Electron Density Distribution in HSX

C. Deng, D.L. Brower

Electrical Engineering Department University of California, Los Angeles

J. Canik, S.P. Gerhardt, D.T. Anderson, P. Probert, F.S.B. Anderson

- •The HSX Plasma Laboratory
- •University of Wisconsin-Madison

Abstract

A multichannel interferometer system is now routinely operating on the new quasi-helically symmetric stellarator, HSX, to measure the equilibrium profile and electron density dynamics. The interferometer system has 9 viewing chords with 1.5 cm spacing. The density spatial distribution is reconstructed from the measured line-integrated density. At high density $\lceil \bar{n}_e > 2 \times 10^{12} \, \text{cm}^{-3} \rceil$, an m=1 density oscillation with frequency of (1-2) kHz is observed. Perturbative particle transport studies will be carried out using modulated gas puffing. The particle source will be measured by a multichannel H_a system. By using the continuity equation, the total radial particle flux Γ_r can then be estimated. The diffusion coefficient D and convection velocity V will also be modeled.

^{*}Supported by USDOE under grant DE-FG03-01ER-54615, Task II and DE-FG02-93ER54222.

Interferometer Capabilities

- Spatial resolution: 9 chords, 1.5cm spacing and width.
- Fast time response: analog: 100-200 µsec, real time digital: <10 µsec maximum bandwidth 250 kHz [with 2 MHz sampling]
- Low phase noise: 24 mrad (1.6°) $(\Delta n_e dl)_{min} = 9 \times 10^{11} \text{ cm}^{-2}$ 0.4% level density fluctuations can be measured
- Density fluctuations: wavenumber resolution (i) $k_{\perp} < 2.1$ cm⁻¹, (ii) $k_{\parallel} < 0.07$ cm⁻¹

Solid State Source

Solid State Source:

 bias-tuned Gunn diode at 96 GHz with passive solid-state Tripler providing output at 288 GHz (8 mW)

• Support of Optical Transmission System:

 2.5 meter tall, 1 ton reaction mass, mounted on structure independent of HSX device. Reduces structure vibration and minimizes phase noise.

Dichroic Filters:

- mounted on port windows to shield interferometer from 28 GHz gyrotron radiation
- − Cut-off frequency: ~220 GHz
- $\sim 10\%$ loss
- attenuation ranging from 92db at 28 GHz to 68 db at 150 GHz.

Edge Filters:

mounted inside port windows to reduce diffraction of the window

Interferometer Schematic

HSX Interferometer Layout

HSX Interferometer System

Beam Expansion Optics and Receiver Array

Flux Surfaces and Interferometer Chords

Density Profile Inversion

- Method: Abel inversion; Singular Value Decomposition
 - flexible boundary conditions
 - non-circular geometry
 - plasma scrape-off-layer SOL estimate
- Model: spline fit to 9 channel line-density profile
 - no Shafranov Shift
- Path lengths: calculated for twenty vacuum flux surfaces,
- SOL plasma contribution: One viewing chord is outside the separatrix. This provides information on the SOL contribution.
- Refraction correction: necessary for chord length and position

HSX Density Profile (QHS)

Measured Line-Integrated Density Profile and fitting

Inverted Density Profile

HSX Density Profile (Mirror)

Measured Line-Integrated Density Profile and fitting

Inverted Density Profile

HSX Density Profile (Anti-Mirror)

Measured Line-Integrated Density Profile and fitting

Inverted Density Profile

Perturbative Particle Transport Study

Density perturbation obtained by gas puffing modulation provide a good tool for particle transport study. Previous successful experiments on TEXT, ASDEX, W7-AS

Diffusive and convective effects can be obtained by analyzing profile time evolution:

Sinusoidal wave is ideal for this analysis, which give higher accuracy of the analysis. And a few cycles will be needed to obtain certain accuracy. The amplitude will be around less than 10% to reduce the effects of plasma parameters dependency.

