RF power, thetimeto
reach a small but measurable density is defined asthe
breakdown time and taken as an indication of the
confinement of theionizing € ectrons
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e Breakdown timeisa minimum for all cases with on-
axisresonance

« With low-field side resonance, breakdown times
Increase significantly asthe deviation from symmetry
INCreases

» Deviations between the configurationsis much smaller
on the high-field side; reduced timesfor high-field
deep mirror with increased fill pressure



Stored Energy isHigher for QHSthan in Mirror M ode
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Stored Energy (J)

Clear Reduction in Stored Energy at Constant
Density and | nput Power asMirror Term is

| ncr eased

Stored Energy as a function of the Mirror amplitude.
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Absorbed Power Inferred from Changein the

Stored Energy at ECH Tur noff
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Absorbed power and confinement time
decrease with increasing mirror mode

Agosorbed Power as a function of the Mirror amplitude.
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At low densitiesthereis evidence of a non-
thermal electron population

Shot 58 6/12/01: Stored Energy=20.95(J)
Absorbed Power=15128.98 (W) Cohfinement time= 0.00138 s.
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Variation in Stored Energy with Resonance
L ocation for QHS and Mirror

Avg.Plasma energy vs. Resonance location
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Peaked Density Profiles Observed in QHS Low Density
Dischar ges, even with Off-axis Resonance
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Broadened Density Profiles Observed in
Mirror Mode with Central Resonance Heating

x 10*>  Line Integrated Density Traces, Date: 5-11-01, Shot: 43
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1 Oscillationsin the Density Profile Can

Sometimes be Observed in High Density Central

M=

Resonance QHS Discharges

Density Prafile Evalution, Date: 4-B-01, Shot: 52

6-01, Shot: 52
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Stored Energy Crashes and SX Spikes Can Sometimes
be Observed in Very Low Density Central Resonance
QHS Discharges
(Stored energy crashesin mirror mode do not recover)

SXR Oscillations, shot 24 of 5/29/01
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Summary

e Largeincreasesin the breakdown time
over the QHS case have been observed
with low-field resonance and broken
symmetry

* Theplasma stored energy decreases
monotonically asthe mirror spectral
component isincreased

e Scans of the stored energy with
resonance position show symmetry
about the magnetic axisfor QHS, and a
mar ked decrease on the low field side
for themirror mode

» Peaked density profiles have been
observed for the QHS mode; profiles
appear broader for themirror mode

Thesearethefirst experimental
resultsthat show quasi-helical
symmetry improves particle
confinement



