Effects of Symmetry-Breaking on Plasma Formation and Stored Energy in HSX

Presented by D.T. Anderson

for the HSX Team

University of Wisconsin-Madison

2001 APS-DPP Annual Meeting, Long Beach CA

Outline

Principles of Quasi-helical Symmetry

The HSX Device and Goals

2nd Harmonic ECH Breakdown

Effects of Magnetic Field Spectrum on Stored Energy

Plasma Rotation with Electrode Biasing

Posters on HSX website http://hsxa.ece.wisc.edu

The Helically Symmetric Experiment

High Effective Transform and Quasi-helical Symmetry Lead to Unique Properties

Low neoclassical transport

Small deviations from magnetic surfaces, small banana widths

Minimal direct loss particles, reduction in '1/v' tansport, very small neoclassical thermal conductivity

•Plasma currents are small

Small Pfirsch-Schluter and bootstrap currents

Robust magnetic surfaces, high β_{eq} limit

•Low parallel viscosity in the direction of symmetry

Possibility of high E x B shear to reduce turbulence

•Lower anomalous transport (?)

L-2 experimental results $\chi_{e,anom} \sim 1/1$

The HSX Device

	Major Radius	1.2 m
	<r></r>	0.15 m
	Volume	~.44 m ³
	Field periods	4
	laxis	1.05
	ι_{edge}	1.12
	Coils/period	12
	B ₀ (max.)	1.25 T
	Pulse length	0.2 s
	Auxiliary	48
L MR HE L	Coils	

ECH heating at 28 GHz to investigate low collisionality electron transport

Experiments to date utilize 2nd harmonic heating at B=0.5 T

to generate hot trapped electron population

Designed Magnetic Structure Confirmed Experimentally

Well-formed nested magnetic surfaces observed
Rotational transform within 1% of design value

Passing Particle Orbits Contain Information about m ≠ 0 Spectral Components of B

High energy passing electron orbits, measured at several toroidal angles, mapped into Boozer space using neural network

Shifts from flux surface
related to spectrum
$$r^{2} = r_{0}^{2} + \frac{2Mv_{\parallel}g}{eB_{0}^{2}} \sum b_{nm} \frac{m}{n-m\iota} [\cos(n\phi - m\theta) - \alpha_{nm}]$$

Method ideal for measurement of nearly resonant spectral components which cause large deviation of orbit from flux surface.

Details can be found in Physics of Plasmas (Dec., 2001)

Results in HSX confirm that:

Toroidal curvature is very small

Very large effective transform results in small excursions of passing particles from flux surface

Mapping and Drift Orbit Studies Confirm the Designed HSX/QHS Structure Has Been Achieved

Auxiliary Coils Provide Flexibility for HSX

Main Coil	Auxiliary Coil		
Configuration	Auxiliary Coil Currents		Dominant Feature
QHS	None		Best transport; symmetry
MIRROR	3 coils on ends add to main; center 6 opposite		Transport similar to conventional stellarator
ANTI-MIRROR	Opposite phasing to mirror; same global transport		Deep ripple on low-field side at ECH launcher
WELL	All currents opposite to main coil currents		Well depth and stability

The Breakdown Time is a Function of Spectrum and Resonance Location

•2nd Harmonic ECH (B=0.5T) •P_{RF} = 50 kW •Constant puff (1 x 10⁻⁶ torr) •Breakdown time defined as time to $\langle n_e \rangle = 2 \times 10^{11} \text{ cm}^{-3}$

QHS symmetric about on-axis heating

•Increased τ_{b} for mirror on outboard side; longer for <u>anti-mirror</u>

Particle Orbits at ECH Launch (\phi=0): QHS

Β

Particle Orbits at ECH Launch (\phi=0) : Mirror Mode

Particle Orbits at ECH Launch (\phi=0) : Anti-Mirror

Line-Density Signals and Profiles for QHS and **Mirror-Mode Plasmas; Central Heating**

860

800

time (ms)

to heating location

Higher Stored Energies Can be Achieved in the QHS Mode of Operation

QHS

Mirror Mode

•With similar densities, large variations are observed in the stored energies measured by a diamagnetic loop

-Variations with magnetic field spectrum, resonance location, and line-averaged density

Clear Reduction in Stored Energy at Constant Density and P_{RF} as Anti-Mirror Term is Increased

The QHS Mode has Higher Stored Energies than the Mirror Mode at Low Densities

Central Heating

•QHS stored energy drops with increasing density while mirror increases below 1 x 10¹² cm⁻³

•Stored energy independent of density above this value

Stored Energy in the Mirror Mode Falls Rapidly with Outboard Heating

QHS Mode Effectively Absorbs Power for all <n_e>

Absorbed power inferred from ΔW_p at ECH turn-off

Absorbed power increases with density in the mirror mode

Increases in confinement time observed in *low* density QHS plasmas

Mirror and High Density QHS Follow ISS95 Scaling

Initial Measurements of Plasma Flow Induced Using a Biased Electrode

- •QHS plasmas should have low parallel viscous damping in the direction of symmetry
- •Biased electrode used in edge region to drive flow
- •Flow measured with a six-element Mach probe

The Measured Induced Plasma Flow is in the Direction of Quasi-symmetry

QHS Has a Larger Flow Velocity Change for Less Drive than the Mirror Mode

 $\Delta U \sim 50\%$ larger for QHS; slower rise

Higher radial conductivity observed for mirror mode

Damping Due to Parallel Viscosity for QHS 1-2 Orders on Magnitude Less Than Mirror

Factor of two difference in damping rates near the plasma edge explained by damping due to neutrals

Concluding Remarks

•Stellarators can be designed for targeted physics properties

•Specifically for quasi-helical symmetry

- Virtual elimination of toroidal curvature
- $|N m\iota|$ reduction of orbit shifts (high ι_{eff})
- •Quasi-Symmetry Matters!
 - Shorter breakdown times
 - Higher stored energy/better absorption
 - Reduced rotation damping

What is T_e in HSX?

Resolution awaits additional diagnostics: HSX Thomson (mid 2002), fast electron diagnostics and ECE (soon!) and time-resolved spectroscopy (now)