Continuity Equation

The electron density can be constant on magnetic flux surfaces. We use cylindrical geometry transport Equation:

$$\frac{\partial n}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} r \left(D(r, t) \frac{\partial n(r, t)}{\partial r} - V(r, t) n(r, t) \right) + S(r, t) \tag{1}$$

Parameters n and S can be separated into two part: (1) stationary part n_0 and S_0 , and (2) perturbed part \tilde{n} and \tilde{S} .

$$n = n_0 + \tilde{n} e^{i\omega t} \qquad S = S_0 + \tilde{S} e^{i\omega t} \qquad (2)$$

where ω is the frequency of the density perturbation generated by modulating the gas feed. Also assume D and V are independent of time. Linearizing equation (1) leads to:

Linearized Equations

$$i\omega \tilde{n}(\omega,r) = D(r) \frac{\partial^2 \tilde{n}(\omega,r)}{\partial r^2} + \left(\left(\frac{D(r)}{r} + \frac{\partial D(r)}{\partial r} - V \right) \right) \frac{\partial \tilde{n}(\omega,r)}{\partial r} - \left(\left(\frac{V(r)}{r} + \frac{\partial V(r)}{\partial r} \right) \right) \tilde{n}(\omega,r) + \tilde{S}$$
(5)

$$\tilde{n} = \tilde{n}_{re} + i \tilde{n}_{im}$$

The boundary conditions are:

at r=0;
$$\partial \tilde{n}_{re}/\partial r = \partial \tilde{n}_{im}/\partial r = 0$$
 (6)

at r=a.
$$\tilde{n}_{re} = 10^9 cm^{-3}; \tilde{n}_{im} = 0$$
 (7)

modulated gas feed

Fourier coefficients

The Fourier coefficients of the line-integrated density were obtained by fitting the following function to the measured data:

$$\widetilde{I} = \widetilde{N}_{re,1} \cos(\omega t) + \widetilde{N}_{im,1} \sin(\omega t) + \widetilde{N}_{re,2} \cos(2\omega t) + \widetilde{N}_{im,2} \sin(2\omega t) + (a_0 + a_1 t + a_2 t^2)$$

Here $\tilde{N}_{re,i}$ and $\tilde{N}_{im,i}$ are the real and imaginary parts of the Fourier coefficients at the *i*th Harmonic of the modulation frequency. The a0,a1 and a2 correspond to constant, linear and quadratic time dependence and take into account a possible slow time evolution.

Density Perturbation Amplitude and Phase

 Amplitude and phase of the first harmonic of the modulation frequency for the line-integrated densities

Estimated Source

- At this moment, electron source profile unknown.
- Assume source profile has exponential fall-off.
- Amplitude and position of the Source were chosen (roughly) according to the $H\alpha$ measurement.

Results for D=const. and V=0

A rough estimate of D from measured particle confinement time, $\tau_p = \frac{n_e}{\overline{S}}$ gives ~ 3ms, $D_{est} = a^2/(6 \tau_p) \sim 1.0 m^2/s$

Results for stepped D, with V=0

The modeling is not sensitive to the detailed structure of D

Sensitivity of Modeling to D

Sensitivity of Modeling to V

150

V1=1.0m/s

V2=10m/s

V2=-100m/s V2=-10m/s V2=0m/s

$$V = \left(\frac{V_1}{1 + \exp(-(r - r_v)/\Delta)} + V_2\right) \left(\frac{r}{a}\right)$$

Sensitivity of Modeling to Source Profile

if x<xc

S=no*exp(-abs(x-xc)/xl1); if x>xc S=no*exp(-abs(x-xc)/xl2);

x12=5cm

Peak position: xc=3.4cm

Density Perturbation at different frequencies

The Particle transport is unchanged with the frequency of gas feed modulations

Density Perturbation with different Densities

The Particle transport changes a little with density, which would give smaller D at higher density.

Modeling of the recent experiment

D=2.0m²/sec V=0m/sec

Better fit with outward convection

D=2.0m²/sec V=300m/sec Source same as last slide

Summary

• Equilibrium Density Distributions for QHS, Mirror, Anti-mirror modes were obtained.

• The preliminary measurement and analysis shows the possibility of perturbative particle transport study on HSX, the modeling shows the D around 1-2m²/s.

• Improved Electron source measurement (or modeling) required to determine D and V which provide best fit to interferometer data